2018-2019学年苏教版八年级第二学期期末考试数学试卷(含答案详解)
- 格式:doc
- 大小:284.98 KB
- 文档页数:11
江苏2023-2024学年第二学期期末考试八年级数学试题 2024.6(考试时间120分钟 满分150分)一、 选择题(本大题共8小题,每小题3分,共24分) 1.下列图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .2.为了解某市参加中考的5000名学生的身高情况,抽查了其中200名学生的身高进行统计分析.下列叙 述正确的是( ).A .5000名学生是总体B .每名学生是总体的一个个体C .以上调查是普查D .从中抽取的200名学生的身高是总体的一个样本3.下列运算正确的是( ). A .532=+ B .2332=− C .363332=⨯ D .326=÷4.函数y =xk的图象经过点(﹣2,﹣4),则下列点中不在此函数图象上的是( ). A .(4,2)B .(1,8)C .(2,﹣4)D .(﹣1,﹣8)5.如图,某天气预报软件显示“扬州市邗江区明天的降水概率为85%”,对这条信息的下列说法中,正确 的是( ) .A.邗江区明天将有85%的时间下雨 B .邗江区明天将有85%的地区下雨 C .邗江区明天下雨的可能性较大 D .邗江区明天下雨的可能性较小 6.如果把分式xyyx −中的x ,y 同时扩大为原来的4倍,那么该分式的值( ). A .缩小为原来的41 B .缩小为原来的21C .扩大为原来的2倍D .不变 7.小明在学习了中心对称图形后,整理了平行四边形和特殊平行四 边形之间的关系图,如图所示,从下列条件:①AB =AD ;②AC = BD ;③AC ⊥BD ;④AC 平分∠DAB 中,选择其中一个条件填入( ) 处,补全关系图,其中所有正确选项的序号是( ). A .①③ B .①④C .①③④D .②③④ 第7题8.如图,已知点A(6,0),B(0,8),C是y轴上位于点B上方的一点,AD平分∠OAB,BE平分∠ABC,直线BE交AD于点D.若反比例函数y=xk(x<0)的图象经过点D,则k的值是().A.﹣12 B.﹣24 C .﹣36 D.﹣48二、填空题(本大题共10小题,每小题3分,共30分)9.若式子3+x在实数范围内有意义,则x的取值范围是.10.当x=时,分式12+−xx的值为零.11.在一个不透明的盒子中装有白球和黄球共15个,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率为32,则白球有个.12.已知最简二次根式2+a与8是同类二次根式,则a=.13.如图,在平行四边形ABCD中,CA⊥AB,若∠B=50°,则∠CAD的度数是.14.如图,依据尺规作图的痕迹,计算∠α=°.15.关于x的方程123=+−xm的解是负数,则m的取值范围是.16.若点A(3,y1)、B(m,y2)在反比例函数xky12+=的图象上,且y2>y1,则m的取值范围是_________.17.若四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=150m,小红以4m/s的速度沿路线B→A→G→E行走到E处,小明以小红速度的1.25倍沿B→A→D→E→F行走到F处.若小红行走的路程为310m,则小明行走的时间为s.18.如图,菱形ABCD的对角线BD长度为6,边长10=AB,M为菱形外一个动点,满足BM⊥DM,N为MD中点,连接CN.则当M运动的过程中,CN长度的最大值为.三、解答题(本大题共有10小题,共96分)19.(8分)计算:(1)221850+−;(2)()()1332−+.第8题第13题第17题第18题第14题20.(8分)解方程:(1)2143=+−x x ; (2)x x x −−=+−21321.21.(8分)先化简,再求值:)181(223−−+÷−−a a a a ,其中a =33−.22.(8分)某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为 名,补全条形统计图(画图并标注相应数据); (2)“陶艺”课程所对应的扇形圆心角的度数是多少?(3)若该校八年级一共有1200名学生,试估计选择“刺绣”课程的学生有多少名?23.(10分)如图,一次函数y 1=kx +2 (k ≠0)的图像与反比例函数y 2=m x(m ≠0,x >0)的图像交于点A (2,n ),与y 轴交于点B ,与x 轴交于点C (-4,0). (1)求k 与m 的值;(2)当y 1>y 2时,x 的取值范围是_______________;(3)若P (a ,0)为x 轴上的一动点,当△APB 的面积为72时,求a 的值.24.(10分)某车间加工1500个零件后,由于技术革新,工作效率提高到原来的2.5倍,当再加工同样多的零件时,用时比以前少18小时.该车间技术革新前每小时加工多少个零件?25.(10分)如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.(1)求证:四边形CDBF为平行四边形;(2)若CA=CB,试判断四边形CDBF的形状,并说明理由.26.(10分)类比和转化是数学中解决新的问题时最常用的数学思想方法.【回顾旧知,类比求解】解方程:√x−1=2.解:去根号,两边同时平方得一元一次方程,解这个方程,得x=.经检验,x=是原方程的解.【学会转化,解决问题】运用上面的方法解下列方程:(1)√x+2−3=0;(2)√9x2+7x−3x=1.27.(12分)在学习反比例函数后,小华在同一个平面直角坐标系中画出了xy 9=(x >0)和y =﹣x +10的图象,两个函数图象交于A (1,9),B (9,1)两点,在线段AB 上选取一点P ,过点P 作y 轴的平行线交反比例函数图象于点Q (如图1),在点P 移动的过程中,发现PQ 的长度随着点P 的运动而变化.为了进一步研究PQ 的长度与点P 的横坐标之间的关系,小华进行了以下探究:【探索发现】(1)设点P 的横坐标为x ,则点P 的纵坐标为________,点Q 的纵坐标为_______;(用x 的代数式表示)若设PQ 的长度为y ,则y 与x 之间的函数关系式为 (1≤x ≤9);(2)为了进一步研究(1)中的函数关系,决定运用列表、描点、连线的方法绘制函数的图像: ①列表:= ;②描点:根据上表中的数据,在图2中描出各点;③连线:请在图2中画出该函数的图像.观察函数图像,发现:当x = 时,y 的最大值为 . 【迁移应用】利用(2)中的发现,解决问题:(3)已知某矩形的一组邻边长分别为m ,n ,且该矩形的周长W 与n 存在函数关系2418+−=nW ,求m 取最大值时矩形的对角线长.28.(12分)将一个矩形纸片OABC放置在平面直角坐标系中,OA,OC分别在x轴,y轴的正半轴上,点B 坐标为(4,10).(1)如图①,将矩形纸片OABC折叠,使点B落在y轴上的点D处,折痕为线段AE,求点D坐标;(2)如图②,点E,F分别在OC,AB边上.将矩形纸片OABC沿线段EF折叠,使得点B与点D(0,2)重合,求点C的对应点G的坐标;(3)在(2)的条件下,若点P是坐标系内任意一点,点Q在y轴上,使以点D,F,P,Q为顶点的四边形是菱形,请直接写出满足条件的点P的坐标.。
2018-2019苏教版八年级下册期中数学考试题+详细答案一、选择题1.下列标志既是轴对称图形又是中心对称图形的是()A. B.C.D.2.为了了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,那么这批电视机中,每台电视机的使用寿命是这个问题的()A.个体B.总体C.总体的一个样本 D.样本容量3.代数式﹣,,x+y,,,中是分式的有()A.1个 B.2个 C.3个 D.4个4.把分式中的x、y都扩大到原来的4倍,则分式的值()A.扩大到原来的8倍B.扩大到原来的4倍C.缩小到原来的D.不变5.若分式的值为0,则x的值为()A.0 B.±1 C.1 D.﹣16.以下说法正确的是()A.在367人中至少有两个人的生日相同B.一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个不透明的袋中装有3个红球,5个白球,搅匀后想中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性7.如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为100°的菱形,剪口与第二次折痕所成角的度数应为()A.30°或50°B.30°或60°C.40°或50°D.40°或60°8.平行四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AC平分∠BCD,②AC⊥BD,③OA=OC,④OB=OC,⑤∠BAD+∠BCD=180°,⑥AB=BC.从中任选两个条件,能使平行四边形ABCD为正方形的选法有()A.3种 B.6种 C.7种 D.8种9.规定★为:x★y=.已知2★1=,则25★26的值为()A.B. C.或﹣D.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1)C.(2n,2n﹣1)D.(2n﹣1,2n)二、填空题:(每小题2分)11.下列4个分式:①;②;③;④,中最简分式有个.12.已知▱ABCD中,∠C=2∠B,则∠A=度.13.的最简公分母是.14.为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,样本容量是.15.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为.16.要使关于x的方程的解是正数,a的取值范围是.17.如图,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,P为边BC上一动点(P不与B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是.18.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是.三、解答题19.计算:(1)﹣(2)•+(3x+1)20.解方程:(1)+=1 (2)+=.21.化简:﹣÷,并在﹣3≤x≤2中选一个你喜欢的整数x的值代入求值.25.如图,在▱ABCD中,AB⊥AC,AB=1,BC=,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.(1)试说明在旋转过程中,AF与CE总保持相等;(2)当旋转角为90°时,判断四边形ABEF的形状并证明;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,求出此时AC 绕点O顺时针旋转的角度.26.如图,矩形ABCD中,AB=8cm,BC=6cm,动点P从点A出发,以每秒1cm的速度沿线段AB 向点B运动,连接DP,把∠A沿DP折叠,使点A落在点A′处.求出当△BPA′为直角三角形时,点P运动的时间.27.在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线匀速运动,移动到点D时停止.(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD 与∠POD重叠部分的面积为y.①求当t=4,8,14时,y的值.②求y关于t的函数解析式.(2)如图2,若点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止.P、Q两点同时出发,点P的速度大于点Q的速度.设t秒时,正方形ABCD与∠POQ(包括边缘及内部)重叠部分的面积为S,S与t的函数图象如图3所示.①P,Q两点在第秒相遇;正方形ABCD的边长是②点P的速度为单位长度/秒;点Q的速度为单位长度/秒.③当t为何值时,重叠部分面积S等于9?参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,把答案直接填写在答题卡上相应的位置处)1.下列标志既是轴对称图形又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项错误;C、不是轴对称图形,是中心对称图形,故选项错误;D、是轴对称图形,是中心对称图形,故选项正确.故选:D.2.为了了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,那么这批电视机中,每台电视机的使用寿命是这个问题的()A.个体B.总体C.总体的一个样本 D.样本容量【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:为了了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,那么这批电视机中,每台电视机的使用寿命是这个问题的个体,故选:A.3.代数式﹣,,x+y,,,中是分式的有()A.1个 B.2个 C.3个 D.4个【考点】分式的定义.【分析】根据分母中含有字母的式子是分式,可得答案.【解答】解;代数式是分式,故选;A.4.把分式中的x、y都扩大到原来的4倍,则分式的值()A.扩大到原来的8倍B.扩大到原来的4倍C.缩小到原来的D.不变【考点】分式的基本性质.【分析】根据题意得出算式,再根据分式的基本性质化简,即可得出答案.【解答】解:根据题意得:==,即和原式的值相等,故选D.5.若分式的值为0,则x的值为()A.0 B.±1 C.1 D.﹣1【考点】分式的值为零的条件.【分析】分式的值为零:分子等于零但分母不等于零.【解答】解:依题意得x2﹣1=0且x﹣1≠0,解得x=﹣1.故选:D.6.以下说法正确的是()A.在367人中至少有两个人的生日相同B.一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个不透明的袋中装有3个红球,5个白球,搅匀后想中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性【考点】概率的意义;随机事件;可能性的大小.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,【解答】解:A、在367人中至少有两个人的生日相同,故A正确;B、一次摸奖活动的中奖率是1%,那么摸100次可能中奖,可不中奖,故B错误;C、一副扑克牌中,随意抽取一张是红桃K,这是随机事件,故C错误;D、一个不透明的袋中装有3个红球,5个白球,搅匀后想中任意摸出一个球,摸到红球的可能性小于摸到白球的可能性,故D错误;故选:A.7.如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为100°的菱形,剪口与第二次折痕所成角的度数应为()A.30°或50°B.30°或60°C.40°或50°D.40°或60°【考点】翻折变换(折叠问题).【分析】折痕为AC与BD,∠BAD=100°,根据菱形的性质:菱形的对角线平分对角,可得∠ABD=40°,易得∠BAC=50°,所以剪口与折痕所成的角a的度数应为40°或50°.【解答】解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=100°,∴∠ABC=180°﹣∠BAD=180°﹣100°=80°,∴∠ABD=40°,∠BAC=50°.∴剪口与折痕所成的角a的度数应为40°或50°.故选:C.8.平行四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AC平分∠BCD,②AC⊥BD,③OA=OC,④OB=OC,⑤∠BAD+∠BCD=180°,⑥AB=BC.从中任选两个条件,能使平行四边形ABCD为正方形的选法有()A.3种 B.6种 C.7种 D.8种【考点】正方形的判定;平行四边形的性质.【分析】根据有一个角是直角的菱形是正方形,邻边相等的矩形是正方形,即可解答.【解答】解:能使平行四边形ABCD为正方形的选法有:(1)⑤⑥,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,∵∠BAD+∠BCD=180°,∴∠BAD=∠BCD=90°,∴四边形ABCD是矩形,∵AB=BC,∴四边形ABCD是正方形.(2)②⑤,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,∵∠BAD+∠BCD=180°,∴∠BAD=∠BCD=90°,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是正方形.(3)①⑤,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,∵∠BAD+∠BCD=180°,∴∠BAD=∠BCD=90°,∴四边形ABCD是矩形,∵AC平分∠BCD,∴∠ACB=∠ACD,∵AB∥CD,∴∠ACD=∠BAC,∴∠ACB=∠BAC,∴AB=BC,∴四边形ABCD是正方形.(4)②④,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OB=OC,∴OA=OB=OC=OD,∴AC⊥BD∴四边形ABCD是正方形.(5)①④,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,∵∠BAD+∠BCD=180°,∴∠BAD=∠BCD=90°,∴四边形ABCD是矩形,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OB=OC,∴OA=OB=OC=OD,∴四边形ABCD是正方形.(6)④⑥,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OB=OC,∴OA=OB=OC=OD,∴四边形ABCD是矩形,∵AB=BC,∴四边形ABCD是正方形.共6种,故选:B.9.规定★为:x★y=.已知2★1=,则25★26的值为()A.B. C.或﹣D.【考点】分式的加减法.【分析】根据题意可列出方程求出A的值,最后代入求值即可.【解答】解:由题意可知:2★1=,∴+=解得:A=1∴25★26=+=故选(D)10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1)C.(2n,2n﹣1)D.(2n﹣1,2n)【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】先求出B1,B2,B3,B4的坐标,探究规律后即可解决问题.【解答】解:∵OC1=OA1=B1C1=A1B1=1,∴B1(1,1),∵A2在直线y=x+1上,∴A2(1,2),∴C1C2=B2C2=2∴B2(3,2),同理可得B3(7,4),B4(15,8)…所以B n(2n﹣1,2n﹣1),故选A.二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)11.下列4个分式:①;②;③;④,中最简分式有2个.【考点】最简分式.【分析】根据确定最简分式的标准即分子,分母中不含有公因式,不能再约分,即可得出答案.【解答】解:①是最简分式;②==,不是最简分式;③=,不是最简分式;④是最简分式;最简分式有①④,共2个;故答案为:2.12.已知▱ABCD中,∠C=2∠B,则∠A=120度.【考点】平行四边形的性质.【分析】首先根据平行四边形的性质可得AB∥CD,∠A=∠C,根据平行线的性质可得∠C+∠B=180°,再由条件∠C=2∠B可计算出∠B的度数,然后再计算出∠C的度数,进而可得∠A的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C,∴∠C+∠B=180°,∵∠C=2∠B,∴2∠B+∠B=180°,解得:∠B=60°,∴∠C=120°,∴∠A=120°,故答案为:120.13.的最简公分母是12x3yz.【考点】最简公分母.【分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【解答】解:的最简公分母是12x3yz.故答案为:12x3yz.14.为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,样本容量是200.【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:样本容量是200.故答案为:200.15.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为4.【考点】菱形的判定与性质;勾股定理的逆定理;平行四边形的性质.【分析】根据平行四边的性质,可得对角线互相平分,根据勾股定理的逆定理,可得对角线互相垂直,根据菱形的判定,可得菱形,根据菱形的面积公式,可得答案.【解答】解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.16.要使关于x的方程的解是正数,a的取值范围是a<﹣1且a≠﹣3.【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.【解答】解:去分母得:(x+1)(x﹣1)﹣x(x+2)=a,解得x=﹣;因为这个解是正数,所以﹣>0,即a <﹣1;又因为分式方程的分母不能为零,即﹣≠1且﹣≠﹣2,所以a ≠±3;则a 的取值范围是a <﹣1且a ≠﹣3; 故答案为:a <﹣1且a ≠﹣3.17.如图,在Rt △ABC 中,∠BAC=90°,AB=5,AC=12,P 为边BC 上一动点(P 不与B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的取值范围是≤AM <6 .【考点】矩形的判定与性质;垂线段最短;勾股定理.【分析】首先连接AP ,由在Rt △ABC 中,∠BAC=90°,PE ⊥AB 于E ,PF ⊥AC 于F ,可证得四边形AEPF 是矩形,即可得AP=EF ,即AP=2AM ,然后由当AP ⊥BC 时,AP 最小,可求得AM 的最小值,又由AP <AC ,即可求得AM 的取值范围. 【解答】解:连接AP , ∵PE ⊥AB ,PF ⊥AC , ∴∠AEP=∠AFP=90°, ∵∠BAC=90°,∴四边形AEPF 是矩形, ∴AP=EF ,∵∠BAC=90°,M 为EF 中点,∴AM=EF=AP ,∵在Rt △ABC 中,∠BAC=90°,AB=5,AC=12,∴BC==13, 当AP ⊥BC 时,AP 值最小,此时S △BAC =×5×12=×13×AP ,∴AP=,即AP 的范围是AP ≥,∴2AM ≥,∴AM 的范围是AM ≥,∵AP <AC , 即AP <12, ∴AM <6,∴≤AM <6.故答案为:≤AM <6.18.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°.【考点】旋转的性质;等边三角形的性质;正方形的性质.【分析】利用正方形的性质和等边三角形的性质证明△ABE≌△ADF(SSS),有相似三角形的性质和已知条件即可求出当BE=DF时,∠BAE的大小,应该注意的是,正三角形AEF可以在正方形的内部也可以在正方形的外部,所以要分两种情况分别求解.【解答】解:①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,在△ABE与△ADF中,,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF在正方形ABCD的外部时.∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴AB=AD BE=DF AE=AF,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=×+60°=165°,∴∠BAE=∠FAD=165°故答案为:15°或165°.三、解答题:(本大题共9小题,共74分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣(2)•+(3x+1)【考点】分式的混合运算.【分析】(1)先通分得到原式=,然后约分即可;(2)先约分得到原式=x﹣1+3x+1,然后合并即可.【解答】(1)解:原式=+=+===;(2)解:原式=x﹣1+3x+1=4x.20.解方程:(1)+=1(2)+=.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2+2(x+3)=x(x+3),解得:x=6,经检验:x=6是原方程的解;(2)最简公分母为3(3x﹣1),去分母得:6x﹣2+3x=1,即9x=3,解得:x=,经检验:x=是原方程的增根,故原方程无解.21.化简:﹣÷,并在﹣3≤x≤2中选取一个你喜欢的整数x的值代入求值.【考点】分式的化简求值.【分析】先将除法转化为乘法计算,再通分化为同分母分式相减,最后约分即可化简,在﹣3≤x ≤2中选取符合题意的x的值(x=﹣2或x=﹣3)代入计算.【解答】解:原式=﹣•=﹣===﹣,当x=﹣2时,原式=﹣=1.22.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x个单位长度后落在△A2B2C2的内部(不含落在△A2B2C2的边上),请直接写出x的取值范围.(提醒:每个小正方形边长为1个单位长度)【考点】作图-旋转变换;作图-轴对称变换;作图-平移变换.【分析】(1)利用网格特点和旋转的性质画出点B、C的对应点B1、C1,则可得到△AB1C1;(2)根据关于原点对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)先利用关于x轴的对称点的坐标特征写出P点坐标,再描点得到P点,然后观察图形可判断x的取值范围.【解答】解:(1)如图,△AB1C1为所作;(2)如图,△A2B2C2.为所作;(3)如图,点P为所作;x的取值范围为5.5<x<8.23.某校初二年级数学考试,(满分为100分,该班学生成绩均不低于50分)作了统计分析,绘a=8,b=0.08;(2)补全频数分布直方图;(3)若该校八年级共有600名学生,且各个班级学生成绩分布基本相同,请估计该校八年级上学期期末考试成绩低于70分的学生人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据表格确定出a与b的值即可;(2)由a的值,补全条形统计图,如图所示;(3)根据49.5~59.5与59.5~69.5的频率之和乘以600即可得到结果.【解答】解:(1)根据题意得:a=2÷0.04×0.16=8,b=4÷(2÷0.04)=0.08;故答案为:8;0.08;(2)如图所示,;(3)根据题意得:600×(0.04+0.16)=600×0.2=120(人),则该校八年级上学期期末考试成绩低于70分的学生人数约为120人.24.如图,点D、E、F分别是AC、BC、AB中点,且BD是△ABC的角平分线.求证:BE=AF.【考点】三角形中位线定理.【分析】连接DE,根据三角形中位线定理和平行四边形的判定定理证明四边形ADEF是平行四边形,得到AF=DE,证明BE=DE,等量代换即可.【解答】证明:连接DE∵点D、E、F分别是AC、BC、AB中点.∴DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF.25.如图,在▱ABCD中,AB⊥AC,AB=1,BC=,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.(1)试说明在旋转过程中,AF与CE总保持相等;(2)当旋转角为90°时,判断四边形ABEF的形状并证明;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,求出此时AC 绕点O顺时针旋转的角度.【考点】旋转的性质;平行四边形的性质;菱形的判定.【分析】(1)根据平行四边形的性质得出AD∥BC,OA=OC,求出∠1=∠2,根据ASA推出△AOF ≌△COE即可;(2)求出BA∥EF,根据平行四边形的性质得出AD∥BC,即AF∥BE,根据平行四边形的判定得出即可;(3)求出四边形BEDF是平行四边形,根据菱形的判定得出即可;求出∠AOB,即可求出∠3,即可得出答案.【解答】解:(1)∵在□ABCD中,AD∥BC,OA=OC,∴∠1=∠2,在△AOF和△COEE中,∴△AOF≌△COE(ASA),∴AF=CE;(2)四边形ABEF是平行四边形,由题意,∠AOF=90°,(如图1),又∵AB⊥AC,∴∠BAO=90°,∠AOF=90°,∴∠BAO=∠AOF,∴BA∥EF,∵四边形ABCD是平行四边形,∴AD∥BC,即AF∥BE,∵BA∥EF,AF∥BE,∴四边形ABEF是平行四边形;(3)当EF⊥BD时,四边形BEDF是菱形(如图2),∵AF=CE,AD∥BC,AD=BC,∴FD∥BE;DF=BE,∴四边形BEDF是平行四边形.又∵EF⊥BD,∴口BEDF是菱形,∵AB⊥AC,∴∠BAC=90°,∴BC2=AB2+AC2,∵AB=1,BC=,∴AC==2,∵四边形ABCD是平行四边形,∴OA=AC=×2=1,∵在△AOB中,AB=AO=1,∠BAO=90°,∴∠AOB=∠ABO=45°,∵EF⊥BD,∴∠BOF=90°,∴∠3=∠BOF﹣∠AOB=90°﹣45°=45°,即旋转角为45°.26.如图,矩形ABCD中,AB=8cm,BC=6cm,动点P从点A出发,以每秒1cm的速度沿线段AB 向点B运动,连接DP,把∠A沿DP折叠,使点A落在点A′处.求出当△BPA′为直角三角形时,点P运动的时间.【考点】翻折变换(折叠问题).【分析】分三种情况进行讨论,当A′、P、B分别为直角顶点时,求出AP的长即可.【解答】解:(1)当∠B A′P=90°时,由折叠得,∠P A′D=∠A=90°,∴∠B A′D=∠B A′P+∠P A′D=180°,∴点B、A′、D在一直线上,设AP=x cm,∴A′P=x,B P=8﹣x,A′B=10﹣6=4,在Rt△A′PB中,x2+42=(8﹣x)2,解之得:x=3,∴点P的运动时间为3÷1=3s;(2)当∠A′P B=90°时,∴∠A′P A=90°,又∵∠DA′P=∠A=90°,∴四边形APA′D是矩形,根据折叠的性质,A′P=AP,∴四边形APA′D是正方形,∴AP=AD=6,∴点P的运动时间为6÷1=6s;(3)当∠A′B P=90°时,不存在.综上所述,符合要求的点P的运动时间为3s或6s.27.在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线匀速运动,移动到点D时停止.(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD 与∠POD重叠部分的面积为y.①求当t=4,8,14时,y的值.②求y关于t的函数解析式.(2)如图2,若点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止.P、Q两点同时出发,点P的速度大于点Q的速度.设t秒时,正方形ABCD与∠POQ(包括边缘及内部)重叠部分的面积为S,S与t的函数图象如图3所示.①P,Q两点在第4秒相遇;正方形ABCD的边长是4②点P的速度为2单位长度/秒;点Q的速度为1单位长度/秒.③当t为何值时,重叠部分面积S等于9?【考点】一次函数综合题;动点问题的函数图象.【分析】(1)①由于正方形ABCD的边长为12,点P从A点出发沿A→B→C→D的路线匀速运动,且运动速度为2单位长度/秒,所以首先确定t=4,8,14时P点所在的位置,然后根据重叠部分的形状,运用相应的面积公式即可求出对应的y值;②由于点P在每一条边上运动的时间为6秒,所以分三种情况进行讨论:(Ⅰ)当0≤t≤6,即点P 在边AB上时;(Ⅱ)当6<t≤12,即点P在边BC上时;(Ⅲ)当12<t≤18,即点P在边CD上时.针对每一种情况,都可以根据重叠部分的形状,运用相应的面积公式求出对应的y关于t的函数解析式;,所以得出正方形(2)①由于t=0时,点P与A点重合,点Q与D点重合,此时S=16=S正方形ABCD的边长=4;又因为S=0,P,Q两点相遇,而此时对应的t=4,所以P,Q两点在第4秒相遇;②由于S与t的函数图象由5段组成,而只有当P,Q相遇于C点时图象分为5段,其余情况图象分为6段,所以P,Q相遇于C点,根据时间相同时,速度之比等于路程之比得出点P的速度是点Q的速度的2倍,再由t=4时,P、Q两点运动的路程之和等于AB+BC+CD,据此列出方程,求解即可;③设t秒时,正方形ABCD与∠POQ(包括边缘及内部)重叠部分的面积S等于9.由于P、Q两点都在边长为4的正方形的三边上运动,点P在每一条边上运动的时间是2秒,点Q在每一条边上运动的时间是4秒,所以分五种情况进行讨论:(Ⅰ)当0≤t≤2,即点P在边AB上,点Q在边CD 上时;(Ⅱ)当2<t ≤4,即点P 在边BC 上,点Q 在边CD 上时;(Ⅲ)当4<t ≤6,即点P 在边CD 上,点Q 在边CB 上时;(Ⅳ)当6<t ≤8,即点P 与D 点重合,点Q 在边CB 上时;(Ⅴ)当8<t ≤12,即点P 与D 点重合,点Q 在边AB 上时.针对每一种情况,都可以根据重叠部分的形状,运用相应的面积公式求出用含t 的代数式表示S 的式子,然后令S=9,解方程,如果求出的t 值在对应的范围内,则符合题意;否则,不符合题意,舍去. 【解答】解:(1)∵正方形ABCD 的边长为12,∴S 正方形ABCD =122=144. ∵O 是AD 的中点,∴OA=OD=6. ①(Ⅰ)当t=4时,如图1①. ∵AP=2×4=8,OA=6,∴S △OAP =×AP ×OA=24,∴y=S 正方形ABCD ﹣S △OAP =144﹣24=120; (Ⅱ)当t=8时,如图1②. ∵AB +BP=2×8=16,AB=12, ∴BP=4,∴CP=12﹣4=8,∴y=(OD +CP )×CD=×(6+8)×12=84; (Ⅲ)当t=14时,如图1③.∵AB +BC +CP=2×14=28,AB=BC=CD=12, ∴DP=12×3﹣28=8,∴y=S △ODP =×DP ×OD=24;②分三种情况:(Ⅰ)当0≤t ≤6时,点P 在边AB 上,如图1①. ∵AP=2t ,OA=6,∴S △OAP =×AP ×6=6t ,∴y=S 正方形ABCD ﹣S △OAP =144﹣6t ;(Ⅱ)当6<t ≤12时,点P 在边BC 上,如图1②. ∵AB +BP=2t ,AB=CD=12, ∴CP=24﹣2t ,∴y=(OD +CP )×CD=×(6+24﹣2t )×12=180﹣12t ; (Ⅲ)当12<t ≤18时,点P 在边CD 上,如图1③. ∵AB +BC +CP=2t ,AB=BC=CD=12, ∴DP=36﹣2t ,∴y=S △ODP =×DP ×OD=108﹣6t .综上可知,y=;(2)①∵t=0时,S=S 正方形ABCD =16, ∴正方形ABCD 的边长=4. ∵t=4时,S=0,∴P ,Q 两点在第4秒相遇;②∵S 与t 的函数图象由5段组成,∴P ,Q 相遇于C 点,∵时间相同时,速度之比等于路程之比,而点P 运动的路程=点Q 运动的路程的2倍, ∴点P 的速度=点Q 的速度的2倍.设点Q 的速度为a 单位长度/秒,则点P 的速度为2a 单位长度/秒.∵t=4时,P ,Q 相遇于C 点,正方形ABCD 的边长为4,∴4(a +2a )=4×3,∴a=1.故点P 的速度为2单位长度/秒,点Q 的速度为1单位长度/秒;③∵正方形ABCD 的边长为4,∴S 正方形ABCD =16.∵O 是AD 的中点,∴OA=OD=2.设t 秒时,正方形ABCD 与∠POQ (包括边缘及内部)重叠部分的面积S 等于9. 分五种情况进行讨论:(Ⅰ)当0≤t ≤2时,点P 在边AB 上,点Q 在边CD 上,如图2①.∵AP=2t ,DQ=t ,OA=OD=2,∴S=S 正方形ABCD ﹣S △OAP ﹣S △ODQ =16﹣2t ﹣t=16﹣3t ,∴16﹣3t=9,解得t=(不合题意,舍去);(Ⅱ)当2<t ≤4时,点P 在边BC 上,点Q 在边CD 上,如图2②.∵AB +BP=2t ,AB=4,∴BP=2t ﹣4,∵DQ=t ,OA=OD=2,∴S=S 正方形ABCD ﹣S 梯形OABP ﹣S △ODQ =16﹣×(2t ﹣4+2)×4﹣×2t=20﹣5t ,∴20﹣5t=9,解得t=;(Ⅲ)当4<t ≤6时,点P 在边CD 上,点Q 在边CB 上,如图2③.∵AB +BC +CP=2t ,AB=BC=CD=4,∴DP=12﹣2t ,∵DC +CQ=t ,∴BQ=8﹣t ,∴S=S 正方形ABCD ﹣S 梯形OABQ ﹣S △ODP =16﹣×(2+8﹣t )×4﹣×2×(12﹣2t )=4t ﹣16, ∴4t ﹣16=9,解得t=(不合题意,舍去);(Ⅳ)当6<t ≤8时,点P 与D 点重合,点Q 在边CB 上,如图2④.∵DC +CQ=t ,DC=4,∴CQ=t ﹣4,∴S=S 梯形ODCQ =×(t ﹣4+2)×4=2t ﹣4,∴2t ﹣4=9,解得t=;(Ⅴ)当8<t ≤12时,点P 与D 点重合,点Q 在边AB 上,如图2⑤.∵DC +CB +BQ=t ,DC=CB=AB=4,∴AQ=12﹣t ,∴S=S 正方形ABCD ﹣S △OAQ =16﹣×2×(12﹣t )=4+t ,∴4+t=9,解得t=5(不合题意,舍去).综上可知,当t为或时,重叠部分面积S等于9.故答案为:(2)①4,4;②2,1.。
2018~2019学年第二学期初中期末试卷初二数学 2019.06本试卷由选择题、填空题和解答题三部分组成,共28题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上) 1.下列调查中,适合采用普查的是A.夏季冷饮市场上冰激凌的质量B.某本书中的印刷错误C.《舌尖上的中国》第三季的收视率D.公民保护环境的意识 2.下列二次根式中,属于最简二次根式的是A.B. 3.一元二次方程矛2820x x --=配方后可变形为A. 2(4)8x -= B. 2(4)14x -= C. 2(2)6x -= D. 2(2)2x -= 4.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为 A.12 B. 45 C. 49 D. 595.如图,在ABC ∆中,已知D ,E 分别为边AB ,AC 的中点,连结DE ,若70C ∠=︒,则AED ∠等于A. 70ºB. 67. 5ºC. 65ºD. 60º6.下列说法正确的是A.某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是2℃B.一组数据2,2,3,4,5,5,5,这组数据的众数是2C.小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是121分D.一组数据2,2,3,4,这组数据的中位数是2.5 7.如图,在平行四边形ABCD 中,E ,F 是对角线BD 上不同的两点,连接AE ,CE ,AF ,CF .下列条件中,不能得出四边形AECF 一定是平行四边形的为A. BE DF =B. AE CF =C. //AF CED. BAE DCE ∠=∠8.计算221(1)11x x x -÷+-的结果是 A. 1x - B.1x C. 1x x - D. 1x x - 9.如图,已知一次函数4y kx =-的图像与x 轴,y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图像交于点C ,且A 为BC 的中点,则一次函数的解析式为 A. 24y x =- B. 44y x =- C. 84y x =- D. 164y x =-10.如图,矩形ABCD 中, AB=8,BC=4,P ,Q 分别是直线AB ,AD 上的两个动点,点E 在边CD 上,2DE =,将DEQ ∆沿EQ 翻折得到FEQ ∆,连接PF ,PC ,则PF PC +的最小值为A. 2-B. 8C. 10D. 2-二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.x 的取值范围是 . 12.当x = 时,分式2521x x -+的值为0.13.某中学组织八年级学生进行“绿色出行,低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成,,,,A B C D E 五个等级,并绘制如图所示的扇形统计图(不完整)统计成绩,则C 等级所在扇形的圆心角是 º.14.矩形ABCD 的对角线AC 与BD 相交于点O ,4BD =,M ,N 分别是AD ,OD 的中点,则MN 的长度为 . 15.已知关于x 的一元二次方程20x mx n ++=有一个非零实数根n -,则m n -的值为 .16.如图,将矩形ABCD 沿EF 折叠,使点A 落在CD 边上的点G 处,点B 落在点H 处,若30HGC ∠=︒,连接AG ,则AGD ∠= .17.如图,A ,B 是反比例函数6(0)y x x=>图像上的两点,过点A 作//AP y 轴,过点B 作//BP x 轴,交点为P ,连接OA ,OP .若AOP ∆的面积为2,则ABP ∆的面积为 . 18.如图①,点M 从菱形ABCD 的顶点D 出发,沿D C A →→以1 cm/ s 的速度匀速运动到点A .如图②是点M 运动过程中,MAB ∆的面积y ( cm 2)随时间x (s)变化的关系图像,则a 的值为 .三、解答题(本大题共76分.解答时应写出必要的计算或说明过程.并把解答过程填写在答题卡相应的位置上) 19.(本题满分8分)计算:0(2)1)-+; (2)22)+-20.(本题满分8分)解下列方程:(1)(3)10x x -=; (2)2373226x x +=++.21.(本题满分5分)如图,正比例函数2y x =的图像与反比例函数ky x=的图像有一个交点为(2,)P m . (1)求反比例函数ky x=函数表达式; (2)根据图像,直接写出当41x -<<-时,y 的取值范围.22.(本题满分5分)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且2AB =. (1)菱形ABCD 的周长为 ; (2)若2BD =,求AC 的长.23.(本题满分6分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m 分(60100m ≤≤),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表。
2018-2019学年第二学期期终教学质量调研测试初二 数学(试卷满分130分,考试时间120分钟)一. 选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.用放大镜观察一个三角形时,不变的是量是A.各条边的长度B.各个角的度数C.三角形的面积D.三角形的周长2.已知反比例函数ky x=的图像经过点(-1,2),则这个函数的图像一定经过点A.(1,2)B.(2,1)C.(-1,-2)D.(-2,1) 3.下列计算正确的是A.2= B.0= C.4= D. 3=-4.下列各分式不能再化简的是A. 22x - B. 11m m -- C. 2xy y xy - D. 22a b a b -- 5.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是 A .()()()P C P A P B << B .()()()P B P C P A << C .()()()P C P B P A <<D .()()()P B P A P C <<6.如图,点P 在直线外,以点P 为圆心,大于点P 到直线的举例为半径画圆弧,交直线于点A 、B ;保持半径不变,分别以点A 、B 为圆心画弧,两 弧交于点Q ,则PQ ⊥.上述尺规作图的依据是 A .平行四边形的对边互相平行B .垂直平分线上的点到线段两个端点的举例相等C .矩形的领边互相垂直D .菱形的对角线互相垂直7.若1,1()A x y ,2,2()B x y 是函数1y x=-图像上的两个点,且12x x <,则12y y 与的大小关系是A .12y >yB .12y =yC .12y <yD .不能确定8. 如图,点小明在做选择题“如图,四边形ABCD 中, ∠A=45°,∠B=∠D=90°,AD=2,CD=1,则BC 的长为 多少”时遇到了困难.小明通过测量发现,试题给出的 图形中,AD=3cm,BC ≈1.05cm,且各角度符合条件,因 此小明猜想下列选项中最可能正确的是A .2B 1CD 19.如图,已知一次函数的图像与两坐标轴分别交于A 、B ,点C 在x 轴上,AC=4,第一象限内有一个点P ,且PC ⊥x 轴于点C ,若以点P 、A 、C 为顶点的三角形与△OAB 相似,则点P的坐标为 A .(4,8) B .(4,8)或(4,2) C .(6,8) D .(6,8)和(6,-2)10.如图,直线l 为正比例函数y x =的图像,过点A(0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ,过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ……;按此作法继续下去,则点n B 的坐标是A .4,4)n nB .-1-14,4)n nC .-14,4)n nD .14,4)n n -二.填空题(本大题共8小题,每小题3分,共24分)11.函数y =x 的取值范围是____________12. 如图,将一个正方形地面等分成9块,其中标有1、2、3、4四 个小方格是空地,另外五个小方格是草坪。
淮安市启明外国语学校2018—2019学年度第二学期期末考试初二数学试卷时间:120分钟 满分:150分一、选择题(下列各题所给答案中,只有一个答案是正确的. 请把你认为正确的选项序号在答题卡相应位置涂黑.每小题3分,共24分) 1.的结果为( ▲ )A .2B .23 C .22 D .4 2.下列事件中最适合使用普查方式收集数据的是( ▲ ) A .为制作校服,了解某班同学的身高情况B .了解全市每天丢弃的废旧电池数C .了解100发炮弹的杀伤半径D .了解我省农民的年人均收入情况 3 ▲ )A B C D 4. 点(2,﹣3)在反比例函数y =图象上,下列四个点中,在该函数图象上是( ▲ )A .(6,1)B .(1,﹣6)C .(﹣2, ﹣3)D .(3, 2)5. 分式yy x -可变形为( ▲ ) A .y y x + B .y y x-+ C .y x y - D .y x y --6.如图,数轴上的点P 表示的数可能是( ▲ ) A B 1 C 1 D 17. 用配方法解一元二次方程x 2-2x =1,配方后可化为( ▲ )A .(x +1)2=1B .(x +1)2=2C .(x -1)2=1D .(x -1)2=2 8. 如图,平面直角坐标系中,平行四边形ABCD 的顶点A (0,3),B (﹣1,0),C (2,a ),D (b ,4),则a +b 的值为( ▲ ) A .4 B .4.5 C .5 D .5.5P二、填空题(共10小题,每题3分,共30分.把答案填在答题卡对应的横线上)9. 式子3x-有意义,则x的范围是▲ .10. 计算:(31)(3+1)的结果为▲11.已知菱形的面积是12,一条对角线长为4,则此菱形的另一条对角线长为▲ .12.一只不透明的袋子中装有1个红球、2个黑球和3个白球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球,则摸到▲ 色球的概率最大.13.已知点A(﹣2,m)、B(﹣1,n)在反比例函数y=5x的图像上,则m、n的大小关系为:m _ ▲ _n.14.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②掷一次骰子,向上一面的数字是6;③顺次连接四边形的四边中点,所得的四边形是平行四边形;④打开电视,正好播放的是广告.其中是随机事件的是▲ .(填序号)15.约分:262x yxy= ▲ .16.如图,矩形ABCO在坐标系中,顶点C、A在坐标轴上,点B在反比例函数y=3x图像上,则矩形ABCO的面积为▲ .17.已知p是一元二次方程方程x2+x-2019=0的一个解,则p2+p的值为▲ .18.如图,平行四边形ABCD中,AB⊥BD,点E是BD边上一点,点F、G分别是AD、BE的中点,连接FG,若CD=6,DE=4,则FG的长为▲ .三、解答题(本大题共10小题,共96分)19.计算(每题6分,共12分)(1)121++11xx x(2)xyxxyyx-÷⎪⎪⎭⎫⎝⎛-xyOC BAGFCBDAE 第16题第18题20.解方程(每题6分,共12分)(1)x 2+6x -1=0 (2)x 2+x -3=0 21. (本题满分8分)计算:16+(122)63-⨯ 22.(本题满分8分)先化简,再求值:22212()44⋅+++a a a a a,其中52a .23.(本题满分8分)年级为了选定春游地点,对年级部分学生进行一次“你最喜欢的春游景点”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了 ▲ 名学生; (2)请将图②补充完整;(3)如果年级有760名学生,求全校学生中,最喜欢“钵池山”的学生约有多少人? 24. (本题满分8分)如图,矩形ABCD 的对角线AC 、BD 相交于O 点,CE ∥BD ,BE ∥AC . 求证:四边形BECO 是菱形.100 90 80 70 60 50 40 30 20 10 0桃花岛 楚秀园 钵池山 其它 类别304080人数图②图①楚秀园 其它 钵池山桃花岛 40%EO CA B25. (本题满分8分)如图,小亮同学想在下面的网格中画一个矩形ABCD ,且要求矩形顶点都在格点上,他只画了矩形的一边AB .(1)请在网格中画出矩形ABCD ; (2)矩形ABCD 的周长为 ▲ .26. (本题满分10分)如图,正比例y =12x 图像与反比例函数y =kx(k ≠0)图像交于A 、B 两点,A 点坐标为(4,m ). (1)k 的值为 ▲ ; (2)求线段AB 的长.27. (本题满分10分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?28. (本题满分12分)【感受旋转】如图①,在正方形ABCD 中,点E 在BC 上,将△ABE 绕A 点旋转90°后得到△ADF 。
2019-2020学年江苏省苏州市吴中区八年级第二学期期末数学试卷一、选择题(共10小题).1.下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列调查中,适宜采用普查方式的是()A.了解我省初中学生的家庭作业时间B.了解某市居民对废旧电池的处理情况C.了解某区学生的家庭1周内丢弃塑料袋的数量D.了解某校新冠肺炎防控期间全体师生当天的体温情况3.计算+,正确的结果是()A.1B.C.a D.4.下列事件中,是必然事件的是()A.3天内下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.抛掷1个均匀的骰子,出现4点向上5.分式可变形为()A.B.C.D.6.下列各式中,与是同类二次根式的是()A.B.C.D.7.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.对角线相等的菱形是正方形D.一组对边平行的四边形是平行四边形8.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10 A.B.C.D.9.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC 的面积为()A.16B.12C.10D.810.如图,在正方形ABCD中,E是BC边上的一点,BE=2,EC=4,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AG.现在有如下四个结论:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=3.6.其中结论正确的个数是()A.1B.2C.3D.4二、填空题(共8小题).11.若在实数范围内有意义,则x的取值范围是.12.当x=时,分式的值为零.13.已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为cm.14.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.15.已知反比例函数(k是常数,k≠3)的图象有一支在第二象限,那么k的取值范围是.16.如图,a∥b∥c,直线m分别交直线a、b、c于点A、B、C,直线n分别交直线a、b、c于点D、E、F.若AB=2,CB=4,DE=3,则EF=.17.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,在B'C′上取点F,使B'F=AB.则∠FBB'的度数为°.18.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=6,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为.三、解答题(本大题共10小题,共76分.解答时应写出文字说明、证明过程或演算步骤.)19.计算(+2)×.20.解方程:.21.先化简,再求值:(1﹣)÷,其中a=1+.22.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画出△A1B1C1,使它与△ABC 的相似比为2,且它与△ABC在位似中心O的两侧,并写出点B的对应点B1的坐标是.23.在苏州,主要城区已实现移动5G网络覆盖,除了关键交通枢纽和重要商圈,苏州众多景区也正在加速5G智慧旅游落地,为市民及游客带去更好的观景体验.现5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求5G网络的峰值速率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O.(1)若∠BAD=120°,AC=8.求菱形ABCD的周长.(2)若DE∥AC,AE∥BD.求证:四边形AODE是矩形.25.某市为增强学生的卫生防疫意识,组织全市学生参加卫生防疫知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.(1)一共抽取了个参赛学生的成绩,表中a=;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)某校共有2000人,卫生防疫意识不强的学生(指成绩在70分以下)估计有多少人?组别成绩x/分频数A组60≤x<70aB组70≤x<808C组80≤x<9012D组90≤x<1001426.如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为点E,连接CE,F为线段CE上一点,且∠DFE=∠A.(1)求证:△DFC∽△CBE;(2)若AD=4,CD=6,DE=3,求DF的长.27.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)在第一象限交于点A、B,且该直线与x轴正半轴交于点C,过A、B分别作x轴的垂线,垂足分别为E、D.已知A(4,1).(1)求双曲线的表达式;(2)若CD=4CE.求k,b的值;(3)在(2)的条件下,若点M为直线AB上的动点,则OM长度的最小值为.28.如图,在Rt△ABC中,∠C=90°,AC=8厘米,BC=10厘米,点D在BC上,且CD=6厘米.现有两个动点P,Q分别从点A和点B同时出发,其中点P以2厘米/秒的速度沿AC向终点C运动;点Q以2.5厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)EP=;(用t的代数式表示)(2)如图,连接DP,是否存在某一时刻t,使四边形EQDP是平行四边形,如果存在,请求出t,如果不存在,请说明理由;(3)当t为何值时,△EDQ为直角三角形.参考答案一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:B.2.下列调查中,适宜采用普查方式的是()A.了解我省初中学生的家庭作业时间B.了解某市居民对废旧电池的处理情况C.了解某区学生的家庭1周内丢弃塑料袋的数量D.了解某校新冠肺炎防控期间全体师生当天的体温情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:A、了解我省初中学生的家庭作业时间,适合抽样调查,故A选项不合题意;B、了解某市居民对废旧电池的处理情况,适合抽样调查,故B选项不合题意;C、了解某区学生的家庭1周内丢弃塑料袋的数量,适合抽样调查,故C选项不合题意;D、了解某校新冠肺炎防控期间全体师生当天的体温情况,适于全面调查,故D选项符合题意.故选:D.3.计算+,正确的结果是()A.1B.C.a D.【分析】直接利用分式的加减运算法则计算得出答案.解:原式==1.故选:A.4.下列事件中,是必然事件的是()A.3天内下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.抛掷1个均匀的骰子,出现4点向上【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:A、3天内下雨是随机事件,故A不符合题意;B、打开电视,它正在播广告是随机事件,故B不符合题意;C、367人中有至少两人的生日相同是必然事件,故C符合题意;D、抛掷1个均匀的骰子,出现4点向上是随机事件,故D不符合题意;故选:C.5.分式可变形为()A.B.C.D.【分析】利用分式的基本性质化简即可.解:=﹣.故选:B.6.下列各式中,与是同类二次根式的是()A.B.C.D.【分析】将各个二次根式化成最简二次根式后,选被开方数为2的根式即可.解:=2,因此选项A不符合题意;=,因此选项B符合题意;=2,因此选项C不符合题意;显然与不是同类二次根式,因此选项D不符合题意;故选:B.7.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.对角线相等的菱形是正方形D.一组对边平行的四边形是平行四边形【分析】利用菱形的判定,正方形的判定,平行四边形的判定和矩形的性质依次判断可求解.解:A、对角线互相垂直的平行四边形是菱形,故A选项不符合题意;B、矩形的对角线相等,故B选项不符合题意;C、对角线相等的菱形是正方形,故C选项符合题意;D、两组对边平行的四边形是平行四边形,故D选项不符合题意;故选:C.8.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10 A.B.C.D.【分析】直接利用已知数据可得xy=100,进而得出答案.解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y=.故选:B.9.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC 的面积为()A.16B.12C.10D.8【分析】根据相似三角形的性质即可求出答案.解:∵点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,∴=,∴△ABC的面积为16,故选:A.10.如图,在正方形ABCD中,E是BC边上的一点,BE=2,EC=4,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AG.现在有如下四个结论:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=3.6.其中结论正确的个数是()A.1B.2C.3D.4【分析】①正确.证明∠GAF=∠GAD,∠EAB=∠EAF即可.②错误.可以证明DG =GC=FG,显然△GFC不是等边三角形,可得结论.③正确.证明CF⊥DF,AG⊥DF即可.④正确.证明FG:EG=3:5,求出△ECG的面积即可.解:如图,连接DF,∵四边形ABCD是正方形,∴AB=AD=BC=CD=BE+EC=6,∠ABE=∠BAD=∠ADG=∠ECG=90°,由翻折可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=2,∠BAE=∠EAF,∵∠AFG=∠ADG=90°,AG=AG,AD=AF,∴Rt△AGD≌Rt△AGF(HL),∴DG=FG,∠GAF=∠GAD,∴∠EAG=∠EAF+∠GAF=(∠BAF+∠DAF)=45°,故①正确,设GD=GF=x,在Rt△ECG中,∵EG2=EC2+CG2,∴(2+x)2=42+(6﹣x)2,∴x=3,∴DG=FG=3,∴CG=CD﹣DG=3=GF,∴△GFC是等腰三角形,易知△GFC不是等边三角形,显然FG≠FC,故②错误,∵GF=GD=GC,∴∠DFC=90°,∴CF⊥DF,∵AD=AF,GD=GF,∴AG⊥DF,∴CF∥AG,故③正确,∵S△ECG=×3×4=6,FG:FE=3:2,∴FG:EG=3:5,∴S△GFC=×6=3.6,故④正确,故选:C.二、填空题(本大题共8小题,每小题3分,共24分.把答案填在答题卷相应位置上.)11.若在实数范围内有意义,则x的取值范围是x≥.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.解:由题意得,3x﹣1≥0,解得,x≥,故答案为:x≥.12.当x=5时,分式的值为零.【分析】分子为0且分母不等于0时,分式的值为0.解:由题意得,x﹣5=0且x+3≠0,即,x=5,当x=5时,x+3=8≠0,故答案为:5.13.已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为6cm.【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=4×9,x=±6,(线段是正数,负值舍去),故填6.14.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是100.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解:由题意可得,=0.03,解得,n=100.故估计n大约是100.故答案为:100.15.已知反比例函数(k是常数,k≠3)的图象有一支在第二象限,那么k的取值范围是k<3.【分析】根据反比例函数(k是常数,k≠3)的图象有一支在第二象限,可以得到k﹣3<0,从而可以得到k的取值范围.解:∵反比例函数(k是常数,k≠3)的图象有一支在第二象限,∴该反比例函数的图象在第二、四象限,∴k﹣3<0,解得,k<3,故答案为:k<3.16.如图,a∥b∥c,直线m分别交直线a、b、c于点A、B、C,直线n分别交直线a、b、c于点D、E、F.若AB=2,CB=4,DE=3,则EF=6.【分析】根据平行线分线段成比例定理得出比例式,再代入求出即可.解:∵a∥b∥c,∴=,∵AB=2,CB=4,DE=3,∴=,解得:EF=6,故答案为:6.17.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,在B'C′上取点F,使B'F=AB.则∠FBB'的度数为15°.【分析】连接BB',由矩形的性质可得∠ABC=90°,由旋转的性质可得AB=AB',∠ABC=∠AB'C'=90°,由直角三角形的性质可得BB'=AB'=CB'=AB,可证△ABB'是等边三角形,可得∠AB'B=60°,由等腰三角形的性质可求解.解:如图,连接BB',∵四边形ABCD是矩形,∴∠ABC=90°,∵将矩形ABCD绕点A旋转得到矩形AB′C′D′,∴AB=AB',∠ABC=∠AB'C'=90°,∵AC=2AB,∴AC=2AB'=AB'+B'C,∴AB'=B'C,∵∠ABC=90°,∴BB'=AB'=CB'=AB,∴△ABB'是等边三角形,∴∠AB'B=60°,∴∠BB'F=150°,∵B'F=AB,∴BB'=B'F,∴∠B'BF=∠B'FB=15°,故答案为:15.18.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=6,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为2.【分析】作DH∥AC交AB于H,如图,则EF∥BC,EG∥DH,利用平行线分线段成比例定理得到=,=,则DC=DH,设DC=DH=x,则BD=6﹣x,再利用DH∥AC得到=,然后解方程求出x即可.解:作DH∥AC交AB于H,如图,∵EF⊥AC,EG⊥EF,∴EF∥BC,EG∥DH,∴=,=,∵EF=EG,∴DC=DH,设DC=DH=x,则BD=6﹣x,∵DH∥AC,∴=,即=,解得x=2,即CD的长为2.故答案为2.三、解答题(本大题共10小题,共76分.解答时应写出文字说明、证明过程或演算步骤.)19.计算(+2)×.【分析】直接利用分配律去括号,再根据二次根式乘法法则计算即可.解:(+2)×=×+2×=+2=+6.20.解方程:.【分析】方程两边都乘以x﹣1得出3x+2=5,求出方程的解,再进行检验即可.解:方程两边都乘以x﹣1得:3x+2=5,解得:x=1,检验:当x=1时,x﹣1=0,所以x=1不是原方程的解,即原方程无解.21.先化简,再求值:(1﹣)÷,其中a=1+.【分析】根据分式的混合运算法则把原式化简,代入计算即可.解:原式=•=,当a=1+时,原式===.22.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画出△A1B1C1,使它与△ABC 的相似比为2,且它与△ABC在位似中心O的两侧,并写出点B的对应点B1的坐标是(﹣4,﹣2).【分析】直接利用位似图形的性质进而得出对应点位置.解:如图所示:点B的对应点B1的坐标是(﹣4,﹣2).故答案为:(﹣4,﹣2).23.在苏州,主要城区已实现移动5G网络覆盖,除了关键交通枢纽和重要商圈,苏州众多景区也正在加速5G智慧旅游落地,为市民及游客带去更好的观景体验.现5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求5G网络的峰值速率.【分析】直接利用已知表示出5G和4G的峰值速率,再利用在峰值速率下传输500兆数据,5G网络比4G网络快45秒,进而得出等式求出答案.解:设4G网络的峰值速率为x,则5G网络的峰值速率为10x,根据题意可得:=+45,解得:x=100,经检验得:x=100是原方程的根,故10x=1000(兆/秒),答:5G网络的峰值速率为1000兆/秒.24.如图,在菱形ABCD中,对角线AC、BD相交于点O.(1)若∠BAD=120°,AC=8.求菱形ABCD的周长.(2)若DE∥AC,AE∥BD.求证:四边形AODE是矩形.【分析】(1)由菱形的性质得出AD=DC=BC=AB,∠BAO=∠BAD=60°,证出△ABC是等边三角形,得出AB=BC=AC=8,即可得出答案;(2)先证四边形AODE是平行四边形,由菱形的性质得出∠AOD=90°,即可得出结论.【解答】(1)解:∵四边形ABCD是菱形,∴AD=DC=BC=AB,∠BAO=∠BAD=60°,∴△ABC是等边三角形,∴AB=BC=AC=8,∴菱形ABCD的周长=4AB=32;(2)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形.25.某市为增强学生的卫生防疫意识,组织全市学生参加卫生防疫知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.(1)一共抽取了40个参赛学生的成绩,表中a=6;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)某校共有2000人,卫生防疫意识不强的学生(指成绩在70分以下)估计有多少人?组别成绩x/分频数A组60≤x<70aB组70≤x<808C组80≤x<9012D组90≤x<10014【分析】(1)第5段的频数是14,占调查人数的35%,可求出调查人数,进而确定a 的值,(2)根据各个组的频数,即可补全频数分布直方图;(3)“B”占调查人数的,因此相应的圆心角度数占360°的;(4)样本估计总体,样本中“卫生防疫意识不强”的占,因此估计总体2000人的是“卫生防疫意识不强”的人数.解:(1)14÷35%=40(人),a=40﹣14﹣12﹣8=6(人),故答案为:40,6;(2)补全频数分布直方图如图所示:(3)360°×=72°,答:扇形统计图中“B”对应的圆心角度数为72°;(4)2000×=300(人),答:某校2000名学生中,卫生防疫意识不强(指成绩在70分以下)的大约有300人.26.如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为点E,连接CE,F为线段CE上一点,且∠DFE=∠A.(1)求证:△DFC∽△CBE;(2)若AD=4,CD=6,DE=3,求DF的长.【分析】(1)利用平行四边形的性质得AD∥BC,CD∥AB,则根据平行线的性质得到∠A+∠B=180°,∠DCE=∠BEC,再证明∠DFC=∠B,则可判断△DFC∽△CBE;(2)利用平行四边形的性质得到BC=AD=4,利用平行线的性质得DE⊥DC,则利用勾股定理可计算出CE=3,然后利用相似比求出DF的长.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,CD∥AB,∴∠A+∠B=180°,∠DCE=∠BEC,∵∠DFE=∠A,∴∠DFE+∠B=180°,而∠DFE+∠DFC=180°,∴∠DFC=∠B,而∠DCF=∠CEB,∴△DFC∽△CBE;(2)解:∵四边形ABCD为平行四边形,∴CD∥AB,BC=AD=4,∵DE⊥AB,∴DE⊥DC,∴∠EDC=90°,在Rt△DEC中,CE===3,∵△DFC∽△CBE,∴DF:BC=DC:CE,即DF:4=6:3,∴DF=.27.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)在第一象限交于点A、B,且该直线与x轴正半轴交于点C,过A、B分别作x轴的垂线,垂足分别为E、D.已知A(4,1).(1)求双曲线的表达式;(2)若CD=4CE.求k,b的值;(3)在(2)的条件下,若点M为直线AB上的动点,则OM长度的最小值为.【分析】(1)用待定系数法解答便可;(2)先证明△AEC∽△BDC,则相似比求得BD,进而求得B点坐标,再用待定系数法便可求得结果;(3)当OM⊥AB时,OM的长度最小,先求出直线y═kx+b的解析式,再求得直线与坐标轴的交点坐标,进而根据等腰直角三角形斜边上的中线等于斜边的一半求得结果便可.解:(1)把A(4,1)代入双曲线中,得m=4,∴双曲线的表达式为;(2)∵AE⊥x轴,BD⊥x轴,∴AE∥BD,∴△ACD∽△BCD,∴,∵CD=4CE,AE=1,∴BD=4,把y=4代入中得,x=1,∴B(1,4),把A(4,1)和B(1,4)代入直线y=kx+b(k≠0)中,得,解得,;(3)由(2)知,直线AB的解析式是y=﹣x+5,令x=0,得y=﹣x+5=5,∴F(0,5),∴OF=5,令y=0,得y=﹣x+5═0,解得,x=5,∴C(5,0),∴OC=5,∴OC=OF,CF=5,当OM⊥AB于点M时,OM的值最小,此时,CM=FM,∵∠COF=90°,∴OM=CF=.故答案为:.28.如图,在Rt△ABC中,∠C=90°,AC=8厘米,BC=10厘米,点D在BC上,且CD=6厘米.现有两个动点P,Q分别从点A和点B同时出发,其中点P以2厘米/秒的速度沿AC向终点C运动;点Q以2.5厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)EP=t;(用t的代数式表示)(2)如图,连接DP,是否存在某一时刻t,使四边形EQDP是平行四边形,如果存在,请求出t,如果不存在,请说明理由;(3)当t为何值时,△EDQ为直角三角形.【分析】(1)连接CE,由平行线的性质可得S△PCD=S△CDE,由S△ACD=S△AEC+S△CDE,可求PE=t;(2)由平行四边形的性质可得QD=PE,可得t=4﹣2.5t,可求t的值;(3)分两种情况讨论,利用直角三角形的性质和面积和差关系可求解.解:(1)如图1,连接CE,∵PE∥CD,∴S△PCD=S△CDE,∵AP=2tcm,∴CP=AC﹣AP=(8﹣2t)cm,∵S△ACD=S△AEC+S△CDE,∴=+,∴PE=t,故答案为:t;(2)∵四边形EQDP是平行四边形,∴PE=DQ,∴t=4﹣2.5t,∴t=1,答:当t=1时,使四边形EQDP是平行四边形;(3)如图2,当∠EQD=90°时,∵∠C=∠EQD=90°,∴EQ∥CP,又∵EP∥CQ,∴四边形EPCQ是平行四边形,∴EP=CQ=t,∴t+t=10,∴t=;当∠DEQ=90°时,∵AC=8cm,CD=6cm,∴AD===10cm,∵S△ACD=S△ACQ+S△ADQ,∴×6×8=×8×(10﹣2.5t)+×10×QE,∴QE=2t﹣,∵AE===t,∴DE=10﹣t,∵DQ2=DE2+EQ2,∴(t﹣4)2=(10﹣t)2+(2t﹣)2,∴t1=3.1,t2=(不合题意舍去),综上所述:t=或3.1时,△EDQ为直角三角形.。
★绝密★启用前2018-2019学年下学期期末考试八年级 数学(苏科版)一、选择题(本大题共有8小题,每小题3分,共24分)1.如图所示的四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(▲)A .1个B .2个C . 3个D . 4个 2.下列调查中适合采用普查的是( ▲ )A .调查市场上某种白酒中塑化剂的含量B .调查鞋厂生产的鞋底能承受的弯折次数C .了解某火车的一节车厢内感染禽流感病毒的人数D .了解某城市居民收看江苏卫视的时间3.在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1 个球,摸到红球的概率是(▲)A .52B .53C .51D .31 4.下列代数式是最简形式的是(▲)A .242--x xB .121442+++x x x C .34x D .215- 5.已知点1(1,)A y ,2(2,)B y ,3(3,)C y -都在反比例函数21k y x+=的图像上,则321,,y y y 的大小关系是( ▲ )A .312y y y <<B .123y y y <<C . 213y y y <<D .321y y y <<6.如图,直线l 与函数xky =的图像相交,C B A 、、是直线l 的三点,过点C B A 、、分别作x 轴的垂线,垂足分别为F E D 、、,连接OC OB OA 、、,设OAD ∆的面积是1S , OBE ∆的面积是2S ,OCF ∆的面积是3S ,则( ▲ )A .123S S S <<B .123S S S ==C .213S S S >>D .312S S S >>7.图1所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是(▲)A .当3=x 时,EC EM <B .当9=y 时,EM EC >C .当x 增大时,EC CF 的值不变D .当y 增大时,BE DF 的值增大8.如图,点A 为函数)0(16>=x x y 图像上一点,连接OA ,交函数)0(4>=x xy 的图像于点B ,点C 是x 轴上一点,且AC AO =,则ABC ∆的面积为( ▲ )A .6B .8C . 10D .12二、填空题(本大题共有10小题,每小题3分,共30分)9.若代数式12+x 在实数内范围有意义,则x 的取值范围为 ▲ . 10.有五张不透明卡片,每张卡片上分别写有3,1-,327,19,π,除正面的数不同外其余都相同,将它们背面朝上洗匀后从中任取一张,取到的数是无理数的概率是 ▲ .11.函数x y 3=与42+=x y 图象的交点坐标为()b a , ,则ba 121-的值为 ▲ . 12.关于x 的分式方程3333x m mx x++=--的解为正数,则m 的取值范围是 ▲ . 13.已知一个对角线长分别为6cm 和8cm 的菱形,顺次连接它的四边中点得到的四边形的面积是▲ 2cm .14.若关于x 的方程311x a x x--=-无解,则a = ▲ . 15.如果三角形有一边上的中线长恰好等于这条边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt ABC ∆中,90C ∠=,一条直角边为1,如果Rt ABC ∆是“有趣三角形”,那第7题第7题 第6题xy FE D AOBC 第8题yxB COA么这个三角形“有趣中线”的长等于 ▲ .16.如图,菱形ABCD 中,P 为AB 中点,60A ∠=,折叠菱形ABCD ,使点C 落在DP 所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的大小为 ▲ .图,一次函数11y k x b =+的图像与反比例函数22k y x=的图17.如像相交与A ,B 两点,其横坐标分别为2和6,则不等式21k k x b x<-的解集是 ▲ .18.已知一个菱形的两个顶点与一个正方形的两个顶点重合,并且这两个四边形没有公共边,菱形的面积为224cm ,正方形的面积为232cm ,则菱形的边长为 ▲ cm .三、解答题(本大题共有10道题,共96分)19.(每小题4分,共8分)计算或化简: (1)()211832733÷-⨯ (2)228244244x x x x x x +-⎛⎫-÷ ⎪---+⎝⎭20.(本题8分) 解方程:22216224x x x x x -+-=+--21.(本题8分)先化简再求值:2344111a a a a a -+⎛⎫-+÷⎪++⎝⎭,再从0,1-,2,中选一个数作为a 的值代入求值.22.(本题8分)为了更好地了解近阶段九年级学生的近期目标,某区设计了如下调查问卷:你认为近阶段的主要学习目标是哪一个?(此为单选题)A .升入四星级普通高中,为考上理想大学作准备;B .升入三星级普通高中,将来能考上大学就行;C .升入五年制高职类学校,以后做一名高级技师;D .升入中等职业类学校,做一名普通工人就行;E .等待初中毕业,不想再读书了.在该区9000名九年级学生中随机调查了部分学生后整理并制作了如下的统计图: 根据以上信息解答下列问题: (1)补全条形统计图;(2)计算扇形统计图中m =__▲__;C'PC A BD E第16题第17题 y xB A OyxD CBEAO(3)计算扇形统计图中A 区的圆心角的度数. (4)我区想继续升入普通高中 (含四星和三星)的大约有多少人?23.(本题10分) 如图,在四边形ABCD中,A B //,点E 、F 是对角线AC 上两点,且ABF CDE ∠=∠,AE CF =(1)求证:ABF CDE ∆∆≌;(2)当四边形ABCD 的边AB ,AD 满足什么条件时,四边形BFDE 是菱形?说明理由.24. (本题10分)如图,已知()4,A n -,()4,4B n --是直线y kx b =+和双曲线my x=的两个交点,过点A ,B 分别作AC y ⊥轴,BD x ⊥轴,垂足为C ,D . (1)求两个函数的表达式;(2)观察图像,直接写出不等式0mkx b x+-≥的解集; (3)判断CD 与AB 的位置关系,并说明理由.25. (本题10分)动车的开通为江都市民的出行带来更多方便,从江都到南京,路程120公里,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少20分钟,求该动车的平均速度.(1)根据题意填空:①若小慧设 ▲ 为x 公里/小时,列出尚不完整的方程:xx 5.1120120=+( ▲ ); ②若小聪设 ▲ 为y 小时,列出尚不完整的方程:1201201.5y =⨯(▲); (2)请选择其中一名同学的设法,写出完整的解答过程. 26.(本题10分)阅读题:)0,0(≥≥=⋅b a ab b a 逆写为)0,0(≥≥⋅=b a b a ab ;)0,0(>≥=b a b a b a 逆写为)0,0(>≥=b a ba b a ;())0(2≥=a a a 逆写为 ▲ .应用知识:(1).在实数范围内分解因式:BACDEFyxH DEBAFCO=+-3322x x ▲ ; (2).化简:=+-yx yx ▲ ;(3).求值:已知621012331a b c a b c ++---+--=-,求c b a ++的值.27.(本题12分)如图,四边形ABCO 是平行四边形且点()4,0C -,将平行四边形ABCO 绕点A 逆时针旋转得到平行四边形ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上,若点A ,D 在反比例函数xky =的图像上,过A 作AH x ⊥轴,交EF 于点H . (1)证明:AOF ∆是等边三角形,并求k 的值;(2)在x 轴上找点G ,使ACG ∆是等腰三角形,求出G 的坐标; (3)设P ()1,x a ,()2,Q x b ()210x x >>,()1,M m y ,()2,N n y 是双曲线ky x=上的四点,,2a bm k+=122n x x =+,试判断21,y y 的大小,说明理由.28.(本题12分)已知,,45ABC AB AC ABC ∆=∠=︒,点D 为直线BC 上一动点(点D 不与C B ,重合),以AD 为边作正方形ADEF (F E D A ,,,按逆时针排列),连接CF .(1)如图①,当点D 在边BC 上时,求证:CA CD CF 2=+;(2)如图②,当点D 在边BC 的延长线上且其他条件不变时,请写出CA CD CF ,,之间存在的数量关系,并说明理由;(3)如图③,当点D 在边CB 的延长线上且其他条件不变时,补全图形,并直接写出....CA CD CF ,,之间的数量关系;(4)当点D 在直线BC 上运动时,请你用文字语言描述点F 的运动轨迹,并直接写出....DA DC DB ,,之间的数量关系.答案一、 选择题(3×8=24分) 题号 12345678答案B C B D D C C B二、填空题(3×10=30分) 9. 21-≥x 10. 52 11. 32 12.9322m m <≠且 13. 12 14.1或2- 15. 1或23316.︒75 17. 02x <<或6x > 18.5,26,8 三、解答题19.(每题4分,共8分)(1) 22- (2) 22x x --+ 20.(本题8分)2x =- 经检验2x =-是原方程的增根,∴原方程无解21.(本题8分) 原式22a a +=-- 1a ≠-,2a ≠∴当0a =时,原式1=22.(本题8分)(每小题2分) (1)画图45 (2)12 (3)︒=︒⨯14436020080 (4)567020046809000=+⨯23.(本题10分)(1)证明:AB CD //∴BAC DCA ∠=∠ AE CF = ∴AF CE =且ABF CDE ∠=∠∴ABF CDE ∆∆≌(AAS ) …………………………………………4分(2)当四边形ABCD 满足AB AD =时,四边形BFDE 时菱形。
2018~2019学年第二学期期末调研 初二数学本试卷由选择题、填空题和解答题三大题组成,共29小题,满分100分.考试时间120分钟. 注意事项:1. 答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2. 答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3. 考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1. 下面四个黑体字母中,既是轴对称图形,又是中心对称图形的果A. XB. LC. CD. Z 2. 若分式23x x +-的值为零,则 A.3x = B.3x =- C.2x = D.2x =-3. 一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是A.确定事件B.必然事件C.不可能事件D.随机事件 4. 为了解我市老年人的健康状况,下列抽样调查最合理的是 A.在公园调查部分老年人的健康状况 B.在医院调查部分老年人的健康状况 C.利用户籍网调查部分老年人的健康状况 D.在周围邻居中调查部分老年人的健康状况 5. 下列各式成立的是A.2= 3= C.22(3=- 3=6. 若(2)2m =⨯-,则有 A.21m -<<- B.10m -<< C.01m << D.12m <<7. ①平行四边形,②矩形,③菱形,④正方形中,对角线的交点到各边中点的距离都相等的是A. ①②B. ③④C. ②③D.②④8. 在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。
2019-2020学年江苏省苏州市相城区八年级第二学期期末数学试卷一、选择题(共10小题).1.式子在实数范围内有意义,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤12.下列调查中,适宜采用普查方式的是()A.了解卫星“嫦娥一号”零部件的质量情况B.了解一批灯泡的使用寿命C.了解江苏省中学生观看电影《厉害了,我的国》的情况D.了解苏州市中小学生的课外阅读时间3.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.使式子÷有意义的x值是()A.x≠3且x≠﹣5B.x≠3且x≠4C.x≠4且x≠﹣5D.x≠3且x≠4且x≠﹣55.下列整数中,与1+最接近的是()A.3B.4C.5D.66.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3;1,连接AE交BD于点F,则△DEF的面积与△DAF的面积之比为()A.9:16B.3:4C.9:4D.3:27.如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C 旋转180°得到△B′O′C′,则点A与点B′之间的距离为()A.6B.8C.10D.128.函数y=(k为常数)的图象经过点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y39.如图,已知点E是正方形ABCD的边AB边上的黄金分割点,且AE>EB,若S1表示AE为边长的正方形面积,S2表示以BC为长,BE为宽的矩形面积,S3表示正方形ABCD 除去S1和S2剩余的面积,则S3:S2的值为()A.B.C.D.10.如图,Rt△OAB中,∠OAB=90°,OB=6,反比例函数y=(k≠0)的图象经过点B,将Rt△OAB沿着x轴向右平移6个单位,得到Rt△CDE,反比例函数图象恰好经过CE的中点F,则k的值为()A.B.2C.4D.8二、填空题(共8小题).11.化简:=.12.在一幅比例尺为1:400000的地图上,某条道路的长度为1.5cm,则这条道路的实际长度为km.13.一个不透明的袋子里有5个红球和3个白球,每个球除颜色以外都相等,从袋中任意摸出一个球,是红球的可能性(填“大于”“小于”或“等于”)是白球的可能性.14.如果反比例函数y=(k为常数)的图象在二、四象限,那么k的取值范围是.15.实数a在数轴上的位置如图所示,则化简后为.16.如图,矩形OBCD的顶点C的坐标为(1,3),则BD=.17.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当AD平分∠BAC时,AP的长为.18.如图,在△ABC中,AB=AC=10,BC=12,点D是BC的中点,以点D为顶点作∠MDN=∠B,当△DEF的面积等于△ABC面积的时,线段EF=.三、解答题(本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:|﹣|﹣()2.20.解方程:=1﹣.21.(1)先化简,再求值:(1﹣)÷,其中x=﹣1.(2)已知m是的小数部分,求的值.22.某校组织八年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:成绩x/分频数频率第1段x<6020.04第2段60≤x<7060.12第3段70≤x<809b第4段80≤x<90a0.36第5段90≤x≤100150.30请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)样本中,第5段成绩对应的圆心角度数是°;(4)已知该年级有400名学生参加这次比赛,若成绩在80分以上(含80分)的为优,估计该年级成绩为优的有多少人?23.正比例函数y1=2x的图象与反比例函数y2=的图象有一个交点的横坐标是2.(1)求k的值和两个函数图象的另一个交点坐标;(2)直接写出y1<y2的解集.24.如图,在△ABC中,AB=AC,若AB2=BD•BC.求证:△ABD是等腰三角形.25.码头工人往一艘轮船上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图.(1)这批货物的质量是多少?(2)写出y与x之间的函数表达式;(3)轮船到达目的地后开始卸货,如果以5t/min的速度卸货,那么需要多少时间才能卸完货物?26.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是线段BC、AD、OB、OD的中点,连接EH、HF、FG、GE.(1)求证:四边形GEHF是平行四边形;(2)当EF和BD满足条件时,四边形GEHF是矩形;(3)当EF和BD满足条件时,四边形GEHF是菱形.27.如图,在平面直角坐标xOy中,直线y=2x+b经过点A(﹣2,0),与y轴交于点B,与反比例函数y=(x>0)的图形交于点C(m,6),过B作BD⊥y轴,交反比例函数y=(x>0)的图形于点D,连接AD、CD.(1)求b,k的值;(2)求△ACD的面积;(3)在坐标轴上是否存在点E(除点O),使得△ABE与△AOB相似,若存在,请求出点E的坐标;若不存在,请说明理由.28.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.①求证:△ABC∽△DCA;②求证:△ABC是比例三角形;(3)如图2,在(2)的条件下,当∠ADC=90°时,求出的值.参考答案一、选择题(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.式子在实数范围内有意义,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤1【分析】根据被开方数大于等于0列式计算即可得解.解:由题意得,x﹣1≥0,解得x≥1.故选:B.2.下列调查中,适宜采用普查方式的是()A.了解卫星“嫦娥一号”零部件的质量情况B.了解一批灯泡的使用寿命C.了解江苏省中学生观看电影《厉害了,我的国》的情况D.了解苏州市中小学生的课外阅读时间【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:A、了解卫星“嫦娥一号”零部件的质量情况,适合普查方式,故A选项正确;B、了解一批灯泡的使用寿命,适合抽样调查,故B选项错误;C、了解江苏省中学生观看电影《厉害了,我的国》的情况,适合抽样调查,故C选项错误;D、了解苏州市中小学生的课外阅读时间,适合抽样调查,故D选项错误;故选:A.3.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.解:第1个图形,是轴对称图形,也是中心对称图形,符合题意;第2个图形,是轴对称图形,不是中心对称图形,不合题意;第3个图形,是轴对称图形,也是中心对称图形,符合题意;第4个图形,是轴对称图形,也是中心对称图形,符合题意.故选:C.4.使式子÷有意义的x值是()A.x≠3且x≠﹣5B.x≠3且x≠4C.x≠4且x≠﹣5D.x≠3且x≠4且x≠﹣5【分析】根据分式有意义的条件可得x﹣3≠0,x﹣4≠0,根据除数不能为零可得x+5≠0,再解即可.解:由题意得:x﹣3≠0,x﹣4≠0,x+5≠0,解得:x≠3,4,﹣5,故选:D.5.下列整数中,与1+最接近的是()A.3B.4C.5D.6【分析】先确定的范围和最接近的整数,再确定与1+最接近的整数.解:因为3.12=9.61,3.22=10.24,所以3.1<<3.2.所以接近整数3.所以1+最接近4.故选:B.6.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3;1,连接AE交BD于点F,则△DEF的面积与△DAF的面积之比为()A.9:16B.3:4C.9:4D.3:2【分析】先根据平行四边形的性质得到AB=CD,AB∥CD,则DE:AB=3:4,再证明△DEF∽△BAF,利用相似比得到=,然后根据三角形面积公式求△DEF的面积与△DAF的面积之比.解:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∵DE:EC=3;1,∴DE:AB=DE:DC=3:4,∵DE∥AB,∴△DEF∽△BAF,∴==,∴△DEF的面积与△DAF的面积之比=EF:AF=3:4.故选:B.7.如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C 旋转180°得到△B′O′C′,则点A与点B′之间的距离为()A.6B.8C.10D.12【分析】根据菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,可得AC⊥BD,所以∠BOC=90°,根据△BOC绕着点C旋转180°得到△B′O′C,所以∠CO′B′=∠BOC=90°,AO′=6,OB′=8,再根据勾股定理即可求出点A与点B′之间的距离.解:∵菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,∴AC⊥BD,∴∠BOC=90°,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠CO′B′=∠BOC=90°,∴O′C=OC=OA=AC=2,∴AO′=6,∵OB=OD=OB′=BD=8,在Rt△AO′B′中,根据勾股定理,得AB′==10.则点A与点B′之间的距离为10.故选:C.8.函数y=(k为常数)的图象经过点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.解:∵反比例函数y=(k为常数)中,则﹣k2﹣1<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0<x3,∴y1>0、y2>0,y3<0,∵x1<x2,∴y1<y2,∴y2>y1>y3.故选:C.9.如图,已知点E是正方形ABCD的边AB边上的黄金分割点,且AE>EB,若S1表示AE为边长的正方形面积,S2表示以BC为长,BE为宽的矩形面积,S3表示正方形ABCD 除去S1和S2剩余的面积,则S3:S2的值为()A.B.C.D.【分析】根据黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB,进行计算即可.解:如图,设AB=1,∵点E是正方形ABCD的边AB边上的黄金分割点,且AE>EB,∴AE=GF=,∴BE=FH=AB﹣AE=,∴S3:S2=(GF•FH):(BC•BE)=(×):(1×)=.故选:A.10.如图,Rt△OAB中,∠OAB=90°,OB=6,反比例函数y=(k≠0)的图象经过点B,将Rt△OAB沿着x轴向右平移6个单位,得到Rt△CDE,反比例函数图象恰好经过CE的中点F,则k的值为()A.B.2C.4D.8【分析】设B(a,b),根据平移性质用a、b表示E、C点,进而由中点公式求得E点坐标,再将B、E坐标代入反比例函数解析式中,求得a的值,再用k表示B点坐标,进而由两点距离公式列出k的方程解得k便可.解:设B(a,b),由平移知,E(a+6,b),C(6,0),∵F是CE的中点,∴F(a+6,b),∵B、F点在双曲线y=上,∴k=ab=(a+6),∴a=4,∵B(4,),∴OB=∵OB=6,∴,∵k>0,∴k=故选:D.二、填空题(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.化简:=.【分析】直接利用分式的性质分别化简得出答案.解:原式==.故答案为:.12.在一幅比例尺为1:400000的地图上,某条道路的长度为1.5cm,则这条道路的实际长度为6km.【分析】设这条道路的实际长度是xcm,利用比例尺的意义得到1.5:x=1:400000,然后利用比例性质求出x,再把单位化为km即可.解:设这条道路的实际长度是xcm,根据题意得1.5:x=1:400000,解得x=600000.600000cm=6km.所以这条道路的实际长度是6km.故答案为:6.13.一个不透明的袋子里有5个红球和3个白球,每个球除颜色以外都相等,从袋中任意摸出一个球,是红球的可能性大于(填“大于”“小于”或“等于”)是白球的可能性.【分析】根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可.解:∵袋子里有5个红球,3个白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.14.如果反比例函数y=(k为常数)的图象在二、四象限,那么k的取值范围是k >2.【分析】由反比例函数的图象位于第二、四象限,得出2﹣k<0,即可得出结果.解:∵反比例函数的图象位于第二、四象限,∴2﹣k<0,∴k>2,故答案为:k>2.15.实数a在数轴上的位置如图所示,则化简后为7.【分析】根据数轴得到a的范围,从而得到a﹣4与a﹣11的符号,然后利用二次根式的性质即可求解.解:根据数轴得:5<a<10,∴a﹣4>0,a﹣11<0,∴原式=a﹣4+11﹣a=7.故答案是:7.16.如图,矩形OBCD的顶点C的坐标为(1,3),则BD=.【分析】连接OC,因为四边形OBCD是矩形,所以OC=BD,C的坐标为(1,3),就可求出OC的长度,那么就可求出BD的长度.解:连接OC,∵顶点C的坐标为(1,3).∴OC==∵四边形OBCD是矩形.∴BD=OC=.17.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当AD平分∠BAC时,AP的长为.【分析】根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠ADP=∠PAD,得到PA=PD,根据相似三角形的性质列出比例式,计算即可.解:∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠BAD=∠ADP,又∵AD平分∠BAC,∴∠BAD=∠PAD,∴∠ADP=∠PAD,∴PA=PD,∴QP=2PA,∵PQ∥AB,∴△CPQ∽△CAB,∴=,即=,解得PA=.故答案为:.18.如图,在△ABC中,AB=AC=10,BC=12,点D是BC的中点,以点D为顶点作∠MDN=∠B,当△DEF的面积等于△ABC面积的时,线段EF=5.【分析】利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,进而得出△BDF∽△CED∽△DEF.利用△DEF的面积等于△ABC的面积的,求出DH的长,进而利用S△DEF的值求出EF即可.解:连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=6.在Rt△ABD中,AD2=AB2﹣BD2,∴AD=8,∴S△ABC=BC•AD=×12×8=48.S△DEF=S△ABC=×48=12.又∵AD•BD=AB•DH,∴DH=,∵∠B+∠BDF+∠BFD=180°,∠EDF+∠BDF+∠CDE=180°,又∵∠EDF=∠B,∴∠BFD=∠CDE,由AB=AC,得∠B=∠C,∴△BDF∽△CED,∴.∵BD=CD,∴.又∵∠C=∠EDF,∴△BDF∽△CED∽△DEF,∴∠DFB=∠EFD∵DG⊥EF,DH⊥BF,∴DH=DG=.∵S△DEF=×EF×DG=12,∴EF=5.故答案为:5.三、解答题(本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:|﹣|﹣()2.【分析】直接利用二次根式的性质化简得出答案.解:原式=+2﹣=2.20.解方程:=1﹣.【分析】把分式方程化为整式方程,再求解.解:原方程即去分母得x=2x﹣1+2x=﹣1经检验:x=﹣1是原方程的解.所以原方程的解是x=﹣121.(1)先化简,再求值:(1﹣)÷,其中x=﹣1.(2)已知m是的小数部分,求的值.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)先根据题意得出m=﹣1,继而知=﹣1,再利用完全平方公式和二次根式的性质化简,最后将m、的值代入计算可得.解:(1)原式=(﹣)÷=•=x+1,当x=﹣1时,原式=﹣1+1=.(2)由题意知,m=﹣1,则==+1,∴m<,则原式==|m﹣|=﹣m=+1﹣(﹣1)=+1﹣+1=2.22.某校组织八年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:成绩x/分频数频率第1段x<6020.04第2段60≤x<7060.12第3段70≤x<809b第4段80≤x<90a0.36第5段90≤x≤100150.30请根据所给信息,解答下列问题:(1)a=18,b=0.18;(2)请补全频数分布直方图;(3)样本中,第5段成绩对应的圆心角度数是108°;(4)已知该年级有400名学生参加这次比赛,若成绩在80分以上(含80分)的为优,估计该年级成绩为优的有多少人?【分析】(1)第1段的频数是2,对应的频率为0.04,可求出调查人数,进而求出a、b 的值;(2)求出a、b的值,即可补全频数分布直方图;(3)样本中“第5段”的人数占调查人数的,因此相应的圆心角的度数占360°的,(4)样本估计总体,样本中,成绩优秀的占调查人数的,因此估计总体400名的是成绩优秀的人数.解:(1)2÷0.04=50(人),a=50×0.36=18(人),b=9÷50=0.18,故答案为:18,0.18;(2)补全频数分布直方图如图所示:(3)360°×=108°,故答案为:108;(4)400×=264(人),答:该年级400名学生中成绩在80分以上(含80分)的有264人.23.正比例函数y1=2x的图象与反比例函数y2=的图象有一个交点的横坐标是2.(1)求k的值和两个函数图象的另一个交点坐标;(2)直接写出y1<y2的解集x<﹣2或0<x<2.【分析】(1)把x=2代入数y1=2x可求出交点坐标为(2,4),代入y=求得k的值,再根据反比例函数和正比例函数的对称性可得另一个交点坐标;(2)画出两个函数的图象,根据图象和交点坐标可得y1<y2的解集.解:(1)把x=2代入y=2x得,y=4,∴交点坐标为(2,4),代入数y=得,k=2×4=8,由反比例函数和正比例函数的对称性可得另一个交点坐标为(﹣2,﹣4),答:k的值为8,另一个交点坐标为(﹣2,﹣4);(2)正比例函数y1=2x的图象与反比例函数y2=的图象如图所示:从图象可知,y1<y2的解集为x<﹣2或0<x<2;故答案为:x<﹣2或0<x<2.24.如图,在△ABC中,AB=AC,若AB2=BD•BC.求证:△ABD是等腰三角形.【分析】由两边对应成比例夹角相等的两个三角形相似,证明△BAD∽△BCA,得∠BAD=∠C,进而由等腰三角形的性质得∠B=∠BAD,再由等腰三角形的判定得结论.解:∵AB2=BD•BC,∴,∵∠B=∠B,∴△BAD∽△BCA,∴∠BAD=∠C,∵AB=AC,∴∠B=∠C,∴∠B=∠BAD,∴AD=BD,∴△ABD是等腰三角形.25.码头工人往一艘轮船上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图.(1)这批货物的质量是多少?(2)写出y与x之间的函数表达式;(3)轮船到达目的地后开始卸货,如果以5t/min的速度卸货,那么需要多少时间才能卸完货物?【分析】(1)根据函数图象中的数据可以求得这批货的质量;(2)设y与x的函数关系式是y=,代入函数图象中的数据即可得出结果;(3)利用函数关系式,当卸货速度x=5时,得到y=120即可.解:(1)由题意可得,这批货物的质量是:1.5×400=600(t),答:这批货物的质量是600t;(2)设y与x的函数关系式是y=,把(1.5,400)代入得:400=,解得:k=600,即y与x的函数关系式是y=;(3)当x=5时,y==120(min).答:需要120min才能卸完货物.26.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是线段BC、AD、OB、OD的中点,连接EH、HF、FG、GE.(1)求证:四边形GEHF是平行四边形;(2)当EF和BD满足条件EF=BD时,四边形GEHF是矩形;(3)当EF和BD满足条件EF⊥BD时,四边形GEHF是菱形.【分析】(1)证明FH=EG,FH∥EG即可.(2)根据对角线相等的平行四边形是矩形即可判断.(3)根据对角线垂直的平行四边形是菱形即可判断.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AF=DF,DH=OH,∴FH∥AC,FH=OA,∵BG=GO,BE=EC,∴EG∥AC,EG=OC,∴FH∥EG.FH=EG,∴四边形GEHF是平行四边形.(2)解:当EF=BD时,四边形GEHF是矩形.理由:∵EF=BD.BG=OG,OH=DH,∴GH=EF,∵四边形GEHF是平行四边形,∴四边形GEHF是矩形.故答案为:EF=BD.(3)解:当EF⊥BD时,四边形EGHF是菱形.理由:∵四边形GEHF是平行四边形,EF⊥GH,∴四边形GEHF是菱形.故答案为EF⊥BD.27.如图,在平面直角坐标xOy中,直线y=2x+b经过点A(﹣2,0),与y轴交于点B,与反比例函数y=(x>0)的图形交于点C(m,6),过B作BD⊥y轴,交反比例函数y=(x>0)的图形于点D,连接AD、CD.(1)求b,k的值;(2)求△ACD的面积;(3)在坐标轴上是否存在点E(除点O),使得△ABE与△AOB相似,若存在,请求出点E的坐标;若不存在,请说明理由.【分析】(1)把A点坐标代入一次函数解析式中求得b,把C点坐标代入求得的一次函数解析式求得m,得出C点坐标,再把求得的C点坐标代入反比例函数解析式中求得k;(2)由一次函数解析式求得其函数图象与y轴的交点B的坐标,再根据BD⊥y轴,得D点的纵坐标与B点纵坐标相等,将其纵坐标代入反比例函数解析式求得D点坐标,再根据三角形的面积公式求得△ABD和△BCD的面积,再求其和便可为△ACD的面积;(3)分两种情况:∠BAE=90°;∠ABE=90°.利用相似三角形的知识进行解答.解:(1)∵直线y=2x+b经过点A(﹣2,0),∴﹣4+b=0,∴b=4,∴直线y=2x+b为y=2x+4,把C(m,6)代入y=2x+4中,得6=2m+4,解得,m=1,∴C(1,6),把C(1,6)代入反比例函数y=中,得k=6;(2)令x=0,得y=2x+4=4,∴B(0,4),∵BD⊥y轴于B,∴D点的纵坐标为4,把y=4代入反比例函数y==中,得x=,∴D(,4),∴,∴4+×(6﹣4)=4.5;(3)当∠BAE=90°时,如图1,∵∠BAE=∠BOA=90°,∠ABE=∠OBA,∴此时△AOB∽△EAB,∴,即,∴BE=5,∴OE=1,∴E(0,﹣1),当∠ABE=90°时,如图2,∵∠ABE=∠AOB=90°,∠OAB=∠BAE,∴△AOB∽△ABE,∴,∴,∴OE=AE﹣AO=10﹣2=8,∴E(8,0),故存在点E(除点O),使得△ABE与△AOB相似,其坐标为E(8,0)或(0,﹣1).28.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.①求证:△ABC∽△DCA;②求证:△ABC是比例三角形;(3)如图2,在(2)的条件下,当∠ADC=90°时,求出的值.【分析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC 三种情况分别代入计算可得;(2)①先判断出∠ACB=∠CAD,得出△ABC∽△DCA;②由△ABC∽△DCA得出CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD 即可得;(3)作AH⊥BD,由AB=AD知,BH=BD,再证△ABH∽△DBC得AB•BC=BH •DB,即AB•BC=BD2,结合AB•BC=AC2推出BD2=AC2,据此可得答案.解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)①∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,②由①知,△ABC∽△DCA,∴,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.。
OF E D CB A 八年级下学期期末考试 数学试卷及参考答案一、选择题(每题3分,共30分)1.下列二次根式中,与3是同类二次根式的是( ) A .8 B .12 C 18. D .6 2.下列各数中,无理数是 ( )A .—3.14B .3125C .︳—6︳D .—29 3.已知点P (a,b ),点P 关于x 轴对称的点的坐标为 ( ) A .(a,—b ) B .(—a,b ) C .(—a, —b ) D .(a,b ) 4.一次函数y = —x + 1的图象一定经过 ( )A .一、二、三象限.B 。
一、三、四象限.C .二、三、四象限.D .一、二、四象限. 5.以下图形哪一种图形永远是相似的 ( )A .矩形B .菱形C .等腰三角形D .正方形6.如图,CD 是Rt ⊿ABC 斜边AB 上的高,AD=4cm ,BD=9 cm ,则CD=( ) A .6cm B .36cm C .213cm D .5cm7.小明有四双样式相同、大小相同的袜子,其中两双为蓝色, 问至多取几次就能保证取得同样颜色的一双袜子。
( )A .2次B .3次C .4次D .5次 8.正比例函数y=kx 与反比例函数y=xk在同一坐标系中的大致图象只可能是( )9.已知一直角三角形两条边的长分别为3 cm 和4 cm ,则第三边的长为( )cm A .5 B .5 和7 C .7 D .不能确定10.梯形ABCD 中,对角线AC 、BD 相交与点O ,过O 点的直线分别交上、下底于E 、F ,则在图中与OE :OF 的比值相等的线段比有( )A .4个B .5个C .7个D .8个二、填空题(每题2分,共16分)。
11.251的平方根是 。
X 55100150T S R QP12.直线y= — x + 3向下平移5个单位,得到的直线是 。
13.如图,QS//RT ,则x= 米。
14.已知点A (a+2 , a –3)在y 轴上,则a= 。
第 1 页 共 11 页 2018-2019学年苏教版八年级第二学期期末考试数学试卷 注意:1.本试卷共4页,满分为150分,考试时间为120分钟.
2.考生答题前,务必将本人的学校、班级、姓名、学号填写在答题纸相应的位置.
3.考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸
等其他位置上一律无效.
一、选择题(本大题共有6小题,每小题3分,共18分)
1.二次根式x -2有意义,则x 的取值范围是( )
A .2>x
B .2<x
C .2≥x
D .2≤x
2.分式x
--11可变形为( ) A .11--
x B .x +-11 C .x +11 D .11-x 3.在平面直角坐标系xoy 中,⊙O 的半径为4,点P 的坐标为(3,4),则点P 的位置为( )
A.在⊙A 外
B. 在⊙A 上
C. 在⊙A 内
D.不确定
4.对于反比例函数x
y 2=,下列说法不正确的是( ) A .点(21)--,在它的图像上
B .它的图像在第一、三象限
C .当0x >时,y 随x 的增大而增大
D .当0x <时,y 随x 的增大而减小
5.我市“菜花节”观赏人数逐年增加,据有关部门统计,2017年约为20万人次,2019年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( )
A .2012)28.8x +=(
B .228.81)20x +=(
C .2201)28.8x +=(
D .22020
1)201)28.8x x ++++=(( 6.有下列五个命题:①半圆是弧,弧是半圆;②周长相等的两个圆是等圆;③半径相等的两个半圆是等弧;④直径是圆的对称轴;⑤直径平分弦与弦所对的弧. 其中正确的有( )
A .1个
B .2个
C . 3个
D . 4个。