电介质
- 格式:docx
- 大小:18.48 KB
- 文档页数:5
第四章 电磁介质第一节 电介质一、电介质—绝缘介质1.电介质内没有可以自由移动的电荷 在电场作用下,电介质中的电荷只能在 分子范围内移动。
2.分子电矩·分子—电偶极子(模型)分子的正负电中心相对错开。
·分子电矩二、电介质的极化1.极性电介质的极化p 分+- 电介质分子(1) 极性分子·正常情况下,内部电荷分布不对称, 正负电中心已错开,有固有电矩p 分, ·极性分子:如HCl 、H 2O 、CO 等。
(2)无外电场时·每个分子p 分 ≠ 0·由于热运动,各p 分取向混乱·小体积∆V (宏观小、微观大,内有大量 分子)内 ∑ p 分= 0(3)有外电场时·各 p 分向电场方向取向(由于热运动,取向 并非完全一致)外有外电场 无外电场分 ·且外电场越强 ⇒ | ∑ p 分| 越大·这种极化称取向极化2.非极性电介质的极化(1)非极性分子·正常情况下电荷分布对称,正负电中心重 合,无固有电矩。
·非极性分子:如He 、 H 2、 N 2、 O 2、 CO 2等。
(2)无外电场时·每个分子 p 分 = 0·∆V 内∑ p 分 = 0 (3)有外电场时·正负电中心产生相对位移,p 分(称感应电矩) ≠ 0E 外分 ·且外电场越强 ⇒ | ∑ p 分| 越大·这种极化称位移极化三、电极化强度1.电极化强度·为描写电介质极化的强弱,引入电极化强度矢量。
·定义:单位体积内分子电矩的矢量和或·P 是位置的函数·单位: C/m 2·对非极性电介质,因各p 分相同,有 P = n p 分n ---单位体积内的分子数·综上,对极性、非极性电介质都有 无外电场时, P = 0 有外电场时,P ≠ 0且电场越强 ⇒ | P | 越大2.电极化强度和场强的关系·由实验,对各向同性电介质,当电介质中 电场E 不太强时,有·χe :电极化率(χe ≥ 0),决定于电介质性质。
电介质的分类
一、电介质的种类与特点:
1.有极分子电介质:电介质中各分子的等效正电中心与等效负电中心不重合的电介质;正电中心和负电中心分别可用等量异号电荷代替,二者有一相对位移,这样每个分子对外界的电性效果可以等效为一个电偶极子的作用。
2.无极分子电介质:电介质中各分子的等效正电中心与等效负电中心重合的电介质。
2、提高电介质材料储能密度的方法
储能密度与介电常数、击穿场强有直接的关系,所以我们我们选择材料要有尽可能提高材料的击穿场强和相对介电常数,才能获得较高的储能密度。
从介电常数考虑,铁电体、反铁电体和弛豫铁电体通常具有较高的介电常数。
单相电介质储能材料:作为储能材料的单相材料主要指陶瓷。
一般的无机氧化物陶瓷的介电常数较低,需要通过掺杂等方法提高介电常数,可以提高储能密度。
复合电介质储能材料:聚合物通常介电常数很低,为了实现高储能密度,可以在聚合物中填充高介电陶瓷。
微晶玻璃电介质储能材料:微晶玻璃是另一大类电介质储能材料,在在陶瓷中添加玻璃,玻璃的添加会减小气孔率从而提高击穿场强,使储能密度提高。
薄膜材料:在薄膜材料中可降低缺陷,因此击穿场强提高,从而提高了储能密度。
电介质物理学绪论电介质(dielectric)是在电场作用下具有极化能力并能在其中长期存在电场的一种物质。
电介质具有极化能力和其中能够长期存在电场这种性质是电介质的基本属性.也是电介质多种实际应用(如储存静电能)的基础。
静电场中电介质内部能够存在电场这一事实,已在静电学中应用高斯定理得到了证明,电介质的这一特性有别于金属导体材料,因为在静电平衡态导体内部的电场是等于零的。
如果运用现代固体物理的能带理论来定义电介质,则可将电介质定义为这样一种物质:它的能级图中基态被占满.基态与第一激发态之间被比较宽的禁带隔开,以致电子从正常态激发到相对于导带所必须的能量,大到可使电介质变到破坏。
电介质的能带结构可以用图一示意,为了便于将电介质的能带结构和半导体、导体的能带结构相比较,图中分别画出了它们的能带结构示意图.电介质对电场的响应特性不同于金属导体。
金属的特点是电子的共有化,体内有自由载流子,从而决定了金属具有良好的导电件,它们以传导方式来传递电的作用和影响。
然而,在电介质体内,一股情况下只具有被束缚着的电荷。
在电场的作用下,将不能以传导方式而只能以感应的方式,即以正、负电荷受电场驱使形成正、负电荷中心不相重合的电极化方式来传递和记录电的影响。
尽管对不同种类的电介质,电极化的机制各不相同,然而,以电极化方式响应电场的作用,却是共同的。
正因为如此研究电介质在电场作用下发生极化的物理过程并导出相应的规律,是电介质物理的一个重要课题。
由上所述,电介质体内一般没有自由电荷,具有良好的绝缘性能。
在工程应用上,常在需要将电路中具有不同电势的导体彼此隔开的地方使用电介质材料,就是利用介质的绝缘特性,从这个意义上讲,电介质又可称为绝缘材料(Insulating material)或绝缘体(insulator)。
与理想电介质不同,工程上实际电介质在电场作用下存在泄漏电流相电能的耗散以及在强电场下还可能导致电介质的破坏。
因此,如果将电介质物理看成是一种技术物理,那么除要研究极化外,还要研究有关电介质的电导、损耗以及击穿特性,这些就是电介质物理需要研究的主要问题。
介质和电介质的特性和应用有哪些一、介质的概念介质,又称传播介质,是指电磁波传播的媒介。
介质可以是固体、液体、气体,甚至是真空。
不同的介质对电磁波的传播有不同的影响。
介质中电磁波的传播速度与介质的性质有关,如介质的折射率、介电常数等。
二、电介质的特性电介质是指在电场作用下,其内部会产生极化现象,从而影响电场分布的物质。
电介质的主要特性有:1.极化:电介质在外加电场的作用下,内部会产生极化现象,即正负电荷分别向电场方向和相反方向移动,形成局部电荷分布。
2.介电常数:电介质的介电常数(ε)是描述电介质极化程度的物理量,反映了电介质对电场的响应能力。
介电常数越大,电介质的极化程度越高。
3.绝缘性:电介质具有良好的绝缘性能,可以阻止电流的流动。
绝缘材料广泛应用于电力系统和电子设备中,以防止漏电和短路。
4.存储电荷:电介质在去除电场后,仍能保留一定量的电荷,称为电容。
电容是电介质储存电能的能力,广泛应用于电容器中。
三、电介质的应用1.电容器:电容器是利用电介质的储存电荷能力,实现电能存储和释放的元件。
电容器广泛应用于电子设备、电力系统、通讯等领域。
2.绝缘材料:电介质具有良好的绝缘性能,可以阻止电流的流动。
绝缘材料广泛应用于电力系统和电子设备中,以防止漏电和短路。
3.屏蔽材料:电介质可以用于屏蔽电磁干扰,保护电子设备免受外部干扰。
4.介质波导:电介质波导是一种用于传输电磁波的介质管道,广泛应用于光纤通信、微波传输等领域。
四、介质的分类及应用1.固体介质:如陶瓷、玻璃、塑料等。
固体介质在电子元件和微波器件中有广泛应用,如微波谐振器、滤波器等。
2.液体介质:如水、油、酸碱盐溶液等。
液体介质在电力系统中作为绝缘材料和冷却剂,以及化学实验室中的试剂。
3.气体介质:如空气、氮气、氧气等。
气体介质在电力系统中作为绝缘气体,以及灯泡中的填充气体。
4.真空介质:真空是一种特殊的介质,具有极低的介电常数。
在某些高频电路和微波器件中,真空介质可以作为优良的传播介质。
电介质材料的分类
1. 气体电介质呀,就像空气一样无处不在!比如在高压开关设备中,不就是用它们来绝缘嘛。
2. 液体电介质呢,就好像是电路中的“保护神”哟!像变压器里就有它们的身影。
3. 固体电介质可厉害啦,这好比是电子产品里的“坚强卫士”呀!像陶瓷电容器就是用它做的啊。
4. 无机电介质可是个大家族呢,这不就是材料界里的“大部队”嘛!像云母不就是常见的嘛。
5. 有机电介质也有它独特的魅力呀,就如同生活中各种神奇的小物件!比如塑料薄膜就会用到它们。
6. 压电晶体电介质,那可是个神奇的存在哟!就像能带来惊喜的魔法石,压电打火机不就是利用它嘛。
7. 铁电电介质呢,像是拥有超能力的“战士”!像一些特殊的电子元件就靠它啦。
8. 热释电电介质呀,感觉就像是能感知温度的小精灵呢!在一些温度感应装置中就少不了它们呀。
我觉得电介质材料的分类真的好丰富多样啊,每一种都有它独特的用途和价值,在我们的生活中扮演着重要的角色呢!。
电介质名词解释
电介质是指那些不能自由导电的材料,也是电路中的一种基本元件。
与导体相比,电介质的电阻较大,可以在电场中存储能量,因而广泛应用于电子、电信、电力等领域。
常见的电介质材料包括玻璃、橡胶、塑料、陶瓷、石英、石墨、木材等。
这些材料的电介质性质不同,有的可以承受高电场强度,有的具有较低的介电损失,有的可以承受高温、高压等特殊环境。
在电路中,电介质可以用于电容器、绝缘体、隔离器、电感等元件中。
电容器是利用电介质的极化性质来存储电荷和电能的器件,常见的电容器有电解电容器、陶瓷电容器、聚酯电容器等。
绝缘体则用于隔离电路中的导体,防止电流泄漏或干扰,常见的绝缘材料有绝缘漆、尼龙、聚四氟乙烯等。
隔离器则用于将不同电位的导体隔离开来,常见的隔离器有变压器、光隔离器等。
电感则是通过在电路中使用线圈来存储电磁能量,常见的电感材料有铁氧体、陶瓷、聚酰亚胺等。
总之,电介质在电路中有着广泛的应用,通过选择合适的电介质材料可以满足不同电路的需求。
什么是电介质?电介质是什么意思?所谓电介质,是指不导电的物质,即绝缘体,内部没有可以移动的电荷。
若把电介质放入静电场场中。
电介质原子中的电子和原子核在电场力的作用下在原子范围内作微观的相对位移,而不能象导体中的自由电子那样脱离所属的原子作宏观的移动。
达到静电平衡时,电介质内部的场强也不为零。
这是电介质与导体电性能的主要差别。
电介质包括气态、液态和固态等范围广泛的物质。
固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。
凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。
电介质的电阻率一般都很高,被称为绝缘体。
有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。
通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化:①原子核外的电子云分布产生畸变,从而产生不等于零的电偶极矩,称为畸变极化;②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移极化;③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。
电介质的特征是以正、负电荷重心不重合的电极化方式传递或记录(存储)电的作用和影响;在其中起主要作用的是束缚电荷。
电介质物理主要是研究介质内部束缚电荷在电或和光的作用下的电极化过程,阐明其电极化规律与介质结构的关系,揭示介质宏观介电性质的微观机制,进而发展电介质的效用。
电介质物理也研究电介质绝缘材料的电击穿过程及其原理,以利于发展电绝缘材料。
实际上金属也具有介电性质;但金属的介电性是来源于电子气在运动过程中感生出虚空穴(正电荷)所引起的动态屏蔽效应。
因其基本上不涉及束缚电荷,故不把金属的介电性列入电介质物理研究的范畴。
电介质有气体的、液体的和固体的,分布极广。
电介质的分类1、分子的等效正电中心和等效负电中心:电介质均由分子和原子组成,每个分子中所有正电荷对外界作用的电效果可以等效为集中在某一点的等效点电荷的作用效果,这个等效点电荷的位置称为分子的正点中心;同理,每个分子中所有负电荷对外界作用的电效果可以等效为集中在某一点的等效点电荷的作用效果,这个等效点电荷的位置称为分子的负点中心;2、有极分子电介质:电介质中各分子的等效正电中心与等效负电中心不重合的电介质;正点中心和负电中心分别可用等量异号电荷代替,二者有一相对位移,这样每个分子对外界的电性效果可以等效为一个电偶极子的作用。
3、无极分子电介质:电介质中各分子的等效正点中心与等效负电中心重合的电介质。
可以认为每一个分子的正电荷q集中于一点,称为正电荷的“重心”,负电荷-q集中于一点,称为正负电荷的“重心”;定义从负电荷的重心到正电荷的重心的矢径为,则分子可以构成的电偶极子。
电介质的电结构(1)电子被原子核紧紧束缚;(2)在静电场中电介质中性分子中的正、负电荷仅产生微观相对运动;(3)在静电场与电介质相互作用时,电介质分子简化为电偶极子。
电介质由大量微小的电偶极子组成;(4)电介质在外电场中→极化→产生极化电荷→产生附加电场→作用于电介质→达到静电平衡。
电介质的极化(Polarization)电极化过程电极化的基本过程有三:①原子核外电子云的畸变极化;②分子中正、负离子的(相对)位移极化;③分子固有电矩的转向极化。
在外界电场作用下,介质的介电常数ε是综合地反映这三种微观过程的宏观物理量;它是频率ω的函数ε(ω)。
只当频率为零或频率很低(例如1千赫)时,三种微观过程都参与作用,这时的介电常数ε(0)对于一定的电介质而言是个常数,通称为介电常数,这也就是静电介电常数εs或低频介电常数。
随着频率的增加,分子固有电矩的转向极化逐渐落后于外场的变化,这时,介电常数取复数形式ε(ω)=ε′(ω)-jε〃(ω),其中虚部ε〃(ω)代表介质损耗;它是由于电极化过程追随不上外场的变化而引起的。
实部随着频率的增加而显著下降,虚部出现峰值,如图1所示。
频率再增加,实部ε′(ω)降至新值,虚部ε〃(ω)变为零,这表示分子固有电矩的转向极化已不能响应了。
当频率进入到红外区,分子中正、负离子电矩的振动频率与外场发生共振时,实部ε′(ω)先突然增加,随即陡然下降,ε〃(ω)又出现峰值;过此以后,正、负离子的位移极化亦不起作用了。
1)无极分子的极化机理——位移极化(DisplacementPolarization)无外电场时,分子的正负电荷中心重合;有外电场时,正、负电荷将被电场力拉开,偏离原来的位置,形成一个电偶极子,叫作诱导电偶极子。
对于处于外电场中的电介质来说,每个分子都有一定的诱导电偶极子,而且排列方向大致与外电场方向相同,以致在电介质与外电场垂直的两个表面上出现正电荷和负电荷。
这种电荷不能用导电的方法使它们脱离电介质而单独存在,所以把它们叫作极化电荷或束缚电荷。
撤去外电场后,正负电荷的中心又将重合而恢复原样。
2)有极分子的极化机理——取向极化(OrientationPolarization)有极分子有一定的电偶极子。
当没有外电场时,由于分子的无规则的热运动,电偶极子的排列是杂乱无章的,因而对外不显电性。
当有外电场时,每个电偶极子都将受到一个力矩的作用。
在此力矩的作用下,电介质中的电偶极子将转向外电场的方向(在上一章讲过)。
虽然由于分子的热运动,各电偶极子的排列并不是十分整齐,但对于整个电介质来说,在垂直于电场方向的两个表面上,也将产生极化电荷。
撤去外电场,由于分子的无规则的热运动,电偶极子的排列又将变成杂乱无章。
在静电场中,虽然不同电介质的极化机理不尽相同,但是在宏观上,都表现为电介质的表面出现极化电荷,我们把在外电场作用下电介质表面出现正负电荷的现象,称为电介质的极化。
若电介质是非均匀的,则除了产生极化面电荷外,还要产生极化体电荷。
极化电荷Polarizationcharge(或束缚电荷boundcharge)在外电场中,均匀介质内部各处仍呈电中性,但在介质表面要出现电荷,这种电荷不能离开电介质到其它带电体,也不能在电介质内部自由移动。
我们称它为束缚电荷或极化电荷。
它不象导体中的自由电荷能用传导方法将其引走。
在外电场作用下,电介质出现束缚电荷的现象称为电介质的极化。
电晕现象在潮湿或阴雨天的日子里,高压输电线(如220kV,550kV等)附近,常可见到有淡蓝色辉光的放电现象,这称作电晕现象。
关于电晕现象的产生可作如下定性解释.阴雨天气的大气中存在着较多的水分子,水分子是具有固有电偶极矩的有极分子.长直带电的输电线附近的电场是非均匀电场.水分子在此非均匀电场的作用下,一方面要使其固有电偶极矩转向外电场方向,同时还要向输电线移动,从而使水分子凝聚在输电线的表面上形成细小的水滴.由于重力和电场力的共同作用,水滴的形状因而变长并出现尖端.而带电水滴的尖端附近的电场强度特别大,从而使大气中的气体分子电离,以致形成放电现象.这就是在阴雨天常看到高压输电线附近有淡蓝色辉光,即电晕现象的原因。
固体电介质的击穿电导率很小的电介质用来作为电绝缘材料,称为绝缘体。
电介质能够经受而不致损坏的最大电场(约107~108V/m)称为击穿场强,这是绝缘性能好坏的一个重要标志。
当外加电场超过此值时,电介质的电导突然增大甚至引起结构损坏或破碎,称为介电击穿。
击穿的过程首先是在外电场不变情况下介质中的电流迅速增大。
接着在介质中形成导电的沟道如图2所示。
通常在两电极间有一个主沟道和许多分支。
沟道中的固体已部分气化形成结构上的损坏。
沟道取向与电介质微观结构、杂质、缺陷、外加电极形状等有关。
介电击穿过程很复杂,除与物质本身性质有关外还与样品厚度、电极形状、环境温度、湿度和气压、所加电场波形等有关。
实验数据很分散,各种理论模型只能分别在一定范围内说明问题。
有三种类型的介电击穿。
①热击穿。
电极间介质在一定外加电压作用下,其中不大的电导最初引起较小的电流。
电流的焦耳热使样品温度升高。
但电介质的电导会随温度迅速变大而使电流及焦耳热增加。
若样品及周围环境的散热条件不好,则上述过程循环往复,互相促进,最后使样品内部的温度不断升高而引起损坏。
在电介质的薄弱处热击穿产生线状击穿沟道。
击穿电压与温度有指数关系,与样品厚度成正比;但对于薄的样品,击穿电压比例于厚度的平方根。
热击穿还与介质电导的非线性有关,当电场增加时电阻下降,热击穿一般出现于较高环境温度。
在低温下出现的是另一种类型的电击穿。
②电击穿。
又称本征击穿。
电介质中存在的少量传导电子在强外电场加速下得到能量。
若电子与点阵碰撞损失的能量小于电子在电场加速过程中所增加的能量,则电子继续被加速而积累起相当大的动能,足以在电介质内部产生碰撞电离,形成电子雪崩现象。
结果电导急剧上升,最后导致击穿。
1935年,A.R.希佩尔最先提出电子碰撞电离概念。
后来,H.弗罗利希等人曾对击穿场强作过定量计算。
开始击穿时电子所须具有的能量称为击穿判据。
在不完整或掺杂单晶和一些非晶态电介质中,缺陷和杂质形成的浅位阱束缚的电子所需激活能要比禁带宽度小很多。
受外电场加速的传导电子更容易使这部分电子被激活参与导电而引起击穿。
电击穿的另一种机制是1934年C.曾讷提出来的内部冷发射模型。
认为强外电场使能带发生倾斜。
因而价带上的电子出现隧道效应。
当场强为106V/cm数量级时,电子可通过隧道效应移动几百个原子的距离。
在约10-12秒时间内导带就可以出现足够数量的电子而引起击穿。
此外,在强电场下金属电极中的自由电子也可以注入于电介质而参与导电,称为外部冷发射。
在研究碱族卤晶体的电击穿时,还提出了等离子体“电磁箍缩模型”。
③化学击穿。
电介质中强电场产生的电流在例如高温等某些条件下可以引起电化学反应。
例如离子导电的固体电介质中出现的电解、还原等。
结果电介质结构发生了变化,或者是分离出来的物质在两电极间构成导电的通路。
或者是介质表面和内部的气泡中放电形成有害物质如臭氧、一氧化碳等,使气泡壁腐蚀造成局部电导增加而出现局部击穿,并逐渐扩展成完全击穿。
温度越高,电压作用时间越长,化学形成的击穿也越容易发生。
以上各种击穿类型有时是某一种占主要,有时是几种原因的叠加。
在击穿过程中也可出现不同类型的变化。
研究电介质击穿有重要的科学意义和实用价值。
它涉及材料的物质结构、杂质缺陷、能带结构、强场下的载流子输运过程、弛豫机制以及电子与声子、电子与电子间的相互作用等。
在实用上,它关系到高电压输送与变换、高能粒子加速器、强激光与物质相互作用以及强场下半导体、电介质的大容量储能和大功率换能等。