高三数学一轮复习训练(理科) 幂函数与二次函数
- 格式:doc
- 大小:151.50 KB
- 文档页数:6
第七讲二次函数与幂函数1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较R R R{x|x≥0}{x|x≠0}(1)二次函数解析式的三种形式:一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数图像R R考向一 幂函数概念及性质【例1】已知幂函数223(22)n nf x n n x -=+-(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为________. 【答案】 1【解析】由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意. 【举一反三】1.已知函数f (f )=(f 2−f −1)f f 2+2f −3是幂函数,且其图象与两坐标轴都没有交点,则实数f =() A .−1 B .2 C .3 D .2或−1【答案】A【解析】∵函数f (f )=(f 2−f −1)f f2+2f −3是幂函数,∴f 2−f −1=1,解得:f =2或f =−1,f =2时,f (f )=f ,其图象与两坐标轴有交点不合题意,f =−1时,f (f )=1f 4,其图象与两坐标轴都没有交点,符合题意,故f =−1,故选:A .2.已知函数f(f)=(3f2−2f)f f是幂函数,若f(x)为增函数,则m等于()A.−13B.−1C.1 D.−13或1【答案】C【解析】函数f(x)=(3m2-2m)x m是幂函数,则3m2-2m=1,解得m=1或m=-13,又f(x)为增函数,则m=1满足条件,即m的值为1.故选:C.3.已知幂函数f(f)=f f的图像过点(2,√2),则下列说法正确的是()A.f(f)是奇函数,且在(0,+∞)上单调递增B.f(f)是偶函数,且在(0,+∞)上单调递减C.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递增D.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递减【答案】C【解析】∵幂函数y=xα的图象过点(2,√2),∴√2=2α,解得α=12,故f(x)=√f,故f(x)既不是奇函数也不是偶函数,且在(0,+∞)上是增函数,故选:C.4.设α∈{−1,1,12,3},则使函数y=f f的定义域为R且为奇函数的所有α的值为()A.−1,1,3 B.12,1 C.−1,3 D.1,3【答案】D【解析】当α=﹣1时,函数的定义域为{x|x≠0},不满足定义域为R;当α=1时,函数y=f f的定义域为R且为奇函数,满足要求;当α=12函数的定义域为{x|x≥0},不满足定义域为R;当α=3时,函数y=f f的定义域为R且为奇函数,满足要求;故选:D.考向二图像问题【例2】(1)当f∈{−1,12,1,3}时,幂函数f=f f的图象不可能经过的象限是A.第二象限 B.第三象限 C.第三、四象限 D.第二、四象限(2)在同一直角坐标系中,函数f(x)=f f(x≥0),g(x)=fff f x的图象可能是()A. B.C. D.【答案】(1)D (2)D【解析】(1)因为f=f−1经过第一、三象限;f=f12经过第一象限;f=f1经过第一、三象限;f=f3经过第一、三象限;所以不可能经过的象限是第二、四象限,选D.(2)∵实数a>0且a≠1,∴函数f(x)=x a(x>0)是上增函数,故排除A;∴当a>1时,在同一直角坐标系中,函数f(x)=x a(x>0)是下凹增函数,g(x)=log a x的是增函数,观察四个选项,没有符合条件选项;当0<a<1时,∴在同一直角坐标系中,函数f(x)=x a(x>0)是增函数,g(x)=log a x是减函数,由此排除B和C,符合条件的选项只有D.故选:D.【举一反三】1.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数f=f 12的图象可能是()A.① B.② C.③ D.④【答案】D【解析】幂函数y=f12为增函数,且增加的速度比价缓慢,只有④符合.故选:D.2.下图给出四个幂函数的图象,则图象与函数的大致对应是()①②③④A.①f=f 13,②f=f2,③f=f12,④f=f−1B.①f=f3,②f=f2,③f=f 12,④f=f−1C.①f=f2,②f=f3y=x3,③f=f−1,④f=f 1 2D.①f=f 13,②f=f12,③f=f2,④f=f−1【答案】B【解析】②的图象关于y轴对称,②应为偶函数,故排除选项C,D,①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.3.在同一直角坐标系中,函数f(f)=f f(f≥0),f(f)=log f f(f>0,且f≠1)的图象可能是().A. B. C. D.【答案】D【解析】对于A项,对数函数过(1,0)点,但是幂函数不过(0,1)点,所以A项不满足要求;对于B项,幂函数f>1,对数函数0<f<1,所以B项不满足要求;对于C项,幂函数要求0<f<1,而对数函数要求,f>1,所以C项不满足要求;对于D项,幂函数与对数函数都要求0<f<1,所以D项满足要求;故选D.4.如图是幂函数y=x m和y=x n在第一象限内的图象,则( )A.-1<n<0,0<m<1 B.n<-1,0<m<1 C.-1<n<0,m>1 D.n<-1,m>1【答案】B【解析】由题图知,f=f f在[0,+∞)上是增函数,f=f f在(0,+∞)上为减函数,∴f>0,f<0,又当f>1时,f=f f的图象在f=f的下方,f=f f的图象在f=f−1的下方,∴f<1,f<−1,从而0<f <1,f <−1,故选B.考向三 比较大小【例3】设f =(35)25,f=(25)35,f=(25)25,则f ,f ,f 的大小关系是A .f >f >fB .f >f >fC .f >f >fD .f >f >f【答案】A【解析】对于函数f =(25)f ,在(0,+∞)上是减函数,∵35>25,∴(25)35<(25)25,即f <f ;对于函数f =f 25,在(0,+∞)上是增函数,∵35>25,∴(35)25>(25)25,即f >f .从而f <f <f .故A 正确. 【举一反三】1.已知点(f ,9)在幂函数f (f )=(f −2)f f 的图象上,设f =f (f − 13),f =f (ln 13),f =f (√22) 则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f【答案】A【解析】由f (f )=(f −2)f f 为幂函数得f −2=1,f =3, 因为点(3,9)在幂函数f (f )上,所以3f =9,f =2,即f (f )=f 2, 因为f =f (f − 13)=f (3− 13),f =f (ln 13)=f (ff3),又3− 13<√22<1<ff3,所以f <f <f ,选A.2.设f =20.3,f =30.2,f =70.1,则f 、f 、f 的大小关系为( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题意得:f =20.3=√2310=√810,f =30.2=√3210=√910,f =70.1=√710f =√f 10在(0,+∞)上是增函数且9>8>7∴f >f >f 本题正确选项:f3..已知f =(√2)125,f =925,f =4log 4f 2,则下列结论成立的是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f 【答案】A【解析】f =265=6415,f =345=8115,∵64<81,∴6415<8115,即f <f ,f =e 2>4>3>345=f ,故f <f <f ,选A .考向四 二次函数解析式【例4】 (1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. (3)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.【答案】(1)f (x )=x 2-2x +3 (2)x 2+2x (3)x 2+2x +1【解析】(1)由f (0)=3,得c =3,又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称,∴b2=1,∴b =2,∴f (x )=x 2-2x +3.(2)设函数的解析式为f (x )=ax (x +2)(a ≠0),所以f (x )=ax 2+2ax ,由4a ×0-4a24a=-1,得a =1,所以f (x )=x 2+2x .(3)设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0),又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1. 【举一反三】1.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 【答案】 x 2-4x +3【解析】因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线x =2.又因为f (x )的图象被x 轴截得的线段长为2,所以f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.2.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【套路总结】1. 求二次函数解析式的方法【答案】f (x )=-4x 2+4x +7.【解析】设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7.3.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式. 【答案】f (x )=x 2-4x +3.【解析】∵f (2-x )=f (2+x )对x ∈R 恒成立,∴f (x )的对称轴为x =2. 又∵f (x )图象被x 轴截得的线段长为2,∴f (x )=0的两根为1和3. 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0).又∵f (x )的图象过点(4,3),∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.4.已知二次函数f (x )=x 2+2bx +c (b ,c ∈R).(1)若f (x )≤0的解集为{x |-1≤x ≤1},求实数b ,c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b 的取值范围.【答案】⎝ ⎛⎭⎪⎫15,57【解析】(1)设x 1,x 2是方程f (x )=0的两个根.由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-2b ,x 1x 2=c ,即⎩⎪⎨⎪⎧-2b =0,c =-1.所以b =0,c =-1.(2)由题,知f (1)=1+2b +c =0,所以c =-1-2b .记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1,则⎩⎪⎨⎪⎧g (-3)=5-7b >0,g (-2)=1-5b <0,g (0)=-1-b <0,g (1)=b +1>0⇒15<b <57,即实数b 的取值范围为⎝ ⎛⎭⎪⎫15,57. 考向五 二次函数的性质【例5】(1)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________.(2) 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________ (3) 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 【答案】(1)[0,2] (2)[-3,0] (3)38或-3【解析】(1)二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0, 又由--2a 2a=1得图象的对称轴是直线x =1,所以a >0.所以函数的图象开口向上,且在[1,2]上单调递增,f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2. (2)当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意.当a ≠0时,f (x )的对称轴为x =3-a2a ,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. (3)f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3.【举一反三】1.已知函数f (x )=-x 2+2ax +1-a ,x ∈[0,1]有最大值2,则a =________. 【答案】 2或-1【解析】函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,其图象的对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1;当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去);当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.2.已知函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,那么f (2)的取值范围是______.【答案】 [7,+∞)【解析】 函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.3.若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,则实数m 的取值范围是__________. 【答案】 [-2,0]【解析】当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m2≤0,即m ≤0;当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m2≤1,即m ≥-2.综上,实数m 的取值范围是[-2,0].考向六 二次函数恒成立【例6】 (1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________.((2)函数f (x )=a 2x+3a x-2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.【答案】(1) (-∞,-1) (2)2【解析】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1.(2) 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎢⎡⎦⎥⎤1a ,a ,显然g (t )在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以1<a ≤2,所以a 的最大值为2.1.已知函数f (x )=ax 2+bx +1(a ,b ∈R),x ∈R.(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. 【答案】【解析】(1)由题意得f (-1)=a -b +1=0,a ≠0,且-b2a =-1,∴a =1,b =2.∴f (x )=x 2+2x +1,单调减区间为(-∞,-1],单调增区间为[-1,+∞).(2)解法一:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.∴g (x )min =g (-1)=1. ∴k <1,即k 的取值范围为(-∞,1).解法二:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1-k >0在区间[-3,-1]上恒成立,设g (x )=x 2+x +1-k ,则g (x )在[-3,-1]上单调递减,∴g (-1)>0,得k <1.2.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________.【答案】 ⎝ ⎛⎭⎪⎫12,+∞【解析】由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝ ⎛⎭⎪⎫1x -122+12,14<1x <1,∴⎝ ⎛⎭⎪⎫2x -2x 2max =12,∴a >12.3.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________. 【答案】 ⎝ ⎛⎭⎪⎫-22,0 【解析】 因为函数图象开口向上,所以根据题意只需满足⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. 考向七 二次函数根的分布【例7】一元二次方程02)12(2=-+-+a x a x 的一根比1大,另一根比-1小,则实数a 的取值范围是.【答案】203a <<【解析】记2()(21)2f x x a x a =+-+-,由已知得,(1)0,(1)0,f f <⎧⎨-<⎩解得203a <<.【举一反三】1.已知关于x 的方程11()()2042x x a -+=在区间[]1,0-上有实数根,则实数a 的取值范围是. 【答案】[]1,0-【解析】当0a =时,方程为1()202x -+=,解得1x =-,符合;当0a ≠时,记2()2f m am m =-+,其中1()2x m =.当[1,0]x ∈-时,1()[1,2]2x m =∈,所以题目条件等价于函数2()2f m am m =-+在区间[1,2]内有零点. 当0a >时有函数对称轴102x a =>,若180a ∆=-=,即18a =,此时21()28f m m m =-+的零点为4m =,不符合.因为(2)40f a =>,180a ∆=->,即18a <,所以可知对称轴142x a=>,画图可知此时()f m 在区间[1,2]内无零点. 当0a <时有函数对称轴102x a=<,此时180a ∆=->恒成立.因为(2)40f a =<,所以有(1)10f a =+≥,解得1a ≥-.所以此时10a -≤<.综上可得,10a -≤≤.2.若方程210x mx -+=的两实根分别为,αβ,且012αβ<<<<,则m 的取值范围是. 【答案】5(2,)2【解析】因为关于x 的方程012=+-mx x 的两个根为,αβ,且012αβ<<<<则满足(1)020(2)0520<-<⎧⎧∴⎨⎨>->⎩⎩f m f m ,这样可以解得m 的范围5(2,)2. 3.已知二次函数()2f x x bx c =++的两个零点分别在区间()2,1--和()1,0-内,则()3f 的取值范围是 ( )A .()12,20B .()12,18C .()18,20D .()8,18 【答案】A【解析】由题意得()()()20420{10{1000f b c f b c f c ->-+>-<⇒-+<>>,可行域如图三角形内部(不包括三角形边界,其中三角形三顶点为()()()2,0,1,0,3,2A B C ):,而()393f b c =++,所以直线()393f b c =++过C 取最大值20,过B 点取最小值12,()3f 的取值范围是()12,20,选A .4.已知函数()42f x xx x =-+,存在3210x x x >>≥,使得()()()123f x f x f x ==,则()123x x f x ⋅⋅的取值范围是__________. 【答案】()64,81【解析】根据题意,()222,442{ 6,4x x x f x x x x x x x -≥=-+=-+<,由图象可知,126,x x +=()()()1231116x x f x x x f x ∴⋅⋅=⋅-⋅()()2111166x x x x =⋅-⋅-+=()22116x x -+=()22139x ⎡⎤--+⎣⎦,()()21123,398,9x x <<∴--+∈,()()12364,81x x f x ∴⋅⋅∈,故答案为()64,81.1.已知函数f(f)=(f−1)2f f2−4f+2是在(0,+∞)上单调递增的幂函数,则f=( ) A.0或4 B.0或2 C.0 D.2【答案】C【解析】∵f(x)是幂函数,∴(m﹣1)2=1,得m=0,或m=2,∵f(x)在(0,+∞)上单调递增,∴m2﹣4m+2>0,则当m=0时,2>0成立,当m=2时,4﹣8+2=﹣2,不成立,故选C.2.已知幂函数f(x)=x a(a是常数),则()A.f(x)的定义域为R B.f(x)在(0,+∞)上单调递增C.f(x)的图象一定经过点(1,1)D.f(x)的图象有可能经过点(1,−1)【答案】C【解析】(1)对于A,幂函数f(x)=x a的定义域与a有关,不一定为R,A错误;(2)对于B,a>0时,幂函数f(x)=x a在(0,+∞)上单调递增,a<0时,幂函数f(x)=x a在(0,+∞)上单调递减,B错误;(3)对于C,幂函数f(x)=x a的图象过定点(1,1),C正确;(4)对于D,幂函数f(x)=x a的图象一定不过第四象限,D错误.故选:C.3.如图所示的曲线是幂函数f=f f在第一象限的图象,已知f∈{−4,−14,14,4},相应曲线f1,f2,f3,f4对应的f值依次为()A.−4,−14,14,4 B.4,14,−14,−4 C.−14,−4,4,14D.4,14,−4,−14【答案】B【解析】结合幂函数的单调性及图象,易知曲线f1,f2,f3,f4对应的f值依次为4,14,−14,−4.故选B.4.函数f=2|f|−f2(f∈f)的图象为( )A .B .C .D .【答案】A【解析】由于函数y=2|x|﹣x 2(x ∈R )是偶函数,图象关于y 轴对称,故排除B 、D . 再由x=0时,函数值y=1,可得图象过点(0,1),故排除C ,从而得到应选A ,故选:A .5.已知函数g (x )=log a (x ﹣3)+2(a >0,a ≠1)的图象经过定点M ,若幂函数f (x )=x α的图象过点M ,则α的值等于( )A .﹣1B .12 C .2 D .3 【答案】B【解析】∵y=log a (x ﹣3)+2(a >0,a ≠1)的图象过定点M ,∴M (4,2),∵点M (4,2)也在幂函数f (x )=x α的图象上,∴f (4)=4α=2,解得α=12,故选:B . 6.已知幂函数y =x n 在第一象限内的图象如图所示,则曲线C 1、C 2、C 3、C 4的n 值可能依次为A .–2,–12,12,2B .2,12,–12,–2C .–12,–2,2,12D .2,12,–2,–12 【答案】B【解析】由图象可知:C 1的指数n>1,C 2的指数0<n<1,C 3,C 4的指数小于0,且C 3的指数大于C 4的指数.据此可得,只有B 选项符合题意.故选B .7.幂函数y =x n是奇函数,但图象不与坐标轴相交,则n 的值可以是 A .3 B .1 C .0 D .–1 【答案】D【解析】根据幂函数的性质判断出幂函数f =f f 是奇函数时,指数f 为奇数;幂函数f =f f 的图象与两坐标轴不相交时,幂函数的指数f 小于0,对照选项,只有D 正确.故选D . 8.在函数f =1f 2,f =2f 2,f =f 2+f ,f =3f 中,幂函数的个数为A .0B .1C .2D .3 【答案】B【解析】显然,根据幂函数定义可知,只有f =1f 2=f −2是幂函数,故选B .9.已知函数f =f f ,f =f f ,f =f f 的图象如图所示,则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f 【答案】A【解析】由图像可知,f >1,f =12,0<f <12,得f >f >f ,故答案为:A. 10.当f ∈{−1,12,3}时,幂函数f =f f 的图象不可能经过的象限是 A .第二象限 B .第三象限C .第四象限 D .第二、四象限 【答案】D【解析】f =f −1的图象经过第一、三象限,f =f 12的图象经过第一象限,f =f 的图象经过第一、三象限,f =f 3的图象经过第一、三象限.故选D .11.已知正实数f ,f ,f 满足log f 2=2,log 3f =13,f 6=172,则f ,f ,f 的大小关系是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题得f 2=2,∴f 6=8,f =313,∴f 6=32=9, 因为8<172<9,a,b,c 都是正数,所以f <f <f .故选:B12.已知幂函数f (x )=x a的图象经过点(2,√2),则函数f (x )为( ) A .奇函数且在(0,+∞)上单调递增 B .偶函数且在(0,+∞)上单调递减 C .非奇非偶函数且在(0,+∞)上单调递增D .非奇非偶函数且在(0,+∞)上单调递减【答案】C,【解析】∵幂函数f(x)=x a的图象经过点(2,√2),∴2a=√2,解得a=12∴函数f(x)=f12,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.故选:C.13.已知函数f=f f2−5f+4(m∈Z)为偶函数且在区间(0,+∞)上单调递减,则m=()A.2或3 B.3 C.2 D.1【答案】A【解析】幂函数f=f f2−5f+4为偶函数,且在(0,+∞)递减,∴f2−5f+4<0,且f2−5f+4是偶数,由f2−5f+4<0得1<f<4,又由题设f是整数,故f的值可能为2或3,验证知f=2或者3时,都能保证f2−5f+4是偶数,故f=2或者3即所求.故选:A14.已知函数f(f)为偶函数,当f>0时,f(f)=f2−3f,则()A.f(tan70∘)>f(1.4)>f(−1.5)B.f(tan70∘)>f(−1.5)>f(1.4)C.f(1.4)>f(tan70∘)>f(−1.5)D.f(−1.5)>f(1.4)>f(tan70∘)【答案】A【解析】当f>0时,f(f)=(f−1.5)2−1.52,tan70∘−1.5>tan60∘−1.5≈0.232,又函数f(f)为偶函数,所以f(−1.5)=f(1.5),1.5−1.4=0.1,根据二次函数的对称性以及单调性,所以f(tan70∘)>f(1.4)>f(−1.5).故选A15.已知函数f(f)=f2+ff+1在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,则实数f的取值范围是( )A.[−2,2]B.(−∞,−2]C.[2,+∞)D.R【答案】A【解析】由题意,函数f(f)=f2+ff+1表示开口向上,且对称轴的方程为f=−f2,要使得函数f(f)在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,≤1,解得−2≤f≤2,故选A.则−1≤−f216.幂函数f(f)=(f2−2f+1)f2f−1在(0,+∞)上为增函数,则实数f的值为____________.【答案】2【解析】由函数f(f)=(f2−2f+1)f2f−1是幂函数,则f2−2f+1=1,解得f=0或f=2;当f=0时,f(f)=f−1,在(0,+∞)上为减函数,不合题意;当f=2时,f(f)=f3,在(0,+∞)上为增函数,满足题意.故答案为:2.17. 已知函数f (f )=(f 2−f −1)f f 是幂函数,且f (f )在(0,+∞)上单调递增,则实数f =________. 【答案】2【解析】∵幂函数f (x )=(m 2﹣m ﹣1)x m在区间(0,+∞)上单调递增,∴{f 2−f −1=1f>0,解得m =2或-1(舍).故答案为:2.18.已知幂函数f (f )=(f 2−2f −7)f f −1在(0,+∞)上是减函数,则实数f 的值为__________. 【答案】-2【解析】因为函数f (f )=(f 2−2f −7)f f −1是幂函数,所以f 2−2f −7=1,即(f +2)(f −4)=0, 解得f =−2或f =4,当f =−2时,f (f )=f −3,满足在(0,+∞)上是减函数,当f =4时,f (f )=f 3,在(0,+∞)上是增函数,所以f =−2,故答案是:−2. 19.若f (f )=(f −1)2f f 是幂函数且在(0,+∞)单调递增,则实数f =_______. 【答案】2【解析】f (f )=(f −1)2f f 为幂函数,所以(f −1)2=1,解得f =0或2. 当f =0时,f (f )=f 0=1,在(0,+∞)不单调递增,舍去; 当f =2时,f (f )=f 2,在(0,+∞)单调递增成立.故答案为:f =2. 20.已知幂函数f (x )=(m 3–m +1)x12(1−8f −f 2)的图象与x 轴和y 轴都无交点.(1)求f (x )的解析式;(2)解不等式f (x +1)>f (x –2). 【答案】(1)f (x )=x –4;(2){x |x <12,x ≠0}.【解析】(1)因为f (x )是幂函数,所以m 3–m+1=1,解得m ∈{0,±1},又f (x )的图象与x 轴和y 轴都无交点,经检验,只有当m=1时符合题意,所以m=1,此时f (x )=x –4; (2)f (x )=x –4是偶函数且在(0,+∞)递减,所以要使f (x+1)>f (x –2)成立,只需|x+1|<|x –2|,解得x<12, 又f (x )的定义域为{x|x ≠0},所以不等式的解集为{x|x<12,x ≠0}. 21.已知幂函数y =f (x )=f −2f2−f +3,其中m ∈[–2,2],m ∈Z ,①定区间(0,+∞)的增函数;②对任意的x ∈R ,都有f (–x )+f (x )=0;求同时满足①、②两个条件的幂函数f (x )的解析式,并求x ∈[0,3]时,f (x )的值域.【答案】f (f )=f 3;[0,27]. 【解析】∵幂函数y =f (x )=f −2f2−f +3在区间(0,+∞)为增函数,∴–2m 2–m +3>0,即2m 2+m –3<0,解得m ∈(−32,1), 又∵m ∈Z ,∴m =–1或m =0,当m =–1时,y =f (x )=x 2为偶函数,不满足f (–x )+f (x )=0; 当m =0时,y =f (x )=x 3为奇函数,满足f (–x )+f (x )=0. ∴同时满足①、②两个条件的幂函数f (x )=x 3,当x ∈[0,3]时,f (x )∈[0,27],即函数f (x )的值域为[0,27]. 22.已知函数f (f )=(f 2−2f −2)log f f 是对数函数.(1)若函数f (f )=log f (f +1)+log f (3−f ),讨论函数f (f )的单调性;(2)在(1)的条件下,若f ∈[13,2],不等式f (f )−f +3≤0的解集非空,求实数f 的取值范围. 【答案】(1)见解析;(2)[4,+∞).【解析】(1)由题意可知{f 2−2f −2=1f >0且f ≠1,解得f =3(负值舍去),所以f (f )=log 3f .因为f (f )=log f (f +1)+log f (3−f ),所以{f +1>03−f >0 ,即{f >−1f <3,即−1<f <3,故f (f )的定义域为{f |−1<f <3}.由于f (f )=log 3(f +1)+log 3(3−f )=log 3(−f 2+2f +3), 令f (f )=−f 2+2f +3(−1<f <3),则由对称轴f =1可知,f (f )在(−1,1)上单调递增,在(1,3)上单调递减; 因为f =log 3f 在(0,+∞)上单调递增,所以函数f (f )的单调递增区间为(−1,1),单调递减区间为(1,3).(2)因为不等式f (f )−f +3≤0的解集非空,所以f −3≥f (f )min ,f ∈[13,2], 由(1)知,当f ∈[13,2]时,函数f (f )的单调递增区间为[13,1],单调递减区间为(1,2], 因为f (13)=log 3329,f (2)=1,所以f (f )min =1,所以f −3≥1,即f ≥4,故实数f 的取值范围为[4,+∞). 23.设二次函数f (f )=f 2+ff +f ,f ,f ∈f .(1)若f (f )满足:对任意的f ∈f ,均有f (−f )≠−f (f ),求f 的取值范围; (2)若f (f )在(0,1)上与f 轴有两个不同的交点,求f 2+(1+f )f 的取值范围.【答案】(1) (0,+∞) (2) (0,116)【解析】(1)∵f (−f )+f (f )=(−f )2+f (−f )+f +f 2+ff +f =2(f 2+f )≠0恒成立, 所以,方程f 2+f =0无实数解所以,f 取值范围为(0,+∞)(2)设f (f )=0的两根为f 1,f 2,且0<f 1<f 2<1,则f (f )=(f −f 1)(f −f 2), 所以f 2+(1+f )f =f (1+f +f )=f (0)f (1)=(0−f 1)(0−f 2)(1−f 1)(1−f 2)=f 1f 2(1−f 1)(1−f 2)=(−f 12+f 1)(−f 22+f 2)=[−(f 1−12)2+14][−(f 2−12)2+14]≤116.又因为f 1,f 2不能同时取到12,所以f 2+(1+f )f 取值范围为(0,116). 24. 已知函数f (f )=f 2−2(f −1)f +4. (Ⅰ)若f (f )为偶函数,求f (f )在[−1,2]上的值域;(Ⅱ)若f (f )在区间(−∞,2]上是减函数,求f (f )在[1,f ]上的最大值. 【答案】(Ⅰ)[4,8];(Ⅱ)7-2f【解析】(Ⅰ)因为函数f (f )为偶函数,故f (−f )=f (f ),得f =1.f (f )=f 2+4,因为−1≤f ≤2,所以4≤f (f )≤8,故值域为:[4,8].(Ⅱ)若f (f )在区间(−∞,2]上是减函数,则函数对称轴f =f −1≥2,f ≥3因为1<f −1<f ,所以f ∈[1,f −1]时,函数f (f )递减,[f −1,f ]时,函数f (f )递增,故当f ∈[1,f ]时,f (f )max {f (1),f (f )} ,∴f (1)=7−2f ,f (f )=−f 2+2f +4,f (1)−f (f )=(7−2f )−(−f 2+2f +4)=f 2−4f +3=(f −2)2−1由于f ≥3∴f (1)≥f (f ) ,故f (f )在[1,f ]上的最大值为7-2f .25.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 【答案】(1)⎣⎢⎡⎦⎥⎤-214,15. (2)a =-13或-1【解析】(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],函数图象的对称轴为x =-32∈[-2,3],∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)函数图象的对称轴为直线x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意. 综上可知,a =-13或-1. 26.设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.【答案】见解析【解析】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2. 综上可知,f (x )min =⎩⎪⎨⎪⎧ t 2+1,t ≤0,1,0<t <1,t 2-2t +2,t ≥1.。
考点07 二次函数与幂函数1.(2017·浙江卷)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M-m( ) A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【答案】B【解析】设x1,x2分别是函数f(x)在[0,1]上的最小值点与最大值点,则m=x21+ax1+b,M=x22+ax2+b. ∴M-m=x22-x21+a(x2-x1),显然此值与a有关,与b无关.故选B.2.函数在区间的最大值是( )A. 0 B.C. D. 1【答案】C【解析】y=log(x2﹣6x+10),可令t=x2﹣6x+10,对称轴为x=3,函数t在[1,2]递减,且y=log t在(0,+∞)递减,可得y=log(x2﹣6x+10)在[1,2]递增,可得x=2时,函数y取得最大值log(22﹣12+10)=﹣log32,故选:C.3.已知函数在R上是减函数,则的取值范围是A. B.C. D.【答案】B【解析】由f(x)=ax3+3x2﹣x+2,得到=3ax2+6x﹣1,因为函数在R上是减函数,所以=3ax2+6x﹣1≤0恒成立,所以,由△=36+12a≤0,解得a≤﹣3,则a的取值范围是(﹣∞,﹣3].故答案为:B.4.,若方程f(x)=x无实根,则方程f(f(x))=x( )A.有四个相异实根 B.有两个相异实根C.有一个实根 D.无实数根【答案】D【解析】∵f(x)=ax2+bx+c(a≠0)方程f(x)=x 即f(x)-x=ax2+(b-1)x+c=0无实根,f(x)-x仍是二次函数,f(x)-x=0仍是二次方程,且无实根,∴△<0.若a>0,则函数y=f(x)-x的图象在x轴上方,∴y>0,即f(x)-x>0恒成立,即:f(x)>x对任意实数x恒成立.∴对f(x),有f(f(x))>f(x)>x恒成立,∴f(f(x))=x无实根.故选D.5.函数的值域为A. B.C. D.【答案】D【解析】设μ=﹣x2﹣6x﹣5(μ≥0),则原函数可化为y=.又∵μ=﹣x2﹣6x﹣5=﹣(x+3)2+4≤4,∴0≤μ≤4,故∈[0,2],∴y=的值域为[0,2].故选:D.6.平行四边形中,点在边上,则的最大值为A. 2 B.C. 0 D.【答案】A【解析】∵平行四边形ABCD中,AB=2,AD=1,,点M在边CD上,∴=﹣1,cos∠A=﹣1,∴cosA=﹣,∴A=120°,以A为原点,以AB所在的直线为x轴,以AB的垂线为y轴,建立如图所示的坐标系,∴A(0,0),B(2,0),D(﹣,),设M(x,),则﹣≤x≤,∴=(﹣x,﹣),=(2﹣x,﹣),∴=x(x﹣2)+=x2﹣2x+=(x﹣1)2﹣,设f(x)=(x﹣1)2﹣,则f(x)在[﹣,1)上单调递减,在[1,]上单调递增,∴f(x)min=f(1)=﹣,f(x)max=f(﹣)=2,则的最大值是2,故答案为:A7.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之。
幂函数与二次函数考纲要求 1.了解幂函数的概念;结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x 的图象,了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题. 知识梳理 1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点.(2)二次函数的图象和性质函数 y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象 (抛物线)定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点 坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数 单调性在⎝⎛⎦⎤-∞,-b 2a 上是减函数; 在⎣⎡⎭⎫-b2a ,+∞上是增函数 在⎝⎛⎦⎤-∞,-b2a 上是增函数; 在⎣⎡⎭⎫-b2a ,+∞上是减函数1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时,恒有f (x )>0;当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.3.(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限;(2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)函数y =2x 13是幂函数.( )(2)当α>0时,幂函数y =x α在(0,+∞)上是增函数.( )(3)二次函数y =ax 2+bx +c (a ≠0)的两个零点可以确定函数的解析式.( ) (4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b 24a.( )答案 (1)× (2)√ (3)× (4)×解析 (1)由于幂函数的解析式为f (x )=x α,故y =2x 13不是幂函数,(1)错误. (3)确定二次函数的解析式需要三个独立的条件,两个零点不能确定函数的解析式. (4)对称轴x =-b 2a ,当-b2a 不在给定定义域内时,最值不是4ac -b 24a,故(4)错误.2.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=( )A.12B.1C.32D.2答案 C解析 因为f (x )=k ·x α是幂函数,所以k =1. 又f (x )的图象过点⎝⎛⎭⎫12,22,所以⎝⎛⎭⎫12α=22, 所以α=12,所以k +α=1+12=32.3.已知函数f (x )=-2x 2+mx +3(0≤m ≤4,0≤x ≤1)的最大值为4,则m 的值为________. 答案 2 2解析 f (x )=-2x 2+mx +3=-2⎝⎛⎭⎫x -m 42+m 28+3,∵0≤m ≤4,∴0≤m4≤1,∴当x =m4时,f (x )取得最大值,∴m 28+3=4,解得m =2 2.4.(2021·全国大联考)不等式(x 2+1)12>(3x +5)12的解集为( ) A.⎣⎡⎭⎫-53,-1∪(4,+∞) B.(-1,4)C.(4,+∞)D.(-∞,-1)∪(4,+∞)答案 A解析 不等式(x 2+1)12>(3x +5)12等价于x 2+1>3x +5≥0, 解得-53≤x <-1或x >4.所以原不等式的解集为⎣⎡⎭⎫-53,-1∪(4,+∞). 5.(2020·贵阳质检)若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( ) A.(-∞,40]B.[40,64]C.(-∞,40]∪[64,+∞)D.[64,+∞)答案 C解析 f (x )图象的对称轴x =k8,且f (x )在[5,8]上是单调函数, ∴k 8≥8或k8≤5,解之得k ≥64或k ≤40. 6.(2018·上海卷)已知α∈⎩⎨⎧-2,-1,-12,⎭⎬⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______. 答案 -1解析 由y =x α为奇函数,知α取-1,1,3. 又y =x α在(0,+∞)上递减, ∴α<0,取α=-1.考点一 幂函数的图象和性质1.若幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的大致图象是( )答案 C解析 设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数,当0<x <1时,其图象在直线y =x 的上方,对照选项,C 正确.2.已知函数f (x )=(m 2-m -1)·x m 2-2m -3是幂函数,且在(0,+∞)上递减,则实数m =( )A.2B.-1C.4D.2或-1答案 A解析 依幂函数定义,m 2-m -1=1,∴m =2或m =-1, 当m =2时,f (x )=x-3在(0,+∞)上是减函数,当m =-1时,f (x )=x 0=1在(0,+∞)上不是减函数,舍去. ∴m =2.3.(2021·衡水中学调研)已知点(m ,8)在幂函数f (x )=(m -1)x n 的图象上,设a =f ⎝⎛⎭⎫13,b =f (ln π),c =f (2-12),则a ,b ,c 的大小关系是( ) A.a <c <b B.a <b <cC.b <c <aD.b <a <c答案 A解析 由于f (x )=(m -1)x n 为幂函数, 所以m -1=1,则m =2,f (x )=x n . 又点(2,8)在函数f (x )=x n 的图象上,所以8=2n ,知n =3,故f (x )=x 3,且在R 上是增函数, 又ln π>1>2-12=22>13, 所以f (ln π)>f (2-12)>f ⎝⎛⎭⎫13,则b >c >a .4.(2021·郑州质检)幂函数f (x )=(m 2-3m +3)x m 的图象关于y 轴对称,则实数m =________. 答案 2解析 由幂函数定义,知m 2-3m +3=1,解得m =1或m =2, 当m =1时,f (x )=x 的图象不关于y 轴对称,舍去, 当m =2时,f (x )=x 2的图象关于y 轴对称, 因此m =2.感悟升华 1.对于幂函数图象的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴. 考点二 二次函数的解析式【例1】 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解 法一 (利用“一般式”) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8, 所以y =f (x )=a ⎝⎛⎭⎫x -122+8. 因为f (2)=-1,所以a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, 所以f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三 (利用“零点式”)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-(-a )24a =8.解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7.感悟升华 求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:【训练1】 (1)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0),且有最小值-1,则f (x )=________.(2)已知二次函数f (x )的图象经过点(4,3),在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 答案 (1)x 2+2x (2)x 2-4x +3解析 (1)设函数的解析式为f (x )=ax (x +2)(a ≠0), 所以f (x )=ax 2+2ax , 由4a ×0-4a 24a =-1,得a =1,所以f (x )=x 2+2x .(2)因为f (2-x )=f (2+x )对x ∈R 恒成立, 所以y =f (x )的图象关于x =2对称.又y =f (x )的图象在x 轴上截得的线段长为2, 所以f (x )=0的两根为2-22=1或2+22=3.所以二次函数f (x )与x 轴的两交点坐标为(1,0)和(3,0). 因此设f (x )=a (x -1)(x -3). 又点(4,3)在y =f (x )的图象上, 所以3a =3,则a =1.故f (x )=(x -1)(x -3)=x 2-4x +3. 考点三 二次函数的图象和性质角度1 二次函数的图象【例2】 (1)如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的是( ) A.②④B.①④C.②③D.①③(2)设函数f (x )=x 2+x +a (a >0),若f (m )<0,则( ) A.f (m +1)≥0 B.f (m +1)≤0C.f (m +1)>0D.f (m +1)<0答案 (1)B (2)C解析 (1)因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确. 对称轴为x =-1,即-b2a =-1,2a -b =0,②错误.结合图象,当x =-1时,y >0,即a -b +c >0,③错误. 由对称轴为x =-1知,b =2a .根据抛物线开口向下,知a <0,所以5a <2a , 即5a <b ,④正确.(2)因为f (x )的对称轴为x =-12,f (0)=a >0,所以f (x )的大致图象如图所示.由f (m )<0,得-1<m <0,所以m +1>0>-12,所以f (m +1)>f (0)>0.感悟升华 1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是图象上关于对称轴对称的两个点,常取与x 轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.角度2 二次函数的单调性与最值【例3】 (2021·西安模拟)已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值. 解 (1)当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 图象开口方向向上,且对称轴为x =1a.①当1a ≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1]内,∴f (x )在⎣⎡⎦⎤0,1a 上递减,在⎣⎡⎦⎤1a ,1上递增.∴f (x )min =f ⎝⎛⎭⎫1a =1a -2a =-1a. ②当1a >1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a,a ≥1.感悟升华 (1)闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图象,根据函数的单调性及分类讨论的思想求解.(2)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图象的对称轴与区间的位置关系,当含有参数时,要依据图象的对称轴与区间的位置关系进行分类讨论.角度3 二次函数中的恒成立问题【例4】 设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.解 (1)要使mx 2-mx -1<0恒成立,若m =0,显然-1<0,满足题意;若m ≠0,得⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0, 即-4<m <0.∴-4<m ≤0.∴所求m 的取值范围是(-4,0].(2)法一 要使f (x )<-m +5在x ∈[1,3]上恒成立.就要使m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数,∴g (x )max =g (3)=7m -6<0,∴0<m <67; 当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,∴g (x )max =g (1)=m -6<0,得m <6,∴m <0.综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 法二 当x ∈[1,3]时,f (x )<-m +5恒成立,即当x ∈[1,3]时,m (x 2-x +1)-6<0恒成立.∵x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又m (x 2-x +1)-6<0,∴m <6x 2-x +1. ∵函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,∴只需m <67即可. 综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 感悟升华 由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.其中分离参数的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .【训练2】 (1)(2021·长春五校联考)已知二次函数f (x )满足f (3+x )=f (3-x ),若f (x )在区间[3,+∞)上单调递减,且f (m )≥f (0)恒成立,则实数m 的取值范围是( )A.(-∞,0]B.[0,6]C.[6,+∞)D.(-∞,0]∪[6,+∞)(2)已知函数f (x )=x 2-x +1,在区间[-1,1]上f (x )>2x +m 恒成立,则实数m 的取值范围是________.答案 (1)B (2)(-∞,-1)解析 (1)设f (x )=ax 2+bx +c (a ,b ,c ∈R ,且a ≠0),∵f (3+x )=f (3-x ),∴a (3+x )2+b (3+x )+c =a (3-x )2+b (3-x )+c ,∴x (6a +b )=0,∴6a +b =0,∴f (x )=ax 2-6ax +c =a (x -3)2-9a +c .又∵f (x )在区间[3,+∞)上单调递减,∴a <0,∴f (x )的图象是以直线x =3为对称轴,开口向下的抛物线,∴由f(m)≥f(0)恒成立,得0≤m≤6,∴实数m的取值范围是[0,6].(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,令g(x)=x2-3x+1-m,要使g(x)=x2-3x+1-m>0在[-1,1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,1]上的最小值大于0即可.∵g(x)=x2-3x+1-m在[-1,1]上单调递减,∴g(x)min=g(1)=-m-1.由-m-1>0,得m<-1.因此满足条件的实数m的取值范围是(-∞,-1).(3)设函数f(x)=x2-2x+2,x∈[t,t+1],t∈R,求函数f(x)的最小值.解f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,函数图象的对称轴为x=1.当t+1≤1,即t≤0时,函数图象如图(1)所示,函数f(x)在区间[t,t+1]上为减函数,所以最小值为f(t+1)=t2+1;当t<1<t+1,即0<t<1时,函数图象如图(2)所示,在对称轴x=1处取得最小值,最小值为f(1)=1;当t≥1时,函数图象如图(3)所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值为f(t)=t2-2t+2.综上可知,当t≤0时,f(x)min=t2+1,当0<t<1时,f (x )min =1,当t ≥1时,f (x )min =t 2-2t +2.A 级 基础巩固一、选择题1.若幂函数f (x )=(m 2-4m +4)·xm 2-6m +8在(0,+∞)上为增函数,则m 的值为( )A.1或3B.1C.3D.2答案 B解析 由题意得m 2-4m +4=1,m 2-6m +8>0,解得m =1.2.(2021·河南名校联考)函数y =1-|x -x 2|的图象大致是( )答案 C解析 ∵当0≤x ≤1时,y =x 2-x +1=⎝⎛⎭⎫x -122+34,又当x >1或x <0时,y =-x 2+x +1=-⎝⎛⎭⎫x -122+54,因此,结合图象,选项C 正确. 3.(2020·成都诊断)已知幂函数y =f (x )的图象过点⎝⎛⎭⎫12,22,则log 4f (2)的值为( ) A.14B.-14C.2D.-2答案 A解析 设幂函数为f (x )=x α,由于点⎝⎛⎭⎫12,22在幂函数的图象上,所以22=⎝⎛⎭⎫12α,解得α=12,则f (x )=x 12,故log 4f (2)=log 4212=14.4.(2021·西安检测)已知函数f (x )=x -3,若a =f (0.60.6),b =f (0.60.4),c =f (0.40.6),则a ,b ,c 的大小关系是( )A.a <c <bB.b <a <cC.b <c <aD.c <a <b 答案 B解析 ∵0.40.6<0.60.6<0.60.4,又y =f (x )=x -3在(0,+∞)上是减函数,∴b <a <c .5.已知在(-∞,1]上递减的函数f (x )=x 2-2tx +1,且对任意的x 1,x 2∈[0,t +1],总有|f (x 1)-f (x 2)|≤2,则实数t 的取值范围是( )A.[-2,2]B.[1,2]C.[2,3]D.[1,2]答案 B解析 由于f (x )=x 2-2tx +1的图象的对称轴为x =t ,又y =f (x )在(-∞,1]上是减函数,所以t ≥1.则在区间[0,t +1]上,f (x )max =f (0)=1,f (x )min =f (t )=t 2-2t 2+1=-t 2+1,要使对任意的x 1,x 2∈[0,t +1],都有|f (x 1)-f (x 2)|≤2,只需1-(-t 2+1)≤2,解得-2≤t ≤ 2.又t ≥1,∴1≤t ≤ 2.6.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图象三等分,即有BM =MN =NA ,那么a -1b =( )A.0B.1C.12D.2 答案 A解析 BM =MN =NA ,点A (1,0),B (0,1),所以M ⎝⎛⎭⎫13,23,N ⎝⎛⎭⎫23,13, 将两点坐标分别代入y =x a ,y =x b ,得a =log 1323,b =log 2313,∴a -1b =log 1323-1log 2313=0. 二、填空题7.已知函数f (x )为幂函数,且f (4)=12,则当f (a )=4f (a +3)时,则实数a =________. 答案 15解析 设f (x )=x α,则4α=12,所以α=-12. 因此f (x )=x -12,从而a -12=4(a +3)-12,解得a =15. 8.(2021·青岛联考)已知函数f (x )=x 2-2ax +b (a >1)的定义域和值域都为[1,a ],则b =________.答案 5解析 f (x )=x 2-2ax +b 的图象关于x =a 对称,所以f (x )在[1,a ]上为减函数,又f (x )的值域为[1,a ],所以⎩⎪⎨⎪⎧f (1)=1-2a +b =a ,f (a )=a 2-2a 2+b =1. 消去b ,得a 2-3a +2=0,解得a =2(a >1),从而得b =3a -1=5.9.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 的值都有f (x )>0,则实数a 的取值范围为________.答案 ⎝⎛⎭⎫12,+∞解析 由题意得a >2x -2x 2对1<x <4恒成立, 又2x -2x 2=-2⎝⎛⎭⎫1x -122+12,14<1x<1, ∴⎝⎛⎭⎫2x -2x 2max =12,∴a >12. 三、解答题10.已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4,故a 的取值范围是(-∞,-6]∪[4,+∞).11.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R 且a ≠0),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间;(2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围.解 (1)由题意知⎩⎪⎨⎪⎧a >0,-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎪⎨⎪⎧a =1,b =2. 所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝⎛⎭⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1, 故k 的取值范围是(-∞,1). B 级 能力提升12.(2021·江南十校调研)已知幂函数f (x )=mx 1+n 是定义在区间[-2,n ]上的奇函数,设a =f ⎝⎛⎭⎫sin 2π7,b =f ⎝⎛⎭⎫cos 2π7,c =f ⎝⎛⎭⎫tan 2π7,则( ) A.b <a <cB.c <b <aC.b <c <aD.a <b <c 答案 A解析 根据f (x )=mx 1+n 是幂函数,且在区间[-2,n ]上是奇函数,得m =1,且-2+n =0,解得n =2,∴f (x )=x 3,且在定义域[-2,2]上是单调增函数.又0<π4<2π7<π2,∴cos 2π7<sin 2π7<1<tan 2π7, ∴f ⎝⎛⎭⎫cos 2π7<f ⎝⎛⎭⎫sin 2π7<f ⎝⎛⎭⎫tan 2π7,即b <a <c . 13.(2019·上海春招)如图,正方形OABC 的边长为a (a >1),函数y =3x 2的图象交AB 于点Q ,函数y =x -12的图象交BC 于点P ,则当|AQ |+|CP |最小时,a 的值为________.答案 3解析 依题意得Q ⎝⎛⎭⎫a 3,a ,P ⎝⎛⎭⎫a ,1a ,则|AQ |+|CP |=a 3+1a =a 3+1a ,记a =t (t >1),f (t )=|AQ |+|CP |,则f (t )=t 3+1t ,所以f (t )=t 3+1t ≥213, 当且仅当t 3=1t ,即t 2=3时取等号,此时a = 3. 14.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解 (1)设f (x )=ax 2+bx +c (a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以,2a =2且a +b =0,解得a =1,b =-1,又f (0)=1,所以c =1.因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方,所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝⎛⎭⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).。
3.5 幂函数与一元二次函数(精讲)(提升版)思维导图考点呈现考点一 幂函数及性质【例1-1】(2022·全国·高三专题练习)幂函数223()(55)()m mf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,则m 的值为( ) A .﹣6 B .1 C .6 D .1或﹣6【答案】B【解析】∵幂函数223()(55)()mmf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,∵2255130m m m m ⎧+-=⎨-<⎩,且23m m -为偶数1m ∴=或6m =- 当1m =时,232m m -=-满足条件;当6m =-时,2354m m -=,舍去因此:m =1故选:B【例1-2】(2022·全国·高三专题练习)幂函数2232m m y x --=是偶函数,在()0,∞+上是减函数,则整数m 的值为( ) A .0 B .1 C .0或1 D .2【答案】A【解析】因为幂函数2232m m y x --=在()0,∞+上是减函数,所以22320m m --<,解得122m -<<,又m Z ∈,所以0m =或1m =, 当0m =时,221yxx 定义域为()(),00,-∞⋃+∞,且()2211x x =-,所以2y x 是偶函数,满足题意;当1m =时,331y x x -==定义域为()(),00,-∞⋃+∞,而()3311x x =--,所以3y x -=是奇函数,不满足题意,舍去;综上,0m =.故选:A 【一隅三反】1.(2022·全国·高三专题练习)(多选)已知幂函数()f x x α=的图象经过点(16,4),则下列说法正确的有( )例题剖析A .函数是偶函数B .函数是增函数C .当1x >时,()1f x >D .当120x x <<时,1212()()22f x f x x x f ++⎛⎫< ⎪⎝⎭【答案】BCD【解析】因为幂函数()f x x α=的图象经过点(16,4),所以164α=,则12α=, 所以12()f x x ==[)0,+∞,不关于原点对称,所以该函数是非奇非偶函数,故A 错; 又102>,所以12()f x x =是增函数,故B 正确; 因此当1x >时,()(1)1f x f >=,故C 正确;当120x x <<时,因为12()()2f x f x +122x x f +⎛⎫ ⎪⎝⎭则22121212()()222f x f x x x x x f +⎡+⎤+⎡⎤⎛⎫-=-= ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦20=-<⎝⎭,所以1212()()22f x f x x x f ++⎛⎫< ⎪⎝⎭,故D 正确.故选:BCD. 2.(2022·全国·高三专题练习)(多选)已知函数()()2231mm f x m m x+-=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-.若a ,b R ∈,且()()f a f b +的值为负值,则下列结论可能成立的有( )A .0a b +>,0ab <B .0a b +<,0ab >C .0a b +<,0ab <D .0a b +>,0ab >【答案】BC【解析】由于函数()f x 为幂函数,故211m m --=,即220m m --=,解得1,2m m =-=.当1m =-时,()21f x x =,当2m =时,()3f x x =.由于“对任意()12,0,,x x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-”知,函数在()0,∞+上为增函数,故()3f x x =.易见()()f x f x -=-,故函数()3f x x =是单调递增的奇函数.由于()()0f a f b +<,即()()()f a f b f b <-=-,得a b <-,所以0a b +<,此时,若当0a =时,0b <,故0ab =;当0a >时,0a b <<-,故0b <,故0ab <;当0a <时,由a b <-知,b a <-,故0b <或0b =或0b >,即0ab >或0ab =或0ab <.综上可知,0a b +<,且0ab >或0ab =或0ab <.故选:BC. 3.(2022·全国·高三专题练习(理))已知幂函数()223()mm f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________. 【答案】{}1,1,3-【解析】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤, 又m Z ∈,即{}1,0,1,2,3m ∈-,()223()mm f x x m Z --=∈的图像关于y 轴对称,即函数为偶函数,故223m m --为偶数,所以{}1,1,3m ∈-,故答案为:{}1,1,3-.4.(2022·上海·高三专题练习)已知函数()22()1a f x a a x +=-+为幂函数,且为奇函数,则实数a 的值_____.【答案】1【解析】因为函数()22()1a f x a a x +=-+为幂函数,所以2211,0,1a a a a a -+=∴-=∴=或0a =.当0a =时,()2f x x =为偶函数,不符合题意,所以舍去;当1a =时,()3f x x =为奇函数,符合题意.故答案为:1考点二 一元二次函数【例2-1】(2021·重庆市清华中学校高三阶段练习)若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则实数m 的取值范围是( ) A .(]0,4 B .25,44⎡⎤--⎢⎥⎣⎦C .3,32⎡⎤⎢⎥⎣⎦D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】函数234y x x =--的图象如图所示,因为223253424y x x x ⎛⎫=--=-- ⎪⎝⎭当0x =或3x =时,4y =-;当32x =时,254y =-,因为函数的定义域为[]0,m ,所以3,32m ⎡⎤∈⎢⎥⎣⎦.故选:C .【例2-2】(2022·宁夏·平罗中学模拟预测(理))已知,(0,1)a b ∈,则函数2()41f x ax bx =-+在[1,)+∞上是增函数的概率为( )A .45B .34C .25D .14【答案】D【解析】由题设()f x 对称轴为2bx a=,而,(0,1)a b ∈,函数开口向上, 所以()f x 的增区间为2[,)b a +∞,故在[1,)+∞上是增函数有201b a <≤,综上,01012a b b a<<⎧⎪<<⎨⎪≤⎩对应可行域如下阴影部分:所以阴影部分面积为14,而,(0,1)a b ∈的面积为1,故在[1,)+∞上是增函数的概率为14.故选:D 【例2-3】(2022·全国·高三专题练习)(多选)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( ) A .2B .3C .4D .5【答案】BC 【解析】函数244y x x =--的图象如图所示:因为函数在[)0,a 上的值域为[]8,4--,结合图象可得24a <≤,结合a 是正整数,所以BC 正确.故选: BC. 【一隅三反】1.(2022·全国·高三专题练习)若a ,b ,c 成等差数列,则二次函数22y ax bx c =-+的图象与x 轴的交点个数为( ) A .0 B .1 C .2 D .1或2【答案】D【解析】由a ,b ,c 成等差数列,可得2b a c =+, 所以()()2224440b ac a c ac a c ∆=-=+-=-≥,所以二次函数22y ax bx c =-+的图象与x 轴交点的个数为1或2.故选:D.2.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭【答案】B 【解析】当函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调递减函数,所以01112514a a a ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩,解得1142a ≤≤,因为0a >且1a ≠,所以当1x ≤时,()f x 不可能是增函数,所以函数()f x 在R 上不可能是增函数, 综上:实数a 的取值范围为11,42⎡⎤⎢⎥⎣⎦,故选:B3(2022·重庆·模拟预测)已知二次函数24y x x a =-+的两个零点都在区间()1,+∞内,则a 的取值范围是( ) A .(),4-∞ B .()3,+∞C .()3,4D .(),3-∞【答案】C【解析】二次函数24y x x a =-+,对称轴为2x =,开口向上,在(),2-∞上单调递减,在()2,+∞上单调递增,要使二次函数2()4f x x x a =-+的两个零点都在区间()1,+∞内,需(1)140(2)480f a f a =-+>⎧⎨=-+<⎩,解得34a <<故实数a 的取值范围是()3,4故选:C4.(2022·全国·高三专题练习(理))若集合2{|(2)20,}A x x a x a x Z =-++-<∈中有且只有一个元素,则正实数a 的取值范围是___________ 【答案】12(,]23【解析】由题意,不等式2(2)20x a x a -++-<且0a >,即222(1)x x a x -+<+,令()()222,(1)f x x x g x a x =-+=+,所以()(){|,}A x f x g x x Z =<∈,所以()y f x =是一个二次函数,图象是确定的一条抛物线, 而()y g x =一次函数,图象是过一定点(1,0)-的动直线,作出函数()222f x x x =-+和()(1)g x a x =+的图象,如图所示,其中()()11,22f f ==,又因为,0x Z a ∈>,结合图象,要使得集合2{|(2)20,}A x x a x a x Z =-++-<∈中有且只有一个元素,可得()(1)122g g >⎧⎨≤⎩,即2132a a >⎧⎨≤⎩,解得1223a <≤.即正实数a 的取值范围是12(,]23.故答案为:12(,]23.考点三 一元二次函数与其他知识综合【例3】(2022·山东济宁·三模)已知二次函数()()22f x ax x c x =++∈R 的值域为[)1,+∞,则14a c+的最小值为( ) A .3- B .3 C .4- D .4【答案】B【解析】若0a =,则函数()f x 的值域为R ,不合乎题意,因为二次函数()()22f x ax x c x =++∈R 的值域为[)1,+∞,则0a >,且()min 44114ac ac f x a a --===,所以,1ac a -=,可得101a c =>-,则1c >,所以,144113c a c c +=+-≥=,当且仅当2c =时,等号成立,因此,14a c +的最小值为3.故选:B.【一隅三反】1.(2021·广东·湛江二十一中)若函数()25log 212a f x x ax a ⎛⎫=-+- ⎪⎝⎭有最大值,则a 的取值范围为( ) A .10,2⎛⎫⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .21,52⎛⎫ ⎪⎝⎭D .()1,2【答案】B【解析】令25212t x ax a =-+-,要使函数()25log 212a f x x ax a ⎛⎫=-+- ⎪⎝⎭有最大值,则内层函数25212t x ax a =-+-要有最小正值,且外层函数()log a f t t =为减函数,可知0<a <1.要使内层函数25212t x ax a =-+-要有最小正值,则2544(1)02a a ∆=--<,解得122a <<.综合得a 的取值范围为1,12⎛⎫⎪⎝⎭.故选:B.2.(2022·黑龙江)若关于x 的方程19310x x m ++-+=有解,则实数m 的取值范围是( ) A .()1,+∞ B .5,4⎡⎫-+∞⎪⎢⎣⎭C .(],3-∞D .(]1,3【答案】A【解析】方程19310x x m ++-+=有解,2(3)3310x x m ∴+⨯-+=有解, 令30x t =>,则可化为2310t t m +-+=有正根,则231t t m +=-在()0,∞+有解,又当()0,t ∈+∞时,230t t +>所以101m m ->⇒>,故选:A .3.(2022·全国·高三专题练习)函数y =R ,则实数a 的取值范围是( ) A .(][),22,-∞-+∞ B .[)()1,00,-⋃+∞ C .(,1)-∞-D .[)1,1-【答案】A【解析】因为函数y =R ,可得真数部分y = 即函数21y x ax =++取到所有的正数,所以(0,)+∞是函数21y x ax =++的值域的子集, 所以240a ∆=-≥解得:2a ≤-或2a ≥,所以实数a 的取值范围是:(][),22,-∞-+∞.故选:A.考点四 图像问题【例4-1】(2022·全国·高三专题练习)函数x y a =(0a >且1a ≠)与函数()2121y a x x =---(0a >且1a ≠)在同一个坐标系内的图象可能是( )A .B .C .D .【答案】C【解析】两个函数分别为指数函数和二次函数,其中二次函数图象过点(0,-1),故排除A ,D ; 二次函数图象的对称轴为直线11x a =-,当01a <<时,指数函数递减,101a <-,C 符合题意; 当1a >时,指数函数递增,101a >-,B 不符合题意.故选:C . 【例4-2】(陕西省部分地市学校2022届高三下学期高考全真模拟考试理科数学试题)函数2ln x y x=的图象大致是( )A .B .C .D .【答案】C【解析】由题意,函数()2ln x f x x=的定义域为(,1)(1,0)(0,1)(1,)-∞--+∞,关于原点对称,且满足()()22()ln ln x x f x f x x x--===-, 所以函数()f x 为偶函数,其图象关于y 轴对称,排除B 选项;当1x >时,可得()2ln x f x x=,则()()()222ln (2ln 1)ln ln x x x x x f x x x --'==,当x ∈时,()0f x '<,()f x 单调递减;排除A 选项当)x ∈+∞时,()0f x '>,()f x 单调递增,所以排除D 选项,选项C 符合.故选:C.【一隅三反】1.(2021·山东·新泰市第一中学高三阶段练习)若不等式20ax x c -->的解集为1{|1}2x x -<<,则函数2y cx x a =--的图象可以为( )A .B .C .D .【答案】C【解析】由题可得1-和12是方程20ax x c --=的两个根,且0a <, 1112112a ca ⎧-+=⎪⎪∴⎨⎪-⨯=-⎪⎩,解得2,1a c =-=-,则()()22221y cx x a x x x x =--=--+=-+-, 则函数图象开口向下,与x 轴交于()()2,01,0,-.故选:C.2.(2022·全国·高三专题练习)已知函数2y ax bx c =++,如果a b c >>且0a b c ++=,则它的图象可能是( ) A . B . C . D .【答案】A【解析】由题意,函数2y ax bx c =++,因为0a b c ++=,令1x =,可得0y a b c =++=,即函数图象过点(1,0), 又由a b c >>,可得0,0a c ><,所以抛物线的开口向上,可排除D 项, 令0x =,可得0y c =<,可排除B 、C 项;故选:A.3.(2022·全国·高三专题练习)函数43y x =的图象是( )A .B .C .D .【答案】A【解析】函数443()y f x x ===,满足()()f x f x -=,即函数是偶函数,图象关于y 轴对称,D 错误;该函数是幂函数y x α=,413α=>,故该函数是增函数,且增长得越来越快,故A 正确,BC 错误. 故选:A.4.(江西省2022届高三5月高考适应性大练兵联考数学(理)试题)函数()f x 的部分图象大致为( )A .B .C .D .【答案】C【解析】由题得()()f x f x -===,则f (x )为偶函数,排除A ;又()01f =,排除B ;当2,0x π⎛∈⎫ ⎪⎝⎭时()0f x >,当3(,)22x ππ∈时,()1f x =所以()11f x -<<排除D , 故选:C . 5.(安徽省十校联盟2022届高三下学期最后一卷文科数学试题)函数()3e 2x f x x x =-在R 上的图象大致为( )A . B . C . D .【答案】A【解析】由题意得,()()()33e 2e 2x x f x x x x x f x --=---=-+=-, 故函数()f x 为奇函数,图象关于原点对称,排除D ;()2322e 220f =-⨯<,排除B ;()()()30.10.10.10.1e 20.10.1e 0.020f =-⨯=->,排除C , 故选:A.。
第四节 二次函数与幂函数2019考纲考题考情1.幂函数(1)定义:一般地,函数y=xα叫做幂函数,其中底数x是自变量,α是常数。
(2)幂函数的图象比较:2.二次函数(1)解析式:一般式:f(x)=ax2+bx+c(a≠0)。
顶点式:f(x)=a(x-h)2+k(a≠0)。
两根式:f(x)=a(x-x1)(x-x2)(a≠0)。
(2)图象与性质:与二次函数有关的不等式恒成立的条件(1)ax 2+bx +c >0(a ≠0)恒成立的充要条件是Error!(2)ax 2+bx +c <0(a ≠0)恒成立的充要条件是Error!(3)a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min 。
一、走进教材1.(必修1P 79习题T 1改编)已知幂函数f (x )=k ·x α的图象过点,则k +α=( )(12,22)A .B .1C .D .21232解析 因为f (x )=k ·x α是幂函数,所以k =1。
又f (x )的图象过点,所以α=,所以α=,所以k +α=1+=(12,22)(12)221212。
故选C 。
32答案 C2.(必修1P 38B 组T 1改编)函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值为________。
解析 函数y =2x 2-6x +3=22-的图象的对称轴为(x -32)32直线x =>1,所以函数y =2x 2-6x +3在[-1,1]上为单调递减函32数,所以y min =2-6+3=-1。
答案 -1二、走近高考3.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析 设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x +ax 1+b ,M =x +ax 2+b 。
考点专练9:二次函数与幂函数一、选择题1.若幂函数f(x)=(m 2-4m +4)x m 2-6m +8在(0,+∞)上单调递增,则m 的值为( )A .1或3 B.1 C.3 D.22.函数y =3x 2的图象大致是( )3.(2021·全国甲卷)下列函数中是增函数的为( )A .f(x)=-x B.f(x)=x 32)( C .f(x)=x 2 D.f(x)=3x 4.设函数f(x)=x 2+x +a(a>0),已知f(m)<0,则( )A .f(m +1)≥0 B.f(m +1)≤0C .f(m +1)>0 D.f(m +1)<05.(2021·全国甲卷)设函数f(x)的定义域为R ,f(x +1)为奇函数,f(x +2)为偶函数,当x ∈[1,2]时,f(x)=ax 2+b .若f(0)+f(3)=6,则f )(29=( ) A .-94 B.-32 C.74 D.526.设函数f(x)=1x,g(x)=ax 2+bx(a ,b ∈R ,a ≠0).若y =f(x)的图象与y =g(x)的图象有且仅有两个不同的公共点A(x 1,y 1),B(x 2,y 2),则下列判断正确的是( )A .当a <0时,x 1+x 2<0,y 1+y 2>0 B.当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0 D.当a >0时,x 1+x 2>0,y 1+y 2>07.(多选)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A(-3,0),对称轴为直线 x =-1.下面四个结论中正确的是( )A.b 2>4acB.2a -b =1C .a -b +c =0 D.5a<b8.(多选)若函数f(x)=(x -1)(x +a)在区间(1,2)上单调递增,则满足条件的实数a 的值可能是( )A .0 B.2C .-2 D.-3二、填空题9.已知二次函数f(x)=x 2-bx +c 满足f(0)=3,对∀x ∈R ,都有f(1+x)=f(1-x)成立,则f(x)=________10.设函数f(x)=ax 2-2x +2,对于满足1<x<4的一切x 值都有f(x)>0,则实数a 的取值范围是________11.若(a +1)-13 <(3-2a)-13,则实数a 的取值范围是________12.(2021·北师大实验中学期中)函数f(x)满足下列性质:(1)定义域为R ,值域为[1,+∞);(2)图象关于直线x =2对称;(3)对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0.请写出函数f(x)的一个解析式________.(只要写出一个即可)三、解答题13.已知幂函数f(x)=(m -1)2xm 2-4m +2在(0,+∞)上单调递增,函数g(x)=2x -k .(1)求m 的值;(2)当x ∈[1,2)时,记f(x),g(x)的值域分别为集合A ,B ,设p :x ∈A ,q :x ∈B ,若p 是q 成立的必要条件,求实数k 的取值范围.14.已知函数f(x)=x2+2x.(1)若f(x)>a在区间[1,3]上恒有解,求实数a的取值范围;(2)若f(x)>a在区间[1,3]上恒成立,求实数a的取值范围.15.(2022·郑州模拟)已知函数g(x)=ax2-2ax+b+1(a≠0,b<1)在区间[2,3]上有最大值4,最小值1.(1)求a,b的值;(2)设f(x)=g(x)x,不等式f(2x)-k·2x≥0对x∈[-1,1]恒成立,求实数k的取值范围.参考答案:一、选择题1.B2.C3.D4.C5.D6.B7.AD8.ABD二、填空题9.答案:x 2-2x +3 10.答案:⎝ ⎛⎭⎪⎫12,+∞. 11.答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫23,32 12.答案:f(x)=x 2-4x +5(答案不唯一)三、解答题13.解:(1)依题意得:(m -1)2=1⇒m =0或m =2,当m =2时,f(x)=x -2在(0,+∞)上单调递减,与题设矛盾,舍去,所以m =0.(2)由(1)得,f(x)=x 2,当x ∈[1,2)时,f(x)∈[1,4),即A =[1,4),当x ∈[1,2)时,g(x)∈[2-k,4-k),即B =[2-k,4-k).因为p 是q 成立的必要条件,所以B ⊆A ,则⎩⎪⎨⎪⎧ 2-k ≥1,4-k ≤4,即⎩⎪⎨⎪⎧k ≤1,k ≥0,得0≤k ≤1. 故实数k 的取值范围是[0,1].14.解:(1)f(x)>a 在区间[1,3]上恒有解,等价于a<f(x)max .又f(x)=x 2+2x 且x ∈[1,3],当x =3时,f(x)max =15,故a 的取值范围为{a|a<15}.(2)f(x)>a 在区间[1,3]上恒成立,等价于a<f(x)min ,又f(x)=x 2+2x 且x ∈[1,3],当x =1时,f(x)min =3,故a 的取值范围为{a|a<3}.15.解:(1)g(x)=ax 2-2ax +b +1=a(x -1)2-a +b +1.若a >0,则g(x)在[2,3]上单调递增,所以g(2)=b +1=1,g(3)=3a +b +1=4,解得a =1,b =0;若a <0,则g(x)在[2,3]上单调递减,所以g(2)=b +1=4,解得b =3.因为b <1,所以b =3(舍去).综上,a =1,b =0.(2)因为f(x)=g (x )x ,所以f(x)=x 2-2x +1x =x +1x-2.因为不等式f(2x )-k·2x ≥0对x ∈[-1,1]恒成立,所以2x +12x -2-k·2x ≥0对x ∈[-1,1]恒成立,即k ≤⎝⎛⎭⎫12x 2-2×⎝⎛⎭⎫12x +1=⎝⎛⎭⎫12x -12对x ∈[-1,1]恒成立. 因为x ∈[-1,1],所以12x ∈⎣⎡⎦⎤12,2, 所以⎝⎛⎭⎫12x -12∈[0,1],所以k ≤0,故实数k 的取值范围是(-∞,0]。
课时作业(七) [第7讲 幂函数与二次函数][时间:45分钟 分值:100分]基础热身1.[2011·陕西卷] 函数y =x 13的图象是( )图K7-12.“a =0”是“函数f (x )=x 2+ax 在区间(0,+∞)上是增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件 3.[2010·安徽卷] 设abc x )=ax 2+bx +c 的图象可能是( )图K7-24.已知二次函数y =x 2-2ax +1在区间(2,3)内是单调函数,则实数a 的取值范围是( )A .a ≤2或a ≥3B .2≤a ≤3C .a ≤-3或a ≥-2D .-3≤a ≤-2 能力提升 5.[2011·锦州模拟] 已知f (x )=x 2+x +c ,若f (0)>0,f (p )<0,则( ) A .f (p +1)>0 B .f (p +1)<0 C .f (p +1)=0D .f (p +1的符号不能确定6.已知函数f (x )=⎩⎨⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)7.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( ) A .正数 B .负数C .非负数D .与m 有关8.[2010·天津卷] 设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎨⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .[0,+∞)C.⎣⎡⎭⎫-94,+∞ D. ⎣⎡⎦⎤-94,0∪(2,+∞) 9α则不等式f (|x |)A .{x |0<x ≤2} B .{x |0≤x ≤4}C .{x |-2≤x ≤2}D .{x |-4≤x ≤4}10.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.11.已知函数f (x )=x 2-2x +3在区间[0,m ]上有最大值3,最小值2,则m 的取值范围是________.12.一元二次方程x 2+(a 2-1)x +(a -2)=0的一根比1大,另一根比1小,则实数a 的取值范围是________.13.已知定义在区间[0,3]上的函数f (x )=kx 2-2kx 的最大值为3,则k =________.14.(10分)已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时,f (x ): (1)是幂函数;(2)是幂函数,且是(0,+∞)上的增函数; (3)是正比例函数; (4)是反比例函数; (5)是二次函数.15.(13分)已知函数f (x )=1-2a x -a 2x (a >1). (1)求函数f (x )的值域;(2)若当x ∈[-2,1]时,函数f (x )的最小值为-7,求此时f (x )的最大值.难点突破 16.(12分)[2011·吉林师大附中模拟] 已知函数f (x )=x 2+bx +c 满足条件:f (x -3)=f (5-x ),且方程f (x )=x 有相等实根.(1)求f (x )的解析式;(2)当x ∈[-1,+∞)时,f (x )≥2(a -1)x +a +14恒成立,求a 的取值范围.课时作业(七)【基础热身】1.B [解析] 因为y =x 13,由幂函数的性质,过点(0,0),(1,1),则只剩B ,C.因为y =x α中α=13,图象靠近x 轴,故答案为B.2.A [解析] 由“函数f (x )=x 2+ax 在区间(0,+∞)上是增函数”可知,对称轴x =-a2≤0,即a ≥0,所以“a =0”是“函数f (x )=x 2+ax 在区间(0,+∞)上是增函数”的充分不必要条件.3.D [解析] 首先选择讨论的起点,应分为a >0和a <0.若a <0,则对于A ,c <0,b >0,-b2a>0,可以排除A ;对于B ,c >0,b <0,-b2a<0,排除B.若a >0,则bc >0,对于答案C ,c <0,-b2a>0,通过对称轴的位置可以排除C.4.A [解析] 由于二次函数的开口向上,对称轴为x =a ,若使其在区间(2,3)内是单调函数,则需所给区间在对称轴的同一侧,即a ≤2或a ≥3.【能力提升】5.A [解析] 二次函数的对称轴为直线x =-12,由f (0)>0,知f (-1)>0.又f (p )<0,则必有-1<p <0,∴p +1>0,∴f (p +1)>0,故选择A.6.C [解析] 函数f (x )=⎩⎨⎧x 2+4x ,x ≥0,4x -x 2,x <0的图象如图.知f (x )在R 上为增函数. ∵f (2-a 2)>f (a ),即2-a 2>a .解得-2<a <1.7.B [解析] 法一:∵f (x )=x 2-x +a 的对称轴为x =12而-m ,m +1关于12对称,∴f (m +1)=f (-m )<0. 法二:∵f (-m )<0,∴m 2+m +a <0,∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0. 8.D [解析] 由题意f (x )=⎩⎨⎧x 2+x +2,x <g (x ),x 2-x -2,x ≥g (x )=⎩⎨⎧x 2+x +2,x ∈(-∞,-1)∪(2,+∞),x 2-x -2,x ∈[-1,2]=⎩⎨⎧⎝⎛⎭⎫x +122+74,x ∈(-∞,-1)∪(2,+∞),⎝⎛⎭⎫x -122-94,x ∈[-1,2],所以当x ∈(-∞,-1)∪(2,+∞)时,f (x )的值域为(2,+∞);当x ∈[-1,2]时,f (x )的值域为⎣⎡⎦⎤-94,0,故选D.9.D [解析] ∵f ⎝⎛⎭⎫12=22,∴α=12.故f (|x |)≤2可化为|x |12≤2,∴|x |≤4.故其解集为{x |-4≤x ≤4}.10.32 [解析] ∵f (x )=k ·x α是幂函数,∴k =1.又f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,∴⎝⎛⎭⎫12α=22,∴α=12.∴k +α=1+12=32. 11.1≤m ≤2 [解析] ∵f (x )=x 2-2x +3=(x -1)2+2,∴其对称轴方程为x =1,f (1)=2.∴m ≥1.又∵f (0)=3,由对称性可知f (2)=3,∴m ≤2,综上可知1≤m ≤2.12.-2<a <1 [解析] 令f (x )=x 2+(a 2-1)x +(a -2),方程就是f (x )=0,它的一个根大于1,另一根小于1,f (x )=x 2+(a 2-1)x +(a -2)的图象是开口向上的抛物线,相当于说抛物线与x 轴的两个交点分别在点(1,0)的两侧,必有f (1)<0,即1+(a 2-1)+a -2<0,∴-2<a <1.13.1或-3 [解析] (1)当k =0时,显然不成立.(2)当k ≠0时,f (x )=k (x -1)2-k ,①当k >0时,二次函数图象开口向上,当x =3时,f (x )有最大值,f (3)=k ·32-2k ×3=3k =3⇒k =1;②当k <0时,二次函数图象开口向下,当x =1时,f (x )有最大值,f (1)=k -2k =-k =3⇒k =-3.故k =1或-3.14.[解答] (1)∵f (x )是幂函数,故m 2-m -1=1,即m 2-m -2=0, 解得m =2或m =-1.(2)若f (x )是幂函数且又是(0,+∞)上的增函数,则⎩⎨⎧m 2-m -1=1,-5m -3>0,∴m =-1. (3)若f (x )是正比例函数,则-5m -3=1,解得m =-45.此时m 2-m -1≠0,故m =-45. (4)若f (x )是反比例函数, 则-5m -3=-1,则m =-25,此时m 2-m -1≠0,故m =-25.(5)若f (x )是二次函数,则-5m -3=2,即m =-1,此时m 2-m -1≠0,故m =-1.15.[解答] 设a x =t >0,则y =-t 2-2t +1=-(t +1)2+2.(1)∵t =-1∉(0,+∞),∴y =-t 2-2t +1在(0,+∞)上是减函数. ∴y <1,所以f (x )的值域为(-∞,1).(2)∵x ∈[-2,1],a >1,∴t ∈⎣⎡⎦⎤1a 2,a ,由t =-1∉⎣⎡⎦⎤1a 2,a ,所以y =-t 2-2t +1在⎣⎡⎦⎤1a 2,a 上是减函数,∴-a 2-2a +1=-7,∴a =2或a =-4(不合题意,舍去).当t =1a 2=14时,y 有最大值.即y max =-⎝⎛⎭⎫142-2×14+1=716.【难点突破】16.[解答] (1)f (x )=x 2+bx +c 满足条件f (x -3)=f (5-x ),则函数f (x )的图象关于直线x =1对称,故b =-2.又方程f (x )=x 有相等实根,即x 2-3x +c =0有相等实根,故c =94,故f (x )=x 2-2x +94.(2)由题意,得f (x )≥2(a -1)x +a +14,即a ≤x 2-2ax +2在[-1,+∞)上恒成立, 而g (x )=x 2-2ax +2在[-1,+∞)上的最小值是g (x )min =⎩⎨⎧2-a 2,a ∈[-1,+∞),3+2a ,a ∈(-∞,-1).又a ≤g (x )min 等价于⎩⎨⎧ a <-1,a ≤3+2a 或⎩⎨⎧a ≥-1,a ≤2-a 2,解之,得a ∈[-3,1].。