生物膜的流动镶嵌模型
- 格式:doc
- 大小:18.50 KB
- 文档页数:3
生物膜的流动镶嵌模型
一、1.膜的组成成分:
脂质:溶解脂质物质能溶解细胞膜。
蛋白质:蛋白酶分解。
2.膜的磷脂双分子层:
磷脂分子铺在空气界面,发现面积是膜面积2倍。
磷脂是一种由甘油,脂肪酸,磷酸等所组成的分子。
3.蛋白质的位置:
蛋白质镶在、嵌入、横跨在磷脂双分子层中。
细胞膜具有流动性。
适当升高温度,流动性增强。
二、流动镶嵌模型(有流动性、不对称性、镶嵌型)
1.基本内容:①磷脂双分子层构成了膜的基本支架,具有流动性。
②蛋白质分子有的镶在磷脂双分子层表面,有的嵌入磷脂双分子层中,贯穿整个磷脂双分
子层。
③大多数蛋白质分子,磷脂也是可以运动的。
④糖蛋白在细胞膜上,是由糖类和蛋白质形成。
2.成分功能分析:①磷脂分子:构成了磷脂双分子层支架。
作用:脂溶性物质易透过。
②蛋白质:决定膜功能。
种类:结构蛋白:构成细胞膜成分。
载体蛋白:运输物质。
糖蛋白:保护、润滑、识别作用。
受体:信息交流。
抗原:免疫。
③糖类:糖蛋白、糖脂。
3.生物膜结构特性:膜具有流动性。
①结构基础:磷脂分子,蛋白质可运动。
②生理意义:细胞生长分裂,细胞融合。
分泌蛋白分泌。
③实例:白细胞吞噬细菌。
4.膜的功能特性:选择透过性。
①结构基础:膜上载体蛋白。
②生理意义:控制物质进出。
③实例:水分子进出,无机盐的吸收。
《生物膜的流动镶嵌模型》讲义一、引言在细胞这个微小而神奇的世界里,生物膜扮演着至关重要的角色。
它不仅将细胞内部与外界环境分隔开来,还承担着物质交换、信息传递等诸多关键功能。
而要深入理解生物膜的结构和功能,就不得不提到生物膜的流动镶嵌模型。
二、生物膜的探索历程(一)早期观点在对生物膜的研究早期,科学家们曾提出过多种假说。
其中,“三明治”模型认为生物膜是由蛋白质脂质蛋白质三层结构构成的静态结构。
然而,随着研究的深入,这一模型逐渐被证明存在局限性。
(二)新技术的推动随着电子显微镜技术的发展,科学家们能够更加清晰地观察到生物膜的细微结构,为新模型的提出提供了有力的证据。
三、流动镶嵌模型的主要内容(一)磷脂双分子层构成膜的基本支架磷脂分子具有亲水性的头部和疏水性的尾部。
在水环境中,它们自发地形成双层结构,头部朝向两侧的水相,尾部相对排列在内侧,构成了生物膜的基本骨架。
(二)蛋白质分子镶嵌、贯穿或覆盖在磷脂双分子层上有的蛋白质分子镶嵌在磷脂双分子层表面,有的部分或全部嵌入磷脂双分子层中,还有的贯穿整个磷脂双分子层。
这些蛋白质分子在生物膜中发挥着各种各样的功能,如运输物质、识别信号等。
(三)生物膜具有流动性1、磷脂分子的运动磷脂分子可以在膜内自由移动,横向扩散速度较快。
2、蛋白质分子的运动大部分蛋白质分子也能在膜上运动,这使得生物膜不是一个僵硬的结构,而是具有一定的流动性。
四、生物膜流动性的意义(一)物质运输流动性有助于物质更高效地通过生物膜,实现细胞内外的物质交换。
(二)细胞识别与通讯膜上的蛋白质分子可以在膜上移动,从而更灵活地与外界信号分子结合,完成细胞间的识别和信息传递。
(三)细胞生长与分裂在细胞生长和分裂过程中,生物膜的流动性使得膜能够适应细胞形态和体积的变化。
五、对流动镶嵌模型的补充和完善随着研究的不断深入,人们发现生物膜的结构和功能比最初想象的更加复杂。
例如,膜上还存在一些糖类分子,它们与蛋白质或脂质结合形成糖蛋白或糖脂,在细胞识别等方面发挥着重要作用。
流动镶嵌模型名词解释生物化学
流动镶嵌模型 (Flowing Shell Model) 是一种描述生物膜结构的模型,它认为生物膜是由磷脂分子以疏水作用形成的双分子层为骨架,蛋白质分子镶嵌于双分子层的骨架中,并在膜上自由移动。
这个模型得名于它的流动性质,因为它类似于流体在固体表面上的扩散过程。
在流动镶嵌模型中,磷脂分子以疏水端头碰头的方式排列成双分子层,蛋白质分子则镶嵌在这个双分子层的骨架中。
磷脂分子和蛋白质分子的疏水端都暴露在膜的外表面,而亲水端则指向膜的内部。
流动镶嵌模型是生物化学领域的重要模型之一,它对于理解生物膜的结构和功能具有重要的意义。
根据这个模型,生物膜中的蛋白质分子起到了交通枢纽的作用,它们能够在膜上进行自由移动,并将内外的物质进行交换和运输。
同时,生物膜中的磷脂分子也起到了骨架的作用,它们使得生物膜具有一定的强度和稳定性。
流动镶嵌模型是一个简明易懂的模型,它能够帮助人们更好地理解生物膜的结构和功能,并为研究生物膜提供了重要的理论依据。
生物膜的流动镶嵌模型1、什么是生物膜的流动镶嵌模型生物膜指的是生物细胞中的膜状结构,包括细胞质膜、细胞核膜、细胞器膜等等。
这些膜之间以一种连续或不连续的方式连接起来,称为内膜系统。
生物膜的流动镶嵌模型是一种生物膜结构的模型,它认为生物膜是磷脂以疏水作用形成的双分子层为骨架,磷脂分子是流动性的,可以发生侧移、翻转等。
蛋白质分子镶嵌于双分子层的骨架中,可能全部埋藏或者部分埋藏,埋藏的部分是疏水的,同样,蛋白质分子也可以在膜上自由移动。
因此称为流动镶嵌模型。
2、生物膜的流动镶嵌模型的发现史(1)欧文顿(E.overton)的物质通透性实验,用500多中物质对植物细胞进行上万次通透性试验(1895年),发现脂质更容易通过细胞膜。
这里我们可以猜想到细胞膜由脂质物质构成。
(2)1917年,Langmuir的磷脂分子实验。
将磷脂溶于苯和水中,待苯挥发完后,发现磷脂分子分布凌乱,经推挤发现磷脂排列成单层,而且磷脂分子一头浸在水里,一头浮在水面。
再探究发现磷脂分子由头部和尾部组成,头部由一分子胆碱,一分子磷酸,一分子甘油组成,尾部由2个脂肪酸分子构成。
头部由极性分子组成形成亲水端,尾部由非极性分子组成形成疏水端。
所以磷脂在水中排列时,亲水端浸人水中,疏水端浮在水面。
(3)1925年,E.Corter和F.Grendel用有机溶剂抽取人的红细胞质膜的膜质成分,测定膜质单层分子在水中的展开面积,发现它是红细胞表面积的两倍。
这现象说明质膜是双层脂分子构成的。
之后Davson 和Danielli提出了“蛋白质-脂质-蛋白质”的三文治式的质膜结构模型,持续影响20年。
(4)20世纪初,科学家将细胞膜从哺乳动物细胞中分离出来,发现细胞膜不但会被溶脂质的物质溶解,还会被蛋白酶分离。
由此可以猜到细胞膜中含有蛋白质,同时还有疑问,蛋白质处于细胞膜的哪个位置,又有多少?(5)罗伯特森的电镜实验(1959年)用超薄切片技术获得清晰的细胞膜照片,明显的暗-明-暗3层结构,厚约7.5nm,由厚约3.5nm的较亮层和内外表面约2nm的较暗层组成的。
第2节生物膜的流动镶嵌模型
一、教学目标
1.简述生物膜的结构。
2.探讨在建立生物膜模型的过程中,实验技术的进步所起的作用。
3.探讨建立生物膜模型的过程如何体现结构与功能相适应的观点。
二、教学重点和难点
1.教学重点
流动镶嵌模型的基本内容。
2.教学难点
探讨建立生物膜模型的过程如何体现结构与功能相适应的观点。
三、教学方法
讲述法、探究法
四、课时安排
2
五、教学过程
〖引入〗以“问题探讨”引入,学生思考讨论回答,教师提示。
〖提示〗1.三种材料比较,弹力布更能体现细胞膜的柔变性和一定的通透性,相对好一些。
当然,这几种材料的特点与真实的细胞膜之间还有不小的差距。
2.有条件的话,使用微孔塑胶或利用激光给气球打上微孔都可以作为模型的细胞膜。
使用透析袋也可以。
如果制作临时使用的模型,利用猪或其他动物的膀胱做细胞膜是更加理想的材料。
〖问题〗再以“本节聚焦”已起学生的思考、注意。
〖板书〗一、对生物膜结构的探究历程
〖问题〗1.细胞膜的组成成分是什么呢?欧文顿的推论是否正确呢?
〖学生活动〗学生带着问题阅读课本,并完成“思考与讨论1”,教师提示。
〖提示〗1.最初认识到细胞膜是由脂质组成的,是通过对现象的推理分析得出的。
2.有必要。
仅靠推理得出的结论不一定准确,还应通过科学实验进行检验和修正。
3.因为磷脂分子的“头部”亲水,所以在水—空气界面上磷脂分子是“头部”向下与水面接触,尾部则朝向空气一面。
科学家因测得单分子层的面积恰为红细胞表面积的2倍,才得出膜中的脂质必然排列为连续的两层这一结论。
〖问题(边问边讲述)〗2.细胞膜中除含有脂质外,还有没有其他成分呢?(介绍科学家的化学分析结果,指出膜主要由脂质和蛋白质组成;分析假说是如何提出的,假说与观察和实验证据的关系)
3.脂质和蛋白质是怎样形成膜的呢?(介绍两位荷兰科学家的实验,分析脂双层这一结论的由来)
4.蛋白质位于脂双层的什么位置呢?(简介20世纪40年代的推测和罗伯特森1959年提出的“三明治”结构模型)(指出“三明治”结构模型的不足,说明细胞膜不应是静态的刚性的结构,而应当是动态的弹性的结构。
)
5.有什么证据证明细胞膜中的物质是不断运动的呢?(重点介绍荧光标记小鼠细胞和人细胞融合实验,指出细胞膜具有流动性;并讨论技术的进步在细胞膜研究中的作用,强化结构与功能相适应的观点)
〖思考与讨论2〗学生思考回答,教师提示。
〖提示〗1.在建立生物膜模型的过程中,实验技术的进步起到了关键性的推动作用。
如电子显微镜的诞生使人们终于看到了膜的存在;冰冻蚀刻技术和扫描电子显微镜技术使人们
认识到膜的内外两侧并不对称;荧光标记小鼠细胞与人细胞的融合实验又证明了膜的流动性等。
没有这些技术的支持,人类的认识便不能发展。
2.在建立生物膜模型的过程中,结构与功能相适应的观点始终引导人们不断实践、认识,再实践、再认识;使人类一步步接近生物膜结构的真相。
例如,不同生物膜的功能是有差异的。
在生命系统中,一般来说,功能的不同常伴随着结构的差异,而早期的生物膜模型假定所有的生物膜都是相同的,这显然与不同部位的生物膜功能不完全相同是矛盾的。
还有,不同膜的厚度也不完全一样。
由此促进学者们重新研究脂质和蛋白质相互作用的问题。
一些学者使用了更加先进的技术,运用红外光谱等技术证明,膜蛋白主要为球形结构。
冰冻蚀刻电镜技术又证明,脂双层中分布有蛋白质颗粒,这样又发展了生物膜模型。
生物膜中存在不同种类的蛋白质,以及蛋白质在生物膜中的不同分布情况,恰能较好地解释不同结构的生物膜具有不同的生理功能。
〖板书〗二、流动镶嵌模型的基本内容。
〖讲述〗这一模型是S.J.Singer和G.Nicolson于1972年通过对已有的模型进行修正而提出的。
〖板书〗它的主要特点是:
(1)膜结构的不对称性和不均匀性。
(将膜蛋白分为外在蛋白和内在蛋白,并且指出蛋白质在脂双层中的分布是不对称和不均匀的。
)
(2)膜结构的流动性。
(认为膜的结构成分不是静止的,而是动态的,生物膜是流动的脂质双分子层与镶嵌着的球蛋白按二维排列组成。
)
(3)膜的功能是由蛋白与蛋白、蛋白与脂质、脂质与脂质之间复杂的相互作用实现的。
〖小结〗一、对生物膜结构的探究历程
二、流动镶嵌模型的基本内容。
它的主要特点是:
(1)膜结构的不对称性和不均匀性。
(2)膜结构的流动性。
(3)膜的功能是由蛋白与蛋白、蛋白与脂质、脂质与脂质之间复杂的相互作用实现的。
〖作业〗练习一二。
基础题
1.提示:细胞膜太薄了,光学显微镜下看不见,而19世纪时还没有电子显微镜,学者们只好从细胞膜的生理功能入手进行探究。
2.脂质和蛋白质。
3.提示:这两种结构模型都认为,组成细胞膜的主要物质是脂质和蛋白质,这是它们的相同点。
不同点是:(1)流动镶嵌模型提出蛋白质在膜中的分布是不均匀的,有些横跨整个脂双层,有些部分或全部嵌入脂双层,有些则镶嵌在脂双层的内外两侧表面;而三层结构模型认为蛋白质均匀分布在脂双层的两侧。
(2)流动镶嵌模型强调组成膜的分子是运动的;而三层结构模型认为生物膜是静态结构。
4.D。
拓展题
1.提示:生物膜结构的研究历史反映了科学研究的艰辛历程,也告诉我们建立模型的一般方法。
科学家根据观察到的现象和已有的知识提出解释某一生物学问题的假说或模型,用观察和实验对假说或模型进行检验、修正和补充。
一种模型最终能否被普遍接受,取决于它能否与以后的观察和实验结果相吻合,能否很好地解释相关现象,科学就是这样一步一步向前迈进的。
2.提示:生物膜的流动镶嵌模型不可能完美无缺。
人类对自然界的认识永无止境,随着实验技术的不断创新和改进,对膜的研究将更加细致入微,对膜结构的进一步认识将能更完善地解释细胞膜的各种功能,不断完善和发展流动镶嵌模型。