ABC与D组增重差异性显著
- 格式:doc
- 大小:37.00 KB
- 文档页数:3
a b cd分析显著性
1.运用显著性差异字母标记法,将全部平均数从大到小依次排列。
2.在最大的平均数上标上字母a并将该平均数与其他各平均数
相比,凡相差不显著的,都标上字母a,直至某一个与之相差显著的平均数则标以字母b。
3.再以该标有b的平均数为标准,与各个比其大的平均数比较,凡不显著的也一律标以字母b,以标有b的最大平均数为标推,与各未标记的平均数比,凡不显著的继续标以字母b,直至某一个与之相差显著的平均数则标以字母c。
”如此重复,直至最小的一个平均数有了标记字母为止。
4.各平均数间,凡有一个相同标记字母的即为差异不显著,凡是具不同标记字母的即为差异显著。
食品试验设计与统计分析课程考试卷A适用专业: 考试日期:试卷所需时间:120分钟 试卷总分: 100分注意:请将答案全部写在答题纸上...............,试卷同答题纸一起上交........... 一、填空题:(共4小题,每空1分,共10分)1. 已知2~(,)Y N ,则Y 在区间[ 2.58, 2.58m s m s -+]的概率为 。
2. 当秩次距K= ,方差分析进行多重比较时,q 检验法=SSR 法=LSD 法。
3. 方差分析中常用的变量转换方法有 、 、 和 。
4. 异常数据的剔除方法有 、 、 和 等。
二、是非题(共10题,每题1分,共10分)1.描述总体的特征数叫统计量。
( )2.几何平均数是变量倒数的算术平均数的反倒数。
( )3.两个方差的假设检验可以采用F 检验。
( )4.对于同一组资料,99%的置信区间一定比95%的置信区间大。
( )5.假设检验结果或犯α错误或犯β错误。
( )6.一个显著的相关或回归不一定说明X 和Y 的关系必为线性。
( )7.试验因素的任一水平就是一个处理。
( )8.对多个样本平均数仍可采用t 测验进行两两独立比较。
( ) 9.正交设计各个因素的水平可以不同。
( )10.只要认真做好试验设计,控制好试验条件,试验误差是完全可以避免的。
( )三、单项选择题:(共10小题,每题2分,共20分 )1.下列不属于描述统计问题的是 。
A.根据样本信息对总体进行推断B.了解数据分布的特征C.分析感兴趣的总体特征D.利用图表或其他数据汇总工具分析数据2. 落在某一特定类别或组中的数据个数称为 。
A. 频数 B. 频率 C .频数分布表 D. 累积频数3. n 个变量值乘积的n 次方根为 。
A. 众数B. 中位数C. 四分位数D. 几何平均数 4. 比较两组数据的离散程度最适合的统计量是 。
A.极差 B.平均数 C.标准差 D. 离散系数 5. 假定总体服从正态分布,下列哪种场合适合t 检验统计量 。
生物统计学习题集参考答案第一章概论一、填空1 变量按其性质可以分为连续变量和非连续变量。
2 样本统计数是总体参数的估计量。
3 生物统计学是研究生命过程中以样本来推断总体的一门学科。
4 生物统计学的基本内容包括_试验设置、统计分析_两大部分。
5 统计学的发展过程经历了古典记录统计学、近代描述统计学现代推断统计学3个阶段。
6 生物学研究中,一般将样本容量n大于等于30称为大样本。
7 试验误差可以分为__随机误差、系统误差两类。
二、判断(-)1 对于有限总体不必用统计推断方法。
(-)2 资料的精确性高,其准确性也一定高。
(+) 3 在试验设计中,随机误差只能减少,而不可能完全消除。
(+)4 统计学上的试验误差,通常指随机误差。
三、名词解释样本:从总体中抽出的若干个体所构成的集合称为样本。
总体:具有相同的个体所构成的集合称为总体。
连续变量:是指在变量范围内可抽出某一范围的所有值。
非连续变量:也称离散型变量,表示变量数列中仅能取得固定数值并且通常是整数。
准确性:也称准确度指在调查或试验中某一试验指标或性状的观测值与真实值接近的程度。
精确性:也称精确度指在调查或试验中同一试验指标或性状的重复观测值彼此接近程度的大小。
第二章试验资料的整理与特征数的计算一、填空1 资料按生物的性状特征可分为___数量性状资料_变量和__变量性状资料_变量。
2 直方图适合于表示__计量、连续变量_资料的次数分布。
3 变量的分布具有两个明显基本特征,即_集中性_和__离散性_。
4 反映变量集中性的特征数是__平均数__,反映变量离散性的特征数是__变异数(标准差)_。
5 样本标准差的计算公式s= √∑(x-x横杆)平方/(n-1)。
二、判断( - ) 1 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
( - ) 2 条形图和多边形图均适合于表示计数资料的次数分布。
( +)3 离均差平方和为最小。
( + )4 资料中出现最多的那个观测值或最多一组的中点值,称为众数。
三组间比较差异有统计学意义
三组间比较差异有统计学意义,意味着这三组数据在统计学上呈现出显著的不同。
这种情况通常出现在科学研究、医学实验、社会经济分析等领域,用于比较不同组别之间的某种指标或特征是否存在显著差异。
在统计学中,我们通常会使用各种假设检验方法来比较不同组之间的差异。
例如,如果我们想要比较三组人的平均身高是否存在差异,我们可以使用方差分析(ANOVA)这样的统计方法。
ANOVA可以帮助我们检验这三组人的平均身高是否相等,或者是否存在至少一组与其他组有显著差异。
当三组间的比较结果显示差异有统计学意义时,这意味着至少有一组与其他组在所比较的指标上存在显著差异。
这可能是由于不同的实验条件、人群特征、干预措施等因素造成的。
例如,在某项医学研究中,三组患者分别接受了三种不同的治疗方法,如果这三组患者在治疗效果上存在显著差异,那么我们就可以说这三组间的比较差异有统计学意义。
在得出这样的结论后,研究者通常会进一步探讨造成这种差异的原因,并尝试解释这种差异背后的生物学、医学、社会学等机制。
同时,他们还会注意这种差异是否具有实际意义,是否会对人们的健康、生活、经济等方面产生影响。
总之,三组间比较差异有统计学意义是一个重要的统计学结论,它提醒我们不同组之间可能存在重要的差异,需要进一步研究和探讨。
⽣物统计习题(含参考答案)《⽣物统计学》练习题⼀、单项选择题1、为了区别,统计上规定凡是参数均⽤希腊字母表⽰,如总体平均数⽤符号( C )。
A、σB、xC、µD、S2、资料中最⼤值与最⼩值之差称为( D )。
A、组距B、组限C、组中值D、全距3、同⼀性状重复观察,各观察值彼此接近的程度称为( C )。
A、准确性B、可靠性C、精确性D、随机性4、常⽤于表⽰间断性变数、质量性状资料的次数分布状况的统计图是( A )。
A、折线图B、矩形图C、多边形图D、条形图5、连续性资料的整理与分组是采⽤:( C )A、统计次数法B、单项式分组法C、组距式分组法D、评分法6、在⼀定条件下可能出现也可能不出现的现象称为( D )。
A、不可能事件,B、⼩概率事件。
C、必然事件。
D、随机事件。
7、任何事件(包括必然事件、不可能事件、随机事件)的概率都在( B )。
A、-1与+1之间。
B、0与1之间。
A、中数的离差。
B、众数的离差。
C、平均数的离差。
D、中位数的离差。
9、正态分布密度曲线向左、向右⽆限延伸,以( D )。
A、y轴为渐近线。
B、y =a轴为渐近线。
C、x =b轴为渐近线。
D、x轴为渐近线。
10、对于正态分布,标准差σ的⼤⼩决定了曲线的“胖”、“瘦”程度。
若σ越⼩,曲线越“瘦”,变量越集中在( B )。
A、原点0的周围取值。
B、平均数µ的周围取值。
C、x的周围取值。
D、y的周围取值。
11、正态分布密度曲线的“胖”、“瘦”程度是由( A )⼤⼩决定的。
A、σB、µC、µ+σD、µ-σ12、已知x~N(µ,σ2),若对x作下列之⼀种变换( D ),则就服从标准正态分布。
A、a=(f+µ)/σ。
B、b=(µ-x)/σ。
C、t=(x-µ)/σ2。
D、u=(x-µ)/σ。
13、若随机变量X 服从标准正态分布记为X ~N(85.2,16),其标准差为( B )A 85.2B 4C 不确定D 1614、⽤⼀个正态总体的样本平均数估计( C )的估计值,这种估计⽅法叫点估计。
生物统计考试题库及答案一、单项选择题1. 生物统计中,数据的类型分为()。
A. 定性数据和定量数据B. 计数数据和测量数据C. 离散数据和连续数据D. 描述性数据和推断性数据答案:A2. 在统计学中,总体是指()。
A. 研究对象的全部个体B. 研究对象的样本C. 研究对象的子集D. 研究对象的特定个体答案:A3. 描述一组数据集中趋势的统计量是()。
A. 方差B. 标准差C. 平均数D. 极差答案:C4. 以下哪个不是正态分布的特征()?A. 对称性B. 单峰性C. 均值、中位数和众数相等D. 偏态分布答案:D5. 相关系数的取值范围是()。
A. -1到1之间B. 0到1之间C. -1到0之间D. 0到正无穷答案:A二、多项选择题6. 下列哪些是生物统计中的常见概率分布()。
A. 正态分布B. t分布C. F分布D. 泊松分布答案:ABCD7. 在生物统计分析中,以下哪些是描述离散程度的统计量()。
A. 方差B. 标准差C. 极差D. 平均数答案:ABC8. 以下哪些是生物统计中的非参数检验方法()。
A. 卡方检验B. 秩和检验C. 曼-惠特尼U检验D. 方差分析答案:ABC三、判断题9. 样本均值是总体均值的无偏估计。
()答案:√10. 标准差越大,数据的离散程度越小。
()答案:×四、简答题11. 简述生物统计中假设检验的基本步骤。
答案:假设检验的基本步骤包括:1. 提出零假设和备择假设;2. 选择适当的检验统计量和显著性水平;3. 计算检验统计量;4. 根据检验统计量和显著性水平,确定是否拒绝零假设。
12. 描述性统计和推断性统计的主要区别是什么?答案:描述性统计主要关注数据的收集、整理和描述,目的是对数据集进行总结和概括;而推断性统计则是基于样本数据对总体进行推断,目的是对总体参数进行估计和假设检验。
五、计算题13. 给定一组数据:10, 12, 15, 18, 20,计算其平均数和标准差。
Effect of dietary protein level on growth and energy utilization by Litopenaeus stylirostris under laboratory conditionsF. Gauquelin a,G. Cuzon a,⁎, G. Gaxiola b, C. Rosas b, L. Arena b,D.P Bureau c, J.C. Cochard aa Ifremer/COP, BP 7004 Taravao, Tahiti, French Polynesiab UNAM Unidad Multidisciplinaría de Docencia e Investigación, Facultad de Ciencias, Sisal, Yucatán Lab Ecophysiologia, Sisal, Yucatan, Mexicoc Fish Nutrition Research Lab, University of Guelph, Ontario, Canada N1G 2W1Received 21 November 2005; received in revised form 24 April 2006; accepted 15 May 2006AbstractA study was conducted using a bioenergetics approach to generate information on energy requirement and feed utilization of Litopenaeus stylirostris. Animals (initial mean weight 21±1 g were fed ad libitum six experimental diets, ranging from 25 to 58% crude protein (CP), for 50 days.Weight gain increased from 21 to 30 g with increasing dietary protein level. Survival rates averaged 80%. Basal metabolism (HeE) and heat increment of feeding (HiE) were monitored using respirometry. HeE was on average 1 kJ shrimp−1 day−1 or 47 kJ kg live weight−1 day (22 kJ/kg0.8. d−1), slightly more than what is observed in fish. HiE averaged 0.2 kJ/shrimp−1 day−1 or 10 kJ kg live weight−1 day−1 (4 kJ/kg0.8 d−1). It represented 31% and 12% digestible energy intake (DEI) for shrimp fed on 58% CP and 25% CP diet respectively. Non-fecal (UE+ZE) energy calculated on the basis of N-ammonia excretion averaged 0.2 μg N-ammonia/g dry wt./ mn or 25 J live shrimp−1 day−1 in fasting stage and increased to 40 J in post-prandial stage. Ammonia production increased with increasing dietary crude protein (CP). The O:N ratio indicated that protein was increasingly used as an energy substrate as CP increased. The information was used to construct an energy budget for shrimp fed a protypical 40% CP diet. Gross energy intake (IE) was estimated at 6.5 kJ live shrimp−1 day−1; digestible energy intake (DEI) at 5, urinary and branchial excretion(UE+ZE) at 1.2, total heat production (HE) at 3.2; recovered energy (RE) at 0.6 (or 11%DEI). L. stylirostris adults issued from domesticated strain appeared to be more efficiently utilizing (i.e. converting into carcass energy) protein than carbohydrates. This preliminary energy budget can be used to construct theoretical feed requirement and waste outputs model for L. stylirostris.© 2007 Published by Elsevier B.V.Keywords: L. stylirostris; Dietary protein; Growth; Excretion; Respiration1. IntroductionThe blue shrimp Litopenaeus stylirostris was domesticated in Tahiti over the past 25 years and led to identify a specific pathogen resistant strain (SPR40). This species is currently farmed in semi-intensive conditions in New Caledonia. However, a gradual increase of mortality has been noticed since 1993 (Mermoud et al., 1998). High mortality rates appear to be related to a progressive degradation of the pond ecosystem and water quality problems. This degradation is likely partly due to management, overfeeding, and/or variation in feed quality. Incomplete removal of mud and/or insufficient pond drying time between production cycles can affect water quality and productivity. However, poor feeding management (excessive feeding) and/or poor utilization of feed by the animal themselves (Burford and Williams,2001) remain a major concern.There is consequently a need to improve our knowledge on feed utilization by L. stylirostris. Bioenergetics approaches have been effectively used to predict growth,feed requirement and utilization, and waste outputs of different fish species (Cho and Kaushik, 1990; Cho, 1991;Cho and Bureau, 1998; Elliot and Hurley, 1999; Kaushik,1998; Lupatsch et al., 1998; Cui and Xie, 1999; Bureauet al., 2002; Zhou et al., 2005). In contrast, for crustacean species, notably penaeid shrimp information is limited (Bureau et al., 2000). Data from crustaceans are difficult to interpret due to wide differences in species, development stages, feed composition, feeding rate and estimation of feed consumption then nutrient intake. And because of a lack of data on L. stylirostris some estimates on main parameters collected on different species were necessary to review briefly in order to set a same order of magnitude for each parameters contributing to the energy budget. Sick and Andrew (1972) estimatedHP (HE,HeE+HiE) feeding Macrobrachiumlarvae (7mgav. wt.) tobe on average0.2 Jmg−1 live weight day−1. Similar data were reported and presented for post-larvae of the same species, since Stephenson and Knight (1980) observed that Macrobrachium post-larvae respired 0.24 J mg−1 live weight day−1.These values appeared to be high in comparison with estimated HE of lobster post-larvae (stages IV and V) at about 0.06 J post-larvae−1 day−1 (Capuzzo and Lancaster,1979). But Marsh et al. (2001) measured 3 J larvae−1 day−1 from zoea to megalope (2 wk) stages of Hemigrapsus crassipes. Similarly, F. brasiliensis larvae respired 3 J larvae−1 day−1 (Gaxiola et al., 2002). Heat production(HE) was calculated to be 8–12% above the resting rate(HeE) in P. esculentus (Dall, 1986; Dall and Smith, 1986).Resting rate of P. vannamei juveniles consumed 21 Jshrimp−1 h−1 reported on a 15-day period (Comoglio et al.,2004). Molting (SE) depending directly on water temperature has a determinant effect on metabolism. P. monodon juveniles used 26% accumulated energy for molting; Read and Caulton (1980) calculated approximately 1.4 kJ lost at molt. Nelson (1977) reported an energy loss per molt at around 7.3% DE with Macrobrachium. Metabolizable energy (ME) intake increased nearly 3 times fold from 19 °C to27 °C with 93 and 247 J juv.−1 day−1 respectively on juveniles L. californiensis (Ocampo (1998). Dietary protein level can have a significant effect on energy expenditure too (Hewitt and Irving, 1990; Koshio et al.,1993). InP. japonicus, soy protein concentrate compared tocrab protein increased HE (35 and 16% DE respectively). Heat increment (HiE) was monitored at several protein levels with P. setiferus, P. schmitti, P. duorarum, and P. notialis post-larvae; there was a direct relation between HiE and dietary protein level whatever species tested (Rosas et al., 1996). P. setiferus post-larvae fed on a 30%protein diet had lower HiE compared to shrimp fed 40 or 50%CP (Rosas et al., 1998). At end, L. stylirostris REwere calculated for 0.3–1.5 kJ d−1 from trials with shrimp between 5 to 24 g average weight (Corraze, 1994); this energy for growth is related to protein intake with an optimalDP/DE 20–23 mg protein kJ−1 for L. stylirostris or L. vannamei (Cousin, 1995; Cuzon and Guillaume, 1997).L. stylirostris energy expenditure is needed in order to compare with other species such as P. monodon with an optimum growth between 25 and 28 mg protein kJ−1(Shiau and Peng, 1992) and examine the phy siological effect of protein level that would generate information needed to further provide rationale in feed adjustments and minimize wastes output under semi-intensive shrimp farming conditions.2. Materials and methods2.1. Experimental dietsPractical diets, fish meal, soybean and wheat based were prepared through combination of two “mash”diets (referred to as diets A and B) in different proportions to obtain the desired final protein levels (Table 1). The various diets were cold-pressed to produce 2 mm diameter pellets, which were then dried for 2 h at 50 °C. The diets were stored at 2 °C until used. Each dry pellet was estimated to weigh0.15 g on average and this average used to calculate feed intake in the metabolic chamber during the respirometry trial. Shrimp were fed a standard grower shrimp feed for 3 days prior the beginning of experiment. During the experiment, the animals were fed a ration equivalent to 3% body weight (BW) per day distributed in two discrete meals, in the morning and the late afternoon. Feed wastage was assessed daily by difference between the amount of feed distributed and what remained on the bottom the following day. Feed water stability was assessed and leaching did not exceed 10% loss dry matter per hour. It was observed that most of the feed was ingested during 10–15 mn after a meal.2.2. Animals, experimental conditions and husbandryAnimals originated from Tahiti SPR43 strain resistant to IHHN viruses (Weppe et al., 1992) held for 18 generations in captivity. Shrimp were sampled in earthenTable 1Practical diet composition in % as fedA B C D E FFishmeal a 10 18 24 32 40 50CPSP80 b –2 4 6 8 10SBM48 c 10 11 12 13 14 15Wheat 68 57 47 35 23 7Wheat gluten 4 4 5 6 7 10Fish oil 3 3 3 3 3 3Lecithin d 1 1 1 1 1 1Cholesterol 0.2 0.2 0.2 0.2 0.2 0.2Vit mix e 2 2 2 2 2 2Min mix f 2 2 2 2 2 2Moisture % 9.9 12.3 9.7 9.4 9.8 9.0Protein % 23 29 37 45 52 58DP 21 27 34 42 48 54Lipid % 5 6 7 8 9 9Starch % 42 35 29 22 15 9GE kJ/g 19.0 19.16 19.5 19.9 20.3 20.4DE kJ/g 13 14 15 16 17 17DP/DE g/kJ 2 2 2 3 3 3DE from 35/23/15 coefficients (kJ g−1) for lipid, protein andcarbohydrate respectively (Cousin, 1995).a Fish meal from Chili.b CPSP80 for fish soluble protein concentrate.。