数据分析入门之数据分析报告01
- 格式:pptx
- 大小:13.27 MB
- 文档页数:14
数据分析报告范文数据分析报告范文篇一:数据分析报告范例201X年中国手游市场年度数据分析报告一、201X年手游市场基本概况1、201X年中国游戏市场份额分布:客户端游戏仍是游戏市场主导,移动游戏暂时无法取代。
2、201X年移动游戏用户规模:201X年年底,手机游戏用户规模超过5亿,近半数中国人在玩手游 3、201X年移动游戏市场实际销售收入: 201X年移动游戏销售收入超过200亿,销售收入是201X年的2倍以上 4、201X年手机游戏各类型占比分布:休闲游戏数量超过6成5、各游戏类型留存率水平:动作类游戏留存率最高二、用户行为透析1、端游与手游之间用户重合度分析:端游与手游用户重合度达到2 6.3%,端游用户转化为手游用户的空间较大2、201X年智能移动游戏操作系统分析:安卓成手机游戏主要操作系统,苹果手机用户更愿意花钱玩游戏 3、玩家付费行为分析:休闲射击类游戏付费人数多,重度手游单次付费金额较高4、玩家付费时间分析:玩家的付费高峰习惯趋于稳定,付费高峰发生在午饭后和晚上睡觉前 5、支付方式对比:61%玩家首选支付宝三、地域分布1、60%手游用户聚集在三线城市,三线城市成手游蓝海市场 2、各游戏类型下载量占比最高的城市分布四、手游发展趋势预测1、手机游戏重度化、端游化 2、端游I P手游化3、支付方式、支付渠道的变革篇二:数据分析报告格式数据分析报告格式分析报告的输出是是你整个分析过程的成果,是评定一个产品、一个运营事件的定性结论,很可能是产品决策的参考依据,既然这么重要那当然要写好它了。
标题为什么是数据分析报告一、引言在当今信息化时代,数据无处不在,大量的数据被不断产生和积累。
为了从这些数据中获取有价值的信息,数据分析成为了一种重要的工具和方法。
数据分析报告作为数据分析的结果输出形式,对于企业和决策者来说具有重要意义。
本文将从几个方面探讨为何数据分析报告成为关键的决策支持工具。
二、数据分析报告的定义和功能2.1 定义数据分析报告是指通过对大数据进行采集、整理、清洗和分析,从中提取有关信息并进行汇总和展示的文档形式。
它通常包括数据的来源、分析方法、结论和建议等内容。
2.2 功能数据分析报告的主要功能包括:•提供决策支持:通过对数据的深入分析,为企业和决策者提供准确的信息和洞察力,帮助他们做出正确的决策。
•评估业务绩效:通过对关键指标的分析,评估业务的表现和效果,为业务改进提供依据。
•发现趋势和模式:通过数据挖掘和统计分析,发现数据中隐藏的趋势和模式,为企业提供发展战略和方向。
•监测数据质量:通过对数据的清洗和检验,发现数据中的问题和错误,提高数据的质量和可靠性。
三、为何选择数据分析报告3.1 数据驱动决策在信息化时代,数据已经成为企业决策的基础。
传统的主观决策方式往往容易受到个人经验和偏见的影响,而数据分析报告能够通过客观的数据和事实,为决策者提供直观、全面的信息,减少决策的不确定性。
3.2 提高决策效率数据分析报告能够通过对大量数据的整理和分析,提供结构化的信息,使决策者能够快速了解和把握关键问题,从而提高决策的效率。
3.3 发现隐藏的商机和风险数据分析报告可以通过挖掘数据中的趋势和模式,发现市场的新机会和潜在风险。
通过对数据的深入分析,企业可以及时调整战略,抓住机会,避免风险。
四、数据分析报告的编写要点4.1 数据的准确性和可信度数据分析报告的基础是数据的准确性和可信度。
在编写报告时,应该对数据的来源进行详细的说明,并对数据进行验证和校验,确保数据的准确性。
4.2 结构清晰、逻辑严谨数据分析报告应该具有清晰的结构和严谨的逻辑。
01 结构规范及写作报告常用结构:1. 架构清晰、主次分明数据分析报告要有一个清晰的架构,层次分明能降低阅读成本,有助于信息的传达。
虽然不同类型的分析报告有其适用的呈现方式,但总的来说作为议论文的一种,大部分的分析报告还是适用总-分-(总) 的结构。
推荐学习金字塔原理,中心思想明确,结论先行,以上统下,归类分组,逻辑递进。
行文结构先重要后次要,先全局后细节,先结论后原因,先结果后过程。
对于不太重要的内容点到即止,舍弃细枝末节与主题不相关的东西。
2. 核心结论先行、有逻辑有依据结论求精不求多。
大部分情况下,数据分析是为了发现问题,一份分析报告如果能有一个最重要的结论就已经达到目的。
精简的结论能降低阅读者的阅读门槛,相反太繁琐、有问题的结论100个=0。
报告要围绕分析的背景和目的以及要解决的问题,给出明确的答案和清晰的结论;相反,结论或主题太多会让人不知所云,不知道要表达什么。
分析结论一定要基于紧密严谨的数据分析推导过程,尽量不要有猜测性的结论,太主观的结论就会失去说服力,一个连自己都没有把握的结论千万不要在报告里误导别人。
但实际中,部分合理的猜测找不到直观可行的验证,在给出猜测性结论的时候,一定是基于合理的、有部分验证依据前提下,谨慎地给出结论,并且说明是猜测。
如果在条件允许的前提下可以通过调研/回访的方式进行论证。
不回避“不良结论”。
在数据准确、推导合理的基础上,发现产品或业务问题并直击痛点,这其实是数据分析的一大价值所在。
3. 结合实际业务、建议合理基于分析结论,要有针对性的建议或者提出详细解决方案,那么如何写建议呢?首先,要搞清给谁提建议。
不同的目标对象所处的位置不同,看问题的角度就不一样,比如高层更关注方向,分析报告需要提供业务的深度洞察和指出潜在机会点,中层及员工关注具体策略,基于分析结论能通过哪些具体措施去改善现状。
其次,要结合业务实际情况提建议。
虽然建议是以数据分析为基础提出的,但仅从数据的角度去考虑就容易受到局限、甚至走入脱离业务忽略行业环境的误区,造成建议提了不如不提的结果。
广西大学数据分析实验报告学生姓名:谢丁丁学号:1111100227班级:信科111班完成时间:2014年6月8日实验内容:对数据集advert.sav作回归分析。
这是一个虚拟数据集,目的是研究广告费用和销售量之间的关系。
题意分析:变量之间的关系要么相关、要么不相关。
从学过的知识可知,定量数据的度量方法包括散点图和相关系数。
所以可从这里入手。
实验过程与结果:1、画出散点图:选择菜单“Graph”—散点图……”,出现如下选项卡点击“定义”,出现界面如下,按如下选择:点击确定,即可得所需的散点图。
如下所示:散点图分析:从散点图可看出所画的点大致成一条从左下到右上的直线,由此可初步判断销售量和广告费用成正相关关系。
2、做相关系数分析选择菜单“Analyze”--“Correlate”--“Bivariate”,出现两变量相关分析选项卡。
讲“advert”与“sales”选入Variables列表。
选择相关系数,点击OK,过程和结果如下所示:Person相关系数:相关性Detrended sales Advertising spendingDetrended sales Pearson 相关性 1 .916**显著性(双侧).000N 24 24 Advertising spending Pearson 相关性.916** 1显著性(双侧).000N 24 24 **. 在.01 水平(双侧)上显著相关。
图1Kendall相关系数与Spearman相关系数:相关系数Detrended sales Advertising spendingKendall 的tau_b Detrended sales 相关系数 1.000 .717**Sig.(双侧). .000N 24 24 Advertising spending 相关系数.717** 1.000Sig.(双侧).000 .N 24 24 Spearman 的rho Detrended sales 相关系数 1.000 .889**Sig.(双侧). .000N 24 24 Advertising spending 相关系数.889** 1.000Sig.(双侧).000 .N 24 24 **. 在置信度(双测)为0.01 时,相关性是显著的。