第2章 被控对象的数学模型汇总
- 格式:ppt
- 大小:1.15 MB
- 文档页数:29
第二章被控对象的数学模型第二章被控对象的数学模型1(什么是被控对象特性?什么是被控对象的数学模型?研究被控对象特性有什么重要意义?答:被控对象持性是指被控对象输入与输出之间的关系。
即当被控对象的输入量发生变化时,对象的输出且是如何变化、变化的快慢程度以及最终变化的数值等。
对象的输入量有控制作用和扰动作用,输出量是被控变量。
因此,讨论对象特性就要分别讨论控制作用通过控制通道对被控变量的影响,和扰动作用通过扰动通道对被控变量的影响。
定量地表达对象输入输出关系的数学表达式、称为该对象的数学模型。
在生产过程中,存在着各种各样的被控对象。
这些对象的持性各不相同。
有的较易操作,工艺变量能够控制得比较平稳,有的却很难操作,工艺变量容易产生大幅度波动,只要稍不谨慎就会越出工艺允许的范围,轻则影响生产,重则造成事故。
只有充分了解和熟悉对象特性,才能使工艺生产在最佳状态下运行。
因此,在控制系统设计时、首先必须充分了解被控对象的特性,掌握它们的内在规律,才能选择合适的被控变量、操纵变量,合适的测量元件和控制器(选择合理的控制器参数,设计合乎工艺要求的控制系统。
特别在设计新型的控制系统时。
例如前馈控制、解偶控制、自适应控制、计算机最优控制等,更需要考虑被控对象特性。
2(简述建立对象的数学模型的两种主要方法。
答:一是机理分析法。
机理分析法是通过对对象内部运动机理的分析,根据对象中物理或化学变化的规律(比如三大守恒定律等)、在忽略一些次要因素或做出一些近似处理后推导出的对象特性方程。
通过这种方法得到的数学模型称之为机理模型,它们的表现形式往往是微分方程或代数方程。
二是实验测取法。
实验测取法是在所要研究的对象上,人为施加一定的输入作用,然后,用仪器测取并记录表征对象特性的物理量随时间变化的规律,即得到一系列实验数据或实验曲线。
然后对这些数据或曲线进行必要的数据处理,求取对象的特性参数,进而得到对象的数学模型。
3(描述简单对象特性的参数有哪些?各有何物理意义?答:描述对象特性的参数分别是放大系数K、时间常数T、滞后时间τ。
第二章被控对象的数学模型第一章自动控制系统基本概念1.简述被控对象、被控变量、操纵变量、扰动(干扰)量、设定(给定)值和偏差的含义?答:自动控制系统中常用的几个术语其含义是:被控对象自动控制系统中,工艺参数需要控制的生产过程、设备或机器等。
被控变量被控对象内要求保持设定数值的工艺参数。
操纵变量受控制器操纵的,用以克服干扰的影响,使被控变量保持设定值的物料量或能量。
扰动量:除操纵变量外,作用于被控对象并引起被控变量变化的因素。
设定值:被控变量的预定值。
偏差:被控变量的设定值与实际值之差。
2.自动控制系统按其基本结构形式可分为几类?其中闭环控制系统中按设定值的不同形式又可分为几种?简述每种形式的基本含义。
答:自动控制系统按其基本结构形式可分为闭环自动控制系统和开环自动控制系统。
闭环自动控制是指控制器与被控对象之间既有倾向控制又有反向联系的自动控制。
如图1—1(a)即是一个闭环自动控制。
图中控制器接受检测元件及变送器送来的测量信号,并与设定值相比较得到偏差信号,再根据偏差的大小和方向,调整蒸汽阀门的开度,改变蒸汽流量,使热物科出口温度回到设定值上。
从图l—1(b)所示的控制系统方块图可以清楚看出,操纵变量(蒸汽流量)通过被控对象去影响被控变量,而被控变量又通过自动控制装置去影响操纵变量。
从信号传递关系上看,构成了一个闭合回路。
在闭环控制系统中,按照没定值的不同形式又可分为:(1)定值控制系统定值控制系统是指设定值恒定不变的控制系统。
定值控制系统的作用是克服扰动对被控变量的影响,使被控变量最终回到设定值或其附近。
以后无特殊说明控制系统均指定值控制系统而言。
(2)随动控制系统随动控制系统的设定值是不断变化的。
随动控制系统的作用是使被控变量能够尽快地、准确无误地跟踪设定值的变化而变化。
(a)(b)图1-1闭环自动控制基本结构(3)程序控制系统程序控制系统的设定值也是变化的,但它是一个已知的时间函数,即设定值按一定的时间程序变化。
第二章被控对象的数学模型主要研究内容:⏹化工过程的特点及其描述方法⏹对象数学模型的建立(建模)•建模目的•机理建模•实验建模⏹描述对象特性的参数•放大系数Κ•时间常数Τ•滞后时间τ第二章被控对象的数学模型⏹控制效果取决于控制对象(内因)和控制系统(外因)两个方面。
外因只有通过内因起作用,内因是最终效果的决定因素。
⏹设计控制系统的前提是:正确掌握工艺系统、控制作用(输入)与控制结果(输出)之间的关系——对象的特性。
自动控制系统是由被控对象、测量变送装置、控制器和执行器组成。
研究对象的特性,就是用数学的方法来描述出对象输入量与输出量之间的关系。
建立对象特性的数学描述就称为建立对象的数学模型(建模)。
第二章被控对象的数学模型对象的数学模型分为静态数学模型和动态数学模型。
静态数学模型动态数学模型基础特例对象在稳定时(静态)输入与输出关系;在输入量改变以后输出量跟随变化的规律;•比较与区别:动态数学模型是更精确的模型,静态数学模型是动态数学模型在对象达到平衡时的特例。
一、化工对象的特点⏹被控对象常见种类:换热器、锅炉、精馏塔、化学反应器、贮液槽罐、加热炉等⏹1. 对控制质量影响程度相差大(内因决定外因);⏹2. 类型繁多,特性相差悬殊;⏹3. 非线性、分布参数较多;第二章被控对象的数学模型§2.1 化工对象的特点及其描述方法二、对象特性定义⏹对象特性,即过程特性:指被控过程输入量发生变化时,过程输出量的变化规律。
⏹输入量:干扰作用、控制作用。
⏹输出量:被控参数。
⏹数学建模——就是用数学的方法来描述出对象输入量与输出量之间的关系。
⏹通道:被控过程的输入量与输出量间的信号联系。
⏹控制通道-----操纵变量至被控变量的信号联系.⏹扰动通道-----扰动变量至被控变量的信号联系.被控变量(输出量)扰动变量(输入量)操纵变量(输入量)数学模型的描述方法:1. 非参量模型:用曲线、数据图表表示的系统输入与输出量之间的关系;非参量模型可以通过记录实验结果来得到,有时也可以通过计算来得到,它的特点是形象、清晰,比较容易看出其定性的特征。