含风电场的电力系统潮流计算的联合迭代方法及应用_王海超
- 格式:pdf
- 大小:252.90 KB
- 文档页数:4
综合能源系统多能流潮流计算模型与方法综述一、本文概述随着全球能源危机和环境问题的日益严重,综合能源系统作为一种新型、高效、环保的能源利用方式,受到了广泛关注。
综合能源系统不仅集成了多种能源形式,如电、热、冷、气等,还通过先进的能源转换和存储技术,实现了能源间的互补和优化利用。
然而,综合能源系统的复杂性也给其运行和管理带来了挑战,特别是多能流潮流计算问题。
多能流潮流计算是综合能源系统分析和优化的基础,对于保障系统安全、提高能源利用效率、降低运行成本具有重要意义。
本文旨在对综合能源系统多能流潮流计算模型与方法进行全面综述。
文章将介绍综合能源系统的基本概念和特点,明确多能流潮流计算的重要性和挑战性。
然后,文章将重点综述现有的多能流潮流计算模型,包括基于物理模型的计算方法和基于数据驱动的计算方法,分析各自的优缺点和适用范围。
文章还将探讨多能流潮流计算中的关键问题和挑战,如模型精度与计算效率、不确定性分析与处理、多时间尺度协调等。
文章将展望多能流潮流计算模型与方法的发展趋势和前景,为综合能源系统的研究与实践提供参考和借鉴。
通过本文的综述,读者可以深入了解综合能源系统多能流潮流计算的研究现状和发展动态,为相关领域的研究和实践提供有益的参考和指导。
二、综合能源系统多能流潮流计算基础综合能源系统是一种复杂的网络结构,涉及多种能源形式的转换和传输,包括电力、热能、燃气等。
多能流潮流计算是分析综合能源系统运行状态的重要手段,它基于物理定律和能量守恒原理,通过数学模型描述系统内部各种能源形式的流动和转换过程。
多能流潮流计算的基础是建立系统的数学模型,这通常包括节点方程和支路方程。
节点方程描述的是节点处各种能源形式的供需平衡关系,支路方程则描述了能源在系统中的传输和转换过程。
这些方程通常是非线性的,需要通过数值方法求解。
多能流潮流计算还需要考虑各种约束条件,如设备容量限制、能源质量限制等。
这些约束条件在模型中以不等式或等式的形式出现,需要在求解过程中得到满足。
含风电场的电力系统潮流计算一、本文概述随着全球能源结构的转型和可再生能源的大力发展,风电作为一种清洁、可再生的能源形式,其在电力系统中的比重日益增加。
风电场的大规模接入对电力系统的运行和控制带来了新的挑战,尤其是风电场出力的随机性和波动性对电力系统的潮流分布、电压稳定性以及保护控制等方面产生了显著影响。
因此,对含风电场的电力系统进行准确的潮流计算,对于电力系统的规划、设计、运行和控制具有重要的理论价值和现实意义。
本文旨在研究含风电场的电力系统潮流计算方法,分析风电场接入对电力系统潮流分布的影响,提出相应的潮流计算模型和算法。
文章首先介绍了风电场的基本特性及其在电力系统中的接入方式,然后详细阐述了含风电场的电力系统潮流计算的基本原理和方法,包括风电场出力模型的建立、潮流计算的基本方程和求解算法等。
在此基础上,文章进一步探讨了风电场接入对电力系统潮流分布的影响,包括风电场出力波动对电压稳定性、线路潮流和节点功率分布的影响等。
文章提出了针对含风电场的电力系统潮流计算的一些改进措施和优化策略,为提高电力系统的运行效率和稳定性提供参考。
通过本文的研究,可以为含风电场的电力系统潮流计算提供理论支持和实践指导,有助于更好地理解和解决风电场接入带来的电力系统运行问题,推动可再生能源在电力系统中的广泛应用和持续发展。
二、风电场特性及建模风电场作为可再生能源的重要组成部分,具有随机性、间歇性和不可预测性等特点。
这些特性使得风电场在电力系统中的建模和潮流计算变得复杂。
风电场的出力受到风速、风向、湍流等多种因素的影响,因此,准确描述风电场的特性并建立合适的模型是电力系统潮流计算的关键。
在风电场建模中,通常将风电场看作一个由多个风电机组组成的集合。
每个风电机组的出力取决于其装机容量、风速以及控制策略等因素。
为了简化计算,通常将风电场视为一个等效的电源,其出力等于所有风电机组出力的总和。
等效电源的出力特性可以通过统计方法得到,如威布尔分布、贝塔分布等。
含风电场的电力系统最优潮流算法综述
一、引言
随着风电场的快速发展,以风电为主体的电力系统最优潮流(OPF)分
析已经成为一个重要的研究热点和工程实践应用。
风电的调度问题的复杂
性主要取决于风力无法准确预测,这使得传统的OPF算法无法有效地解决
风电场调度问题,需要采用更为合适的最优潮流算法。
本文旨在概述和总
结风电场的最优潮流算法,以期能够加深对相关技术的理解,为提高风电
场最优潮流算法的性能和应用准备好一个参考框架。
二、基本原理
最优潮流算法是一种复杂的技术,它的基本原理是通过求解满足一定
约束条件下目标函数最优解的算法求解系统运行最优模式。
最优潮流算法
可以使电网的负荷得到最优的满足,而且在保证系统安全性前提下,尽可
能地使得水电、燃料等消耗资源的最小,实现最佳运行状态。
为了更好地
分析满足要求的最优模式,需要对模型进行优化,以求最小误差的负荷满
足条件及最小资源消耗的最优模式调度。
三、OPF算法类型
可以将OPF算法划分为有约束优化算法和受限优化算法,其中约束优
化算法又可分为具有线性等式约束条件和不具有线性等式约束条件的算法。
电力系统中的潮流计算与优化方法潮流计算是电力系统运行和规划中的重要环节,它用于计算电力系统中各节点的电压、相角、有功、无功功率以及线路、变压器等的潮流分布情况。
对电力系统进行潮流计算可以帮助电力系统运行人员了解系统的稳定性、可靠性以及容载能力,也可以为电力系统规划提供数据支持。
本文将介绍电力系统潮流计算的基本方法与优化技术。
一、潮流计算的基本方法1.1 普通潮流计算方法潮流计算的基本方法是牛顿-拉夫逊迭代法(Newton-Raphson Iteration Method)和高尔顿法(Gauss-Seidel Method)。
牛顿-拉夫逊迭代法主要是通过不断迭代求解雅可比矩阵的逆,直到迭代误差小于给定阀值时停止迭代;高尔顿法则是逐一更新所有节点的电压与相角,直至所有节点的迭代误差都小于给定阀值。
1.2 快速潮流计算方法在大型电力系统中,普通的潮流计算方法计算速度较慢。
因此,研究人员提出了一些针对快速潮流计算的方法,如快速牛顿-拉夫逊法(Fast Newton-Raphson Method)和DC潮流计算方法。
快速牛顿-拉夫逊法通过简化牛顿-拉夫逊法的迭代公式,减少计算量,提高计算速度;DC潮流计算方法则是将潮流计算问题转化为一个线性方程组的求解问题,进一步提升计算效率。
二、潮流计算的优化技术2.1 改进的潮流计算算法为了提高潮流计算的准确性和收敛速度,研究人员提出了一些改进的潮流计算算法。
其中,改进的牛顿-拉夫逊法(Improved Newton-Raphson Method)是一种结合牛顿-拉夫逊法和割线法的算法,通过混合使用这两种方法,实现在减小迭代误差的同时加快计算速度。
此外,基于粒子群优化算法(Particle Swarm Optimization)和遗传算法(Genetic Algorithm)的潮流计算算法也得到了广泛研究和应用。
2.2 潮流优化潮流计算不仅可以用于分析电力系统的工作状态,还可以作为优化问题的约束条件。
摘要本科毕业设计(论文)含风电场的电力系统最优潮流计算毕业设计(论文)原创性声明和使用授权说明IAbstract原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:Ⅰ摘要IIIAbstract摘要风力发电因具有随机性、间歇性和不可控性等特点,并入电网必将造成一定的影响。
传统潮流计算并没有考虑风电场,为了消除风电随机性波动对系统的不利影响,提高风电利用率,同时尽量降低系统的运行成本,有必要研究含风电场电力系统的潮流优化算法。
本文分析了风电的研究现状,对带有风电场的电力系统最优潮流问题进行建模。
模型中考虑了恒速发电机的稳态模型和风力发电的波动性对电力系统的影响,通过在优化目标函数中加入风力发电机的发电费用并将风力发电机组的出力作为变量处理,使得优化模型更趋合理。
最后采用内点法通过Matlab对IEEE14节点系统进行最优潮流的仿真计算,分析了风电场的接入可能对系统优化运行的影响,验证了本文所提模型的合理性和算法的有效性。
关键词:电力系统,风电场,最优潮流,内点法Ⅰ摘要Wind power generation due to randomness, intermittent and uncontrollable sexual characteristics, the grid is bound to have a certain impact. Traditional flow calculation does not consider the wind farm, wind power in order to eliminate random fluctuations in the adverse impact on the system and improve the utilization of wind power, while minimizing system operating costs, including wind farms is necessary to study the trend of power system optimization algorithm. This paper analyzes the research status of wind power, with a wind farm on the optimal power flow problem modeled. Considered in the model constant steady-state model generator and wind power volatility impact on the power system by adding the objective function in the optimization of wind turbines and wind turbine power generation cost of treatment as a variable output, making optimization model is more reasonable. Finally interior point method for IEEE14 node system with Matlab for optimal power flow simulation, analysis of wind farm access may affect the optimal operation of the system to verify the reasonableness of the proposed model and algorithm.Keywords:Power systems, wind farms, optimal power flow, interior point methodV目录摘要 (IV)Abstract (V)第1章绪论 (1)1.1课题背景 (1)1.2风能开发现状分析 (2)1.3本文研究内容 (4)第2章电力系统最优潮流 (6)2.1最优潮流研究内容 (6)2.1.1经典最优潮流 (7)2.1.2 安全约束最优潮流 (7)2.1.3 暂态稳定约束最优潮流 (7)2.1.4电压稳定约束最优潮流 (8)2.1.5含FACTS设备的最优潮流 (8)2.1.6 电力市场下的最优潮流 (9)2.1.7概率最优潮流 (10)2.2最优潮流模型 (10)2.3最优潮流计算方法 (12)2.3.1非线性规划法 (12)2.3.2二次规划法 (13)2.3.3线性规划法 (13)2.3.4混合规划法 (13)2.3.4梯度与牛顿类算法 (14)2.3.5内点算法 (15)2.3.6人工智能方法 (17)2.4最优潮流问题的内点算法 (18)2.5 本章小结 (23)第3章风电机组原理及接入电网后产生的影响 (25)3.1风力机组工作原理 (25)3.1.1空气动力学模型 (25)Ⅴ3.1.2风力机的特征系数 (27)3.2风力发电对电网的影响 (28)3.2.1产生电压波动和闪变 (28)3.2.2对系统产生的其它影响 (29)3.3 本章小结 (29)第4章含风电场的最优潮流求解 (30)4.1风电机组稳态数学模型 (30)4.2含风电场最优潮流求解 (31)4.3MATLAB在最优潮流计算中的优势 (34)4.4算例分析 (35)4.5本章小结 (37)结论 (39)参考文献 (40)致谢 (42)VII第1章绪论第1章绪论1.1 课题背景能源是向自然界提供能量转化的物质(核物理能源、矿物质能源、地理性能源、大气环流能源)。
基于概率统计的风电出力时间序列生成方法沈超;李永刚;秦潇璘;李冉;王海蛟【期刊名称】《电力科学与技术学报》【年(卷),期】2017(032)003【摘要】风电出力时间序列的生成是研究含风电场的电力系统工作的前提.基于历史风电出力波动特性,提出一种构造风电出力时间序列的方法,首先,将历史风电出力序列做小波滤波处理,得到较为光滑的风电出力曲线,该曲线可看作由大小不同的波动组成,进一步分析不同波动类别下小波滤波误差的概率分布;其次,根据波峰值将波动划分成不同类别,并以高斯函数拟合,统计各月份不同类别波动的高斯拟合函数参数的多维概率分布及波峰间隔的一维概率分布,以马尔科夫转移矩阵描述不同波动类别之间的转换概率;最后,根据统计结果序贯随机抽样波动类别及各统计参数,模拟生成各月风电出力序列.通过对比历史风电出力序列与模拟风电出力序列的评价指标,验证了该文方法的合理性.【总页数】7页(P50-56)【作者】沈超;李永刚;秦潇璘;李冉;王海蛟【作者单位】华北电力大学电气与电子工程学院,河北保定 071003;华北电力大学电气与电子工程学院,河北保定 071003;华北电力大学电气与电子工程学院,河北保定 071003;华北电力大学电气与电子工程学院,河北保定 071003;华北电力大学电气与电子工程学院,河北保定 071003【正文语种】中文【中图分类】TM715【相关文献】1.基于经验Copula函数的多风电场出力动态场景生成方法及其在机组组合中的应用 [J], 徐箭;洪敏;孙元章;周过海2.长时间尺度风电出力时间序列建模新方法研究 [J], 刘纯;吕振华;黄越辉;马烁;王伟胜3.基于通用分布的风电功率出力动态场景生成方法 [J], 曹慧秋;徐箭;洪敏;廖思阳;周过海4.考虑时空相关性的多风电场出力场景生成与评价方法 [J], 丁明; 宋晓皖; 孙磊; 黄冯; 张舒捷; 杜德贵5.基于Copula函数与等概率逆变换的风电出力场景生成方法 [J], 唐锦;张书怡;吴秋伟;陈健;李文博;周前;潘博因版权原因,仅展示原文概要,查看原文内容请购买。
电力系统中的潮流计算方法及精度评估研究概述电力系统潮流计算是电力系统运行和规划的关键技术之一。
它用于计算电力系统中各节点的电压和功率流向,以评估系统的稳定性、安全性和经济性。
本文将介绍电力系统中常用的潮流计算方法,并探讨潮流计算结果的精度评估方法。
一、潮流计算方法1. 高斯-赛德尔迭代法高斯-赛德尔迭代法是最早应用于电力系统潮流计算的方法之一。
该方法通过迭代计算每个节点的电压值,直到满足潮流平衡方程。
然而,由于其收敛速度较慢,只适用于较小规模的电力系统。
2. 牛顿-拉夫逊迭代法牛顿-拉夫逊迭代法是目前应用较广的潮流计算方法。
该方法通过建立潮流计算的牛顿方程组,并迭代求解节点电压值。
相比高斯-赛德尔迭代法,牛顿-拉夫逊迭代法具有更快的收敛速度和更好的稳定性。
3. 直流潮流计算法直流潮流计算法是一种快速计算潮流的方法,主要用于大规模电力系统的运行和规划。
该方法基于直流潮流模型,忽略了交流系统中的谐波和动态特性,降低了计算的复杂性。
然而,由于其模型简化,直流潮流计算法在评估系统安全性和稳定性方面的准确性较低。
二、潮流计算结果的精度评估1. 误差分析法误差分析法是一种常用的潮流计算结果的精度评估方法。
它通过比较潮流计算结果与实际测量值之间的差异来评估计算结果的准确性。
误差分析法通常涉及计算误差、输入误差和观测误差等方面的考虑。
2. 灵敏度分析法灵敏度分析法是一种用于评估潮流计算结果的精度和稳定性的方法。
通过计算各个输入参数对潮流计算结果的影响程度,可以评估计算结果对输入参数变化的敏感度,并识别不确定性因素。
3. 置信区间分析法置信区间分析法是一种用于评估潮流计算结果的不确定性的方法。
它通过构建置信区间,表示潮流计算结果的可信程度。
置信区间分析法可以在统计学框架下对潮流计算结果进行准确的可信度评估。
三、研究展望1. 基于深度学习的潮流计算方法近年来,深度学习在电力系统领域取得了显著的应用成果。
基于深度学习的潮流计算方法能够利用大量的数据和高级模型进行潮流计算,提高计算效率和准确性。