实验四 基于ZEMAX的牛顿望远镜的优化设计
- 格式:pdf
- 大小:196.73 KB
- 文档页数:2
目录摘要 .................................................. 错误!未指定书签。
ABSTRACT .............................................. 错误!未指定书签。
引言 .................................................. 错误!未指定书签。
1光学传递函数和点列图................................. 错误!未指定书签。
1.1光学传递函数..................................... 错误!未指定书签。
1.1。
1利用MTF曲线来评价成像质量............... 错误!未指定书签。
1.1。
2利用MTF曲线的积分值来评价成像质量....... 错误!未指定书签。
1.2点列图........................................... 错误!未指定书签。
2像差综述............................................. 错误!未指定书签。
2。
1轴上点球差...................................... 错误!未指定书签。
2.1.1球差的定义和表示方法...................... 错误!未指定书签。
2.1。
2球差的校正............................... 错误!未指定书签。
2。
2像散与像面弯曲(场曲).......................... 错误!未指定书签。
2.2。
1像散..................................... 错误!未指定书签。
2.2.2场曲...................................... 错误!未指定书签。
实验四 基于ZEMAX的牛顿望远镜的优化设计一.实验目的学会使用ZEMAX软件对典型牛顿望远镜进行优化设计。
二.实验要求1.掌握设立反射镜、使坐标中断的方法;2.学会使用圆锥系数来优化成像质量;3.学习点列图和3D图形分析像质的简单方法。
三.实验原理1.牛顿望远镜基本结构:抛物面主反射镜+与光轴成45度的平面反射镜构成,是一种全反射式的望远镜物镜;2.对于球面凹面镜成像,有F=R/2的关系;3.圆锥系数(conic系数):见于LDE窗口中每一行的第7列(Conic),这个系数是描述该行所代表的面的曲面函数中的非球面二次曲面系数,决定了该行代表的面的形状,典型值对应的面形状如下:Conic=0 球面;-1<Conic<0 主轴在光轴上的椭球面;Conic=-1 抛物面;Conic<-1 双曲面。
4.ZEMAX中关于在光路中新添加折叠反射镜仿真实现的步骤:定位置::在所需要放置反射镜的位置添加一个虚构面(空面),由反射镜要(1) 定位置放置的位置决定添加虚构面后相应各面的厚度值的改变;(2) 添加反射镜:从主菜单-工具-折叠反射镜里添加一个反射镜,设置相关合适的参数。
5.鬼像与挡光板:(1) 鬼像:成像系统中一些非设计中的反射光线最终沿着非期望的路径达到像面后,会形成鬼像,影响成像质量。
(2) 为了尽可能消除鬼像的影响,对于那些位于光路范围内的中间器件(尤其是口径小于主光路口径的),例如本例中的平面反射镜,一般需要在其前面加一块挡光板,消除这些器件对光线不需要的反射。
挡光板的口径通常要比被挡元件的口径稍大。
(3) ZEMAX中挡光板的具体实现步骤:定位置::在所需要放置挡光板的位置添加一个虚构面(空面),由其要放a.定位置置的位置决定添加虚构面后相应各面的厚度值的改变;设置参数::将面型surf:type双击后的Aperture中的光圈类型从noneb.设置参数改为所需要的挡光类型(如圆形挡光),设置合理的挡光半径值,以略大于被挡元件半径为宜。
光学设计实验报告——望远镜系统设计**:***学号:B********班级:B090103目录一、ZEMAX仿真二、设计优化三、数据比较和优化后参数四、公差分析五、光学系统图六、设计心得体会一ZEMAX仿真一、本次设计要求如下:1.焦距为100mm;2.光源为无穷远处;3.像空间F/﹟=4,相对孔径1/44.前一块玻璃为BAK1,后一块玻璃为F25.全视场角为8度先打开ZEMAX软件,根据设计要求修改系统设定,包括系统孔径,镜头单位,视场,和波长。
望远镜物镜要求校正的像差主要是轴向色差、球差、慧差。
根据要求采用的是折射式望远双胶合型(1)修改系统设定。
首先,根据要求的设计参数计算物方孔径EPD。
提供的有效焦距efl为100mm,像空间F/﹟=4。
由公式,得物方孔径EPD约等于25。
在ZEMAX主菜单软件中,选择系统> 通用配置,在弹出的对话框中,选择图象空间F/#,数值选择4。
(2)视场设定。
在ZEMAX主菜单软件中,选择系统> 视场,在弹出的对话框中,视场类型选择角度,并输入三组视场数据,(0,8), (0, 2.8)和 (0,4)。
第三步,波长设定。
在ZEMAX主菜单软件中,选择系统> 波长,在弹出的对话框中,单击选择完成配置,然后单击确定。
系统配置完毕,即可在LDE中输入数据。
选择分析>草图>2D草图,将出现2D草图LAYOUT。
第二部分设计优化从2D草图可以看出,镜头的性能参数并非最优。
选择编辑——》优化函数,反复进行修改权重,直到mtf达到最优。
选择工具 > 优化 > 优化在弹出的窗口中执行最终优化当优化开始时,ZEMAX 首先更新系统的评价函数。
第四部分:数据比较与优化后参数优化后2D草图:第五部分公差分析在菜单栏中点开Tools(工具)选中Tolerancing点OK然后点Editors选中Tolerance Data Editor在页面上点开Tools选中Default Tolerances点OK输入参数进行公差分析后得点开Tools 选中Test Plate Fitting出现对话框选择Best to woest 点OK,第五部分光学系统图第六部分设计心得体会通过光学课程设计,我不但学到了一些以前不懂的知识,而且更进一步学会使用了ZEMAX 常用的光学设计软件,同时,也锻炼了我们在学习新软件的能力,这不但是对新知识的学习,更是对新事物学习和接受能力的锻炼,因此我对此次光电课程设计感触和收获颇深!刚开始,我们对设计的总体思路都没有一个大概的印象,刚得到题目时,我们到图书馆和上网查阅资料,看了以前上试验课时的PPT和一些资料,才对要使用的软件有了较深入的了解,然后对着以前的设计课题,慢慢的探索和练习。
第26期2019年9月No.26September ,2019基于ZEMAX 的反射式望远物镜设计张云哲,冯厅,王郭玲(西安文理学院,陕西西安710065)摘要:文章应用ZEMAX 光学软件,设计性能良好反射式望远物镜,总体可以分为两个阶段:第一个阶段是通过对已知参数的计算,确定出系统的尺寸大小。
第二个阶段是把得到的参数输入ZEMAX 中,利用ZEMAX 仿真出系统的光路配置图,通过优化处理,得到R-C 光学系统。
分析模拟出的图形,证实了此次设计的R-C 系统结构合理,成像质量高,并且满足参数要求。
关键词:光学设计;R-C 系统;ZEMAX 中图分类号:O439文献标志码:A 江苏科技信息Jiangsu Science &Technology Information基金项目:陕西省教育厅专项科研计划项目;项目名称:基于光场调控的光子带隙多波混频理论与实验研究;项目编号:18JK1154。
西安市科技计划项目;项目名称:基于铷原子参量放大涡旋光全光开关的研究;项目编号:2017CGWL072017CGWL18。
作者简介:张云哲(1982—),男,陕西西安人,讲师,博士;研究方向:光电子。
1国内外发展现状1608年荷兰眼镜师汉斯·李波尔,无意间发现了通过调整两个透镜之间的距离看到了远方的物体后,受此启发发明出历史上第一架望远镜,从此打开了望远世界的大门[1-2]。
1609年,伽利略利用他自己制造出来的望远镜对行星进行了观看,他看到了许多用肉眼看不到的奇妙景象,这些发现开拓了人们对宇宙的认知[3]。
1668年,牛顿根据光线的反射规律制造出了反射式望远镜,由于反射式望远镜不存在色差,可以很好地消除球差,这一发明使得望远镜不论在理论还是实践又上了一个台阶[4-6]。
1990年,在R-C 光学系统基础上进一步改进的哈勃太空望远镜成功发明,它的出现促进了天文学的进一步发展[7-9]。
之后,经过众多科学家的研究,望远系统发展的越来越精细,也越来越完善。
实验一、牛顿望远镜1.实验目的学习运用ZEMAX综合性的光学仿真软件,将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。
通过ZEMAX软件的仿真应用,对牛顿望远镜的原理进行深层次的了解,并加深对牛顿望远镜使用的熟练度。
2.基本原理ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。
包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户界面中。
ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。
ZEMAX能够模拟连续和非连续成像系统及非成像系统。
牛顿反射望远镜采用抛物面镜作为主镜,光进入镜筒的底端,然后折回开口处的第二反射镜(平面的对角反射镜),再次改变方向进入目镜焦平面。
目镜为便于观察,被安置靠近望远镜镜筒顶部的侧方。
由于光学系统的原理,牛顿望远镜的成像是一个倒像,倒像并不影响天文观测,因此牛顿反射望远镜是天文学使用的最佳选择。
通过正像镜等附加镜头,可以将图像校正过来,但会降低成像质量。
3.系统结构一个1000mm F/5的望远镜,这暗指需要一个曲率半径为2000mm的镜面,和一个200mm的孔径。
光阑面的曲率半径列Radius,输入-2000.0,负号表示为凹面。
现在在同一个面上输入厚度值Thickness-1000,这个负号表示通过镜面折射后,光线将往“后方”传递.“Glass”列输入“MIRROR”,输入一个200的孔径值. ZEMAX使用的缺省值是波长550,视场角0.光源为无穷远处。
4.像质分析该牛顿望远镜系统需要在前面设置一个面挡板,挡住一部分回散的光(该挡板的直径要适宜)。
标准点列图Spot Diagram。
光线密度有一个依据视场数目,规定的波长数目和可利用的内存的最大值。
列在曲线上的每个视场点的GEO点尺寸是参考点(参考点可以是主波长的主光线,所有被追寻的光线的重心。
在光学设计中,Zemax是一款非常受欢迎的软件,它提供了强大的工具和功能,可以帮助设计师轻松地完成各种光学设计任务。
本文将通过一个具体的例子,向大家展示如何使用Zemax进行光学设计。
一、设计背景我们假设需要设计一款望远镜,需要观察远处的星空。
望远镜的主要性能指标包括放大倍率、像差和亮度。
我们需要通过Zemax软件,找到最佳的光学系统方案,以达到最佳的观察效果。
二、设计步骤1.建立基本光学系统模型:在Zemax中,我们需要建立一个基本的光学系统模型,包括望远镜的主镜和次镜。
可以通过手动输入镜片数据或者使用预设的镜片库来建立模型。
2.调整参数:在Zemax中,我们可以调整各种参数来优化望远镜的性能。
例如,可以通过调整放大倍率和亮度参数来找到最佳的观察效果。
3.检测像差:在调整参数后,我们需要检测望远镜的像差。
Zemax 提供了强大的像差检测功能,可以帮助我们找到镜片上的缺陷和误差。
4.优化镜片:根据检测结果,我们可以对镜片进行优化。
可以通过添加或删除镜片、调整镜片位置和角度等方式来改善望远镜的性能。
5.模拟观察:在完成镜片优化后,我们可以模拟观察望远镜的成像效果。
可以通过调整望远镜的焦距和观察角度来查看不同情况下的成像效果。
6.调整和优化:根据模拟观察结果,我们可以再次调整和优化望远镜的设计。
直到达到满意的观察效果为止。
三、设计结果经过一系列的设计和优化步骤,我们得到了一个满意的光学设计方案。
该方案包括两片反射镜,放大倍率为10倍,像差在可接受范围内,亮度较高。
通过Zemax模拟观察,成像效果清晰、稳定,符合我们的预期。
四、总结通过这个具体的例子,我们展示了如何使用Zemax进行光学设计。
虽然只是一个简单的望远镜设计,但是它涵盖了光学设计的基本步骤和技巧。
在实际应用中,光学设计需要考虑的因素很多,例如环境因素、成本预算、材料选择等。
Zemax提供了丰富的工具和功能,可以帮助设计师轻松应对各种挑战。
15. 4利用ZEMAX 像质优化与设计举例ZEMAX 提供了十分强大的像质优化功能,可以对合理的初始光学系统结构进行优化设计。
设计中光学结构参变量可以是曲率、厚度、玻璃材料参数、圆锥系数、参数数据、特殊数据和多重结构数值数据。
本节首先,通过消色差双胶合望远镜物镜设计和参数分析,介绍利用ZEMAX 默认评价函数的优化设计过程。
然后,通过光路中有棱镜的望远物镜、显微物镜和目镜设计举例能,介绍像差补偿、几何像差控制等在ZEMAX 中的实现以及锤形( Hammer)优化的简单应用。
最后通过变焦物镜设计介绍ZEMAX 中多重结构设计实现。
15.4.1消色差双胶合望远镜物镜设计消色差双胶合物镜设计要求见表15.131)初始结构参数确定初始结构参数确定通常有两种方法,本设计采用初级像差理论求解初始结构方法。
望远系统一般由物镜、目镜和棱镜式或透镜式转像系统构成。
望远物镜是望远系统的一个组成部分,其光学特性的特点是:相对孔径和视场都不大。
因此,望远物镜设计中,校正的像差较少,一般不校正与像高的二次方以上的各种单色像差(像散、场曲、畸变)和垂轴色差,只校正球差、彗差和轴向色差。
在这三种像差中通常首先校正色差,因为初级色差和透镜形状 无关,校正了色差以后,保持透镜的光焦度不变,再用弯曲透镜的方法校正球差和彗差,对已校正的色差影响很小。
由初级像差理论可知,双胶合透镜成为消色差双胶合透镜的条件是,双胶合透镜的正负光焦度分配应满足下式:12φφφ=+,1112V V V φφ=-,2212V V V φφ=- (15.22)式中:φ、1φ,和2φ分别双胶合物镜、正透镜和负透镜的光焦度(焦距值的倒数),1V 和2V 为正负透镜所选玻璃的阿贝数V 。
本示例中,正、负透镜的玻璃材料分别选用K9和ZF1,对应的n 1d =1.. 51637 , V 1=64. 07 , n 2d == 1. 64767 ,v 2=33. 87。
实验 牛顿反射望远镜的设计
一、实验目的
掌握牛顿反射望远镜的设计方法。
二、实验仪器
计算机、ZEMAX 软件
三、实验设计参数要求
C d,F,:gth Wavelen 4: m m 100: m m 800: 全视场入瞳直径焦距
四、实验操作步骤
1、 输入系统参数并建立初始结构。
(1)在通用设置对话框输入视场2°、1.414°、1°、0°;
(2)在通用设置对话框中输入如同致敬100mm ;
(3)在通用设置对话框输入可见光波长。
(4)根据焦距计算曲率半径,旋转反射主镜的conic 系数,建立初始结构,并观察spt 图和RAY FAN 曲线。
2、添加反射镜副镜和遮拦孔径
(1)选一较为合适的距离(接近并小于800mm ),设像面和反射镜中心距离100mm ,先在镜头编辑窗口(LDE )栏中插入一个新的虚拟面。
将厚度分为-700和-100.
(2)将第2个面(虚拟面)设置为反射镜:Tools→Fold Mirror →Add Fold Mirror
(3)我们将入射光束画出来就可以看到拦光效果,在第一面前插入新的虚拟面,设置厚度为800.并查看结构光路图。
通过快捷方式调整3D视图的观察角度。
从上图坐标可以估算出椭圆挡光区域大小,所以可以在第一个表面设置椭圆遮光孔径。
并观察遮拦前后的MTF曲线图,修改后的低于修改前的。
3、可以通过观察光足迹,进一步修正遮光面的面积,是MTF曲线提高一些。
(1)估算挡光面积并进行挡光孔径的设置
(2)观察修改孔径光阑后的SPT图和MTF图。
实验四 基于ZEMAX的牛顿望远镜的优化设计
一.实验目的
学会使用ZEMAX软件对典型牛顿望远镜进行优化设计。
二.实验要求
1.掌握设立反射镜、使坐标中断的方法;
2.学会使用圆锥系数来优化成像质量;
3.学习点列图和3D图形分析像质的简单方法。
三.实验原理
1.牛顿望远镜基本结构:抛物面主反射镜+与光轴成45度的平面反射镜构成,是一种
全反射式的望远镜物镜;
2.对于球面凹面镜成像,有F=R/2的关系;
3.圆锥系数(conic系数):见于LDE窗口中每一行的第7列(Conic),这个系数是描
述该行所代表的面的曲面函数中的非球面二次曲面系数,决定了该行代表的面的形状,典型值对应的面形状如下:
Conic=0 球面;
-1<Conic<0 主轴在光轴上的椭球面;
Conic=-1 抛物面;
Conic<-1 双曲面。
4.ZEMAX中关于在光路中新添加折叠反射镜仿真实现的步骤:
定位置::在所需要放置反射镜的位置添加一个虚构面(空面),由反射镜要(1) 定位置
放置的位置决定添加虚构面后相应各面的厚度值的改变;
(2) 添加反射镜:从主菜单-工具-折叠反射镜里添加一个反射镜,设置相关合适的参数。
5.鬼像与挡光板:
(1) 鬼像:成像系统中一些非设计中的反射光线最终沿着非期望的路径达到像面后,会形成鬼像,影响成像质量。
(2) 为了尽可能消除鬼像的影响,对于那些位于光路范围内的中间器件(尤其是口径小于主光路口径的),例如本例中的平面反射镜,一般需要在其前面
加一块挡光板,消除这些器件对光线不需要的反射。
挡光板的口径通常要
比被挡元件的口径稍大。
(3) ZEMAX中挡光板的具体实现步骤:
定位置::在所需要放置挡光板的位置添加一个虚构面(空面),由其要放
a.定位置
置的位置决定添加虚构面后相应各面的厚度值的改变;
设置参数::将面型surf:type双击后的Aperture中的光圈类型从none
b.设置参数
改为所需要的挡光类型(如圆形挡光),设置合理的挡光半径值,以略大
于被挡元件半径为宜。
四.实验内容
设计项目::利用ZEMAX软件来设计一个焦距为1000mm ,F/5的牛顿望远镜,即一个曲设计项目
率半径为2000mm的镜面和一个200mm的孔径。
图3.1典型牛顿反射式望远镜
1.打开ZEMAX软件,点击新建,以抹去打开时默认显示的上一个设计结果,同时新
建一个新的空白透镜。
2.在LDE(透镜数据编辑器)中输入相关平面的曲率半径、厚度和玻璃类型值(反射
镜玻璃类型为M I RR O R)。
3.在主菜单-系统中设置孔径值,并沿用默认的波长和视场角值。
4.生成光线像差特性曲线、2D、3D图层曲线和实体模型、渲染模型等分析图来观察
此时的成像质量。
5.生成标准点列图,并与艾利斑对比(从点列图中选设置-查看比例-Airy Dis k)来
进行像质的简单分析(为什么此时还未到达最好的成像质量?)。
6.在主反射镜所在的面上设置圆锥系数,使主反射镜的面变为抛物面,此时再重新
分析成像质量。
7.在像平面前插入一个新的虚构面(未来放置反射镜),合理设置中断的坐标值以获
得光阑面和虚构面的厚度,将两个厚度输入LDE中的相应位置。
8.从主菜单-工具-折叠反射镜里添加一个反射镜,设置交叠曲面为2,确定。
9.更新后观察此时的各分析图,注意分析哪些图已经不再起作用了。
通过相应按键
操作旋转缩放3D类的分析图来观察成像质量。
10.在光阑面(STO)前新添加一个圆形挡光面,设置合理的面厚度和挡光半径。
11.更新后重新观察此时的3D类分析图,观察此时的成像质量和效果。
12.更名存盘后生成报告。
五.报告要求:
1.试解释添加折返面的对话框中的3个选项的意义及添加后多出来的两个虚构面的作用。
2.分别打印反射方向为向上向下向里向外的最终实体图及某一方向的LDE的截图。
3.上传任一反射方向的存档,以学号为文件名。
4、实验结果截图:
(1)、反射镜为球面时的LDE(2)、反射镜为球面时的3D视图(3)、反射镜为球面时的像差(4)、反射镜为球面时的点列图(5)、反射镜为抛物面时的像差(6)、反射镜为抛物面时的点列图(7)、添加fold mirror 后的IDE
六.实验仪器PC机。