非均相混合物分离
- 格式:ppt
- 大小:1.35 MB
- 文档页数:16
其他非均相物系分离方法非均相物系分离方法是物理化学中常用的分离技术,用于分离混合物中的各个组分。
除了常见的沉淀、过滤、蒸馏等方法外,还有许多其他非均相物系分离方法,本文将重点介绍一些常见的非均相物系分离方法。
1. 吸附分离法吸附分离法是利用吸附剂对混合物中的某些组分具有选择性吸附的特性进行分离的方法。
常见的吸附剂有活性炭、硅胶、膨润土等。
该方法适用于分离液体和气体中的溶质,通过控制吸附剂的选择和条件,可以实现不同组分的分离。
2. 萃取分离法萃取分离法是利用溶液中各组分在两种互不溶解的溶剂中的溶解度差异进行分离的方法。
通常,一种溶剂被称为萃取剂,用于选择性地溶解混合物中的某个组分。
常见的萃取剂有乙酸乙酯、苯、四氯化碳等。
萃取分离法广泛应用于有机合成、环境监测等领域。
3. 离心分离法离心分离法是利用离心力将混合物中的不同组分分离的方法。
由于不同组分的密度、尺寸等特性不同,它们在离心力的作用下会产生不同的沉降速度,从而实现分离。
离心分离法广泛应用于生物化学、生命科学等领域,可以分离细胞、细胞器、蛋白质等。
4. 气相色谱(GC)气相色谱是一种基于物质在固定相与流动相间分配平衡的方法,通过分离和定量混合物中的不同组分。
在气相色谱中,混合物中的组分首先通过装有吸附剂的柱子,然后通过加热柱子使组分逐个挥发,最后被流动相带出,通过检测器进行检测和定量。
气相色谱广泛应用于分析化学、环境检测、食品安全等领域。
5. 气液色谱(GLC)气液色谱是利用不同组分在液态固定相和气相间分配平衡的方法进行分离的。
在气液色谱中,混合物首先通过液态固定相,然后通过加热使其逐个挥发,最后被气相带出,通过检测器进行检测和定量。
气液色谱广泛应用于分析化学、食品安全、医药生物等领域。
6. 膜分离法膜分离法是利用特殊的分离膜对混合物中的组分进行分离的方法。
根据分离机理和应用需求的不同,膜分离可以分为微滤、超滤、纳滤、逆渗透等。
例如,超滤膜可以通过分子大小的差异来分离溶液中的大分子和小分子。
常见非均相物系的分离非均相物系是指由两种或两种以上物质组成的混合物,不同物质之间具有明显的物理和/或化学性质差异。
在很多情况下,需要将非均相物系进行分离,以便单独利用或处理每种物质。
下面是常见的非均相物系分离方法。
1. 溶液蒸馏法溶液蒸馏法是将一个液体从另一个液体中分离出来的一种方法。
它利用了两种液体在不同温度下的沸点差异。
将混合液体加热到其中一种液体的沸点,这种液体汽化,经过冷凝后分离出来。
例如,水和酒精的混合物可以用溶液蒸馏法分离成单独的水和酒精。
2. 磁性分离法磁性分离法是一种利用物质磁性差异进行分离的方法。
这种方法通常适用于含有磁性物质和非磁性物质的混合物。
通过加磁场,磁性物质会被吸附到磁性物质收集器中,而非磁性物质则会保留在原始混合物中。
例如,铁粉可以用磁性分离法从混合物中分离出来。
3. 过滤法过滤法是将一个物质从另一个物质中分离出来的一种方法,适用于固体和液体的混合物。
该方法利用了物质间的粒度差异。
将混合物过滤,固体颗粒被滤出,而液体则通过筛网留在容器中。
例如,沉积在水中的泥土、砂和碎石可以通过过滤法分离。
4. 蒸发结晶法蒸发结晶法是将溶解在溶液中的固体物质分离出来的一种方法。
通过控制温度和压力来使溶液蒸发并结晶,溶解物会被分离出来。
例如,从海水中提取盐分就是利用蒸发结晶法实现的。
5. 萃取法萃取法是一种利用溶剂对混合物进行分离的方法。
尽管在分离混合物时溶剂的选择很重要,但萃取法的基本步骤是将萃取剂与混合物混合,使其中一种物质溶解在萃取剂中,另一种物质留在原混合物中。
例如,从生物体中提取化合物通常需要利用萃取法。
6. 离心法离心法是一种利用离心机对液体混合物进行分离的方法。
该方法依靠液体中不同物质之间的密度差异。
将混合物放入离心机中,并在高速旋转下,物质会向不同方向移动。
例如,从牛奶中分离脂肪可以使用离心法。
7. 气体吸附法气体吸附法是一种将气态物质从混合物中分离出来的方法。
这种方法利用了不同气体之间的吸附性差异。
其他非均相物系分离方法非均相物系分离方法是指一种将混合物中的组分分离开来的方法,其中混合物的组分一般无法通过物理或化学性质的差异来实现分离。
以下是一些常见的非均相物系分离方法:1. 沉淀法沉淀法是通过添加一种特定的药剂,使混合物中的某些组分产生沉淀,从而实现分离。
常见的沉淀法包括乙酸纤维素沉淀法、硫酸亚铁沉淀法等。
2. 萃取法萃取法是利用溶液中不同溶剂的亲和度差异,将混合物中的组分分离出来。
常见的萃取法有液-液萃取法、固-液萃取法等。
3. 蒸馏法蒸馏法是通过控制混合物中各组分的沸点差异,将其分离出来。
常见的蒸馏法有常压蒸馏法、减压蒸馏法等。
4. 结晶法结晶法是通过控制混合物中不同组分的溶解度,使一部分组分结晶出来,从而实现分离。
常见的结晶法有溶剂结晶法、冷却结晶法等。
5. 绝热升华法绝热升华法是利用混合物中某些组分的升华性质,通过加热使其升华出来,从而实现分离。
常见的绝热升华法有淋滤干燥法、干燥剂吸附法等。
6. 离心法离心法是利用混合物中各组分的密度差异,通过离心操作使其分离出来。
常见的离心法有常规离心法、密度梯度离心法等。
7. 色谱法色谱法是利用混合物中各组分在固定相和流动相之间的分配系数差异,通过在固定相上移动的速度差异来实现分离。
常见的色谱法有气相色谱法、液相色谱法等。
8. 电泳法电泳法是利用混合物中各组分在电场下的迁移速度差异,通过在带电介质中的迁移来实现分离。
常见的电泳法有毛细管电泳法、凝胶电泳法等。
总结起来,非均相物系分离方法包括沉淀法、萃取法、蒸馏法、结晶法、绝热升华法、离心法、色谱法和电泳法等。
每种方法在不同的实际应用场景中都有其独特的优势和适用性,通过合理选择和组合这些方法,可以实现对混合物中组分的有效分离和提纯。
非均相混合物的分离一、重力沉降及设备:核心原理:θθ≤沉停1.降尘室://t H u L u θθ≤⇒≤沉停t从而可推出: S t V u LB ≤解释:处理量S V 一定时,降尘室能够除尽的得颗粒最小直径只取决于降尘室的底面积,与其高度H 无关。
(若H 降低,则θ沉、θ停同时减少)注意事项: (1)将气流考虑为滞流流动,可利用斯托克斯公式处理t u t(2)由V S 计算底面积时,选用最小的颗粒直径d 来计算t u t(3)一般情况下,气体流速在1~3m/s ,有时可自行取值2.悬浮液沉降槽:(具体装置图见教材226页)主要运作过程:清液上浮从上面的溢流管流出,固体物质沉降下来随增稠液排出。
特点:稳态操作,各量不随时间变化。
核心问题是求沉降槽的截面积A 和高度h :公式:11()o CW A u X X ρ=-, W 为固体质量流量,o u t 为液体的表观沉降速度(与浓度有关),ρ为液体密度 X 为当前液面固液比,C X 为底流固液比一般步骤是先求出个页面的A 值,取最大的一个,再乘一个安全系数(直径5m 以下*1.5,直径30m 以上*1.2)h 的计算参见课本228页。
(结果*安全系数1.75+其他因素1~2m )二、离心沉降及设备主要设备:旋风分离器(设备图见课本230页)结构参数:标准的旋风分离器要求:h=D/2 B=D/4 D1=D/2 H1=2D H2=2D S=D/8 D2=D/4--------直径D 为旋风分离器最重要的结构参数,不同的型号各物理量对D 的比例不同主要性能指标:分离颗粒的效率与气体通过旋风分离器的压降。
处理量:V = uiBH ui 为进口气速一般在15~20 m/s主要问题:求临界粒径c d 和分割粒径50d主要公式:(1)c d = N=5(2)500.27D d u μρ=N=5,B=D/4)(3)总效率:100%o C C C η-=⨯入出入 o i i i x ηη=∑i η:粒级效率 i η=2(/)pi c d d(4)压降:22i f c u p ρζ∆=, 标准情况8c ζ=,且不随D 变化。
非均相混合物分离及固体流态化设备概述引言在化学工程和材料科学领域,非均相混合物的分离以及固体流态化是重要的研究课题。
非均相混合物是指由不同物质构成、相互分布不均匀的混合物,如颗粒物质的混合物、油水乳液等。
为了实现对非均相混合物的高效分离和固体物质的流态化,我们可以利用一系列设备和技术。
本文将对非均相混合物分离及固体流态化设备进行概述。
一、非均相混合物分离设备1. 离心机离心机是一种常用的非均相混合物分离设备。
它利用离心力的作用,通过对混合物进行旋转,使具有不同密度的组分在离心力的作用下分层沉降,从而实现分离。
离心机广泛应用于生物医药、食品工程等领域。
2. 过滤设备过滤是一种常见的分离技术,通过介质过滤或表面过滤,可以实现对非均相混合物的分离。
常见的过滤设备包括滤布、滤纸、滤筒等。
过滤设备适用于从固液混合物或固气混合物中分离固体颗粒。
3. 萃取设备萃取是一种基于物质在溶剂中的溶解度差异而实现分离的技术。
在非均相混合物中,通过选择合适的溶剂,可以将目标物质从混合物中萃取出来。
萃取设备包括萃取塔、萃取装置等。
4. 蒸馏设备蒸馏是一种基于组分在溶液中的沸点差异而实现分离的技术。
通过加热混合物,使其中沸点较低的组分汽化,然后冷凝收集,可以实现对非均相混合物的分离。
蒸馏设备包括塔式蒸馏装置、蒸发器等。
二、固体流态化设备1. 流化床反应器流化床反应器是一种常用的固体流态化设备。
它利用气体的上升流动使颗粒物质悬浮起来,形成流态床。
流化床反应器广泛应用于化工反应器、催化裂化装置等领域。
2. 液固流化床液固流化床是一种将液态介质与固体颗粒悬浮在一起的流态化设备。
液固流化床广泛应用于化工生产中的固体/液体反应、液体的氧化、脱氢等反应过程。
三、实例应用1. 石油化工领域在石油化工领域,非均相混合物的分离及固体流态化设备的应用十分广泛。
例如,利用离心机对原油进行沉淀分离,获得含油和不含油的两相液体;利用过滤设备对油水乳液进行分离;利用流化床反应器进行催化裂化等。