第7章:遗传算法2
- 格式:ppt
- 大小:1.92 MB
- 文档页数:91
实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。
遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。
本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。
2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。
其基本原理可以概括为:选择、交叉和变异。
(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。
(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。
交叉算子的选择及实现方式会对算法效果产生很大的影响。
(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。
通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。
3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。
(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。
(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。
(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。
b. 计算适应度:根据适应度函数,计算每个个体的适应度值。
c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。
d. 交叉操作:对父代进行交叉操作,生成新的个体。
e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。
第二代遗传算法
第二代遗传算法是继第一代遗传算法之后发展起来的一种优化算法,其在计算机科学与人工智能领域得到了广泛的应用。
第二代遗传算法采用了新的变异和交叉算子,将遗传算法与模拟退火等启发式搜索算法结合起来,能够更好地解决多样化的问题。
第二代遗传算法最重要的特点是可以产生多个解,这些解在某些方面有所不同,因此可以同时满足各种不同的需求。
这种多样性在解决一些复杂性问题时是十分重要的。
通过保持种群中的多样性,遗传算法可以更快地在整个搜索空间中搜索最优解,避免局部最优陷阱。
除了保持种群多样性,第二代遗传算法还引入了自适应的参数控制和多目标优化的支持。
自适应的参数控制指的是算法可以根据当前的搜索状态自动调整参数,例如交叉和变异的概率,从而更好地适应不同的环境。
多目标优化则指的是算法可以同时优化多个(甚至是相互矛盾的)目标,例如在设计飞机时考虑速度、稳定性、经济性等多个因素。
第二代遗传算法在实际应用中已经取得了很多成功。
例如,它被广泛地应用于计算机网络的路由优化、自动化设计、金融风险管理、工业生产优化等领域。
此外,遗传算法还被应用于人工智能领域的遗传表达式规划、群体智能问题、特征选择和分类问题等。
总之,第二代遗传算法在实现优化问题的过程中具有很大的潜力,实际上,它已经成为了一个强大的工具,可以处理许多实际问题。
随着计算机硬件和软件的进步,第二代遗传算法将会得到更加广泛的应用。
遗传算法总结遗传算法概念遗传算法是模仿⾃然界⽣物进化机制发展起来的随机全局搜索和优化⽅法,它借鉴了达尔⽂的进化论和孟德尔的遗传学说。
其本质是⼀种⾼效、并⾏、全局搜索的⽅法,它既能在搜索中⾃动获取和积累有关空间知识,并⾃适应地控制搜索过程以求得最优解遗传算法操作使⽤适者⽣存的原则,在潜在的解决⽅案种群中逐次产⽣⼀个近视最优⽅案。
在遗传算法的每⼀代中,根据个体在问题域中的适应度值和从⾃然遗传学中借鉴来的再造⽅法进⾏个体选择,产⽣⼀个新的近视解。
这个过程导致种群中个体的进化,得到的新个体⽐原个体更适应环境,就像⾃然界中的改造⼀样。
应⽤遗传算法在⼈⼯智能的众多领域具有⼴泛应⽤。
例如,机器学习、聚类、控制(如煤⽓管道控制)、规划(如⽣产任务规划)、设计(如通信⽹络设计、布局设计)、调度(如作业车间调度、机器调度、运输问题)、配置(机器配置、分配问题)、组合优化(如TSP、背包问题)、函数的最⼤值以及图像处理和信号处理等等。
遗传算法多⽤应与复杂函数的优化问题中。
原理遗传算法模拟了⾃然选择和遗传中发⽣的复制、交叉、和变异等现象,从任⼀初始种群出发,通过随机选择、交叉、变异操作,产⽣⼀群更适合环境的个体,使群体进⾏到搜索空间中越来越好的区域,这样⼀代⼀代地不断繁衍进化,最后收敛到⼀群最适合环境的个体求得问题的最优解。
算法流程1.编码:解空间中的解数据x,作为作为遗传算法的表现型形式。
从表现型到基本型的映射称为编码。
遗传算法在进⾏搜索之前先将解空间的解数据表⽰成遗传空间的基本型串结构数据,这些串结构数据的不同的组合就构成了不同的点。
2.初始种群的形成:随机产⽣N个初始串数据,每个串数据称为⼀个个体,N个串数据构成了⼀个群体。
遗传算法以这N个串结构作为初始点开始迭代。
设置进化代数计数器t 0;设置最⼤进⾏代数T;随机⽣成M个个体作为初始群体P(0)。
3.适应度检测:适应度就是借鉴⽣物个体对环境的适应程度,适应度函数就是对问题中的个体对象所设计的表征其优劣的⼀种测度。
遗传算法教程GA2遗传算法教程GA2遗传算法(Genetic Algorithm,GA)是一种模拟自然进化过程的优化算法。
它模拟了自然界中的遗传和进化过程,通过适应度函数评价个体的优劣,通过选择、交叉和变异等操作,不断迭代最优解。
遗传算法的基本过程包括初始化种群、计算适应度、选择、交叉、变异和更新种群。
下面将详细介绍这些步骤。
首先是初始化种群。
种群是指问题的解空间中的一个个体集合,每个个体代表问题的一个可能解。
种群的初始化可以随机生成,也可以根据问题的特点进行设计。
通常情况下,种群的大小越大,空间越广,但计算量也会增加。
接下来是计算适应度。
适应度函数是用来评价个体优劣的指标,它根据问题的具体要求进行设计。
适应度函数应该能够对个体的解进行量化评价,并且能够反映个体与最优解之间的差距。
适应度越高,个体越好。
然后是选择操作。
选择是根据个体的适应度来决定哪些个体被选择作为下一代的父代。
选择操作通常采用轮盘赌算法或排名选择算法。
轮盘赌算法根据个体适应度的比例来决定个体被选中的概率,适应度越高的个体被选中的概率越大。
排名选择算法则根据个体适应度的等级来决定个体被选中的概率。
接下来是交叉操作。
交叉是指将两个父代个体的染色体进行配对,通过染色体上的其中一种操作(如交换、重组等),生成两个子代个体。
交叉操作可以增加种群的多样性,避免陷入局部最优解。
然后是变异操作。
变异是指对个体的染色体进行随机的变换,从而产生新的个体。
变异操作能够引入种群的新解,并且有助于跳出当前空间的局部最优解。
最后是更新种群。
通过选择、交叉和变异操作生成的新个体替代原来的个体,形成下一代的种群。
这样不断进行迭代,直到满足终止条件为止,终止条件可以是达到最大迭代次数、找到满意解或达到收敛条件等。
遗传算法在实际应用中有广泛的应用。
例如,在旅行商问题中,遗传算法可以用来寻找最短路径;在机器学习中,遗传算法可以用来优化神经网络的权重和偏差;在工程设计中,遗传算法可以用来优化系统的参数等。
遗传算法的C语⾔实现(⼆)-----以求解TSP问题为例上⼀次我们使⽤遗传算法求解了⼀个较为复杂的多元⾮线性函数的极值问题,也基本了解了遗传算法的实现基本步骤。
这⼀次,我再以经典的TSP问题为例,更加深⼊地说明遗传算法中选择、交叉、变异等核⼼步骤的实现。
⽽且这⼀次解决的是离散型问题,上⼀次解决的是连续型问题,刚好形成对照。
⾸先介绍⼀下TSP问题。
TSP(traveling salesman problem,旅⾏商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增⼤按指数⽅式增长,到⽬前为⽌还没有找到⼀个多项式时间的有效算法。
TSP问题可以描述为:已知n个城市之间的相互距离,某⼀旅⾏商从某⼀个城市出发,访问每个城市⼀次且仅⼀次,最后回到出发的城市,如何安排才能使其所⾛的路线最短。
换⾔之,就是寻找⼀条遍历n个城市的路径,或者说搜索⾃然⼦集X={1,2,...,n}(X的元素表⽰对n个城市的编号)的⼀个排列P(X)={V1,V2,....,Vn},使得Td=∑d(V i,V i+1)+d(V n,V1)取最⼩值,其中,d(V i,V i+1)表⽰城市V i到V i+1的距离。
TSP问题不仅仅是旅⾏商问题,其他许多NP完全问题也可以归结为TSP问题,如邮路问题,装配线上的螺母问题和产品的⽣产安排问题等等,也使得TSP问题的求解具有更加⼴泛的实际意义。
再来说针对TSP问题使⽤遗传算法的步骤。
(1)编码问题:由于这是⼀个离散型的问题,我们采⽤整数编码的⽅式,⽤1~n来表⽰n个城市,1~n的任意⼀个排列就构成了问题的⼀个解。
可以知道,对于n个城市的TSP问题,⼀共有n!种不同的路线。
(2)种群初始化:对于N个个体的种群,随机给出N个问题的解(相当于是染⾊体)作为初始种群。
这⾥具体采⽤的⽅法是:1,2,...,n作为第⼀个个体,然后2,3,..n分别与1交换位置得到n-1个解,从2开始,3,4,...,n分别与2交换位置得到n-2个解,依次类推。
遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。
遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。
初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。
适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。
SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。
遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程。
遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。
遗传算法算法原理(原创实用版)目录1.遗传算法的概述2.遗传算法的原理3.遗传算法的应用正文一、遗传算法的概述遗传算法(Genetic Algorithm,简称 GA)是一种模拟自然界生物进化过程的优化算法。
其核心思想是基于自然选择、遗传和突变等生物学原理,通过群体中的个体在不断迭代中进行优胜劣汰,达到解决问题和优化目标的效果。
遗传算法在解决复杂问题、非线性问题和全局最优解问题等方面具有较强的优势,广泛应用于各个领域。
二、遗传算法的原理1.遗传操作遗传算法的基本操作包括选择、交叉和变异。
选择操作是根据适应度函数对当前群体中的个体进行评估,选择优秀个体进行繁殖。
交叉操作是将选中的优秀个体进行染色体互换,产生新的后代。
变异操作是在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。
2.适应度函数适应度函数是遗传算法中的重要概念,用于评估每个个体的优劣程度。
适应度函数的取值范围为 [0, 1],其中 1 表示最优解,0 表示最劣解。
在遗传算法中,适应度函数的取值会直接影响到个体的选择和淘汰。
3.遗传算法的基本流程遗传算法的基本流程如下:(1)初始化种群:创建一个初始种群,包括多个随机生成的个体,每个个体表示一个解。
(2)评估适应度:计算种群中每个个体的适应度值。
(3)选择操作:根据适应度值对种群进行选择,选择一定数量的优秀个体进行繁殖。
(4)交叉操作:对选中的优秀个体进行染色体互换,生成新的后代。
(5)变异操作:在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。
(6)更新种群:将新产生的后代替换掉原种群中一些适应度较低的个体,形成新的种群。
(7)重复步骤 2-6,直至满足停止条件。
三、遗传算法的应用遗传算法在许多领域都取得了显著的应用成果,如机器学习、控制系统、信号处理、图像处理、运筹学等。
遗传算法的基本原理和⽅法遗传算法的基本原理和⽅法⼀、编码编码:把⼀个问题的可⾏解从其解空间转换到遗传算法的搜索空间的转换⽅法。
解码(译码):遗传算法解空间向问题空间的转换。
⼆进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的⼆进制代码之间有很⼤的汉明距离,使得遗传算法的交叉和突变都难以跨越。
格雷码(Gray Code):在相邻整数之间汉明距离都为1。
(较好)有意义的积⽊块编码规则:所定编码应当易于⽣成与所求问题相关的短距和低阶的积⽊块;最⼩字符集编码规则,所定编码应采⽤最⼩字符集以使问题得到⾃然的表⽰或描述。
⼆进制编码⽐⼗进制编码搜索能⼒强,但不能保持群体稳定性。
动态参数编码(Dynamic Paremeter Coding):为了得到很⾼的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到⼀个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这⼀过程,直到达到要求的精度为⽌。
编码⽅法:1、⼆进制编码⽅法缺点:存在着连续函数离散化时的映射误差。
不能直接反映出所求问题的本⾝结构特征,不便于开发针对问题的专门知识的遗传运算算⼦,很难满⾜积⽊块编码原则2、格雷码编码:连续的两个整数所对应的编码之间仅仅只有⼀个码位是不同的,其余码位都相同。
3、浮点数编码⽅法:个体的每个基因值⽤某⼀范围内的某个浮点数来表⽰,个体的编码长度等于其决策变量的位数。
4、各参数级联编码:对含有多个变量的个体进⾏编码的⽅法。
通常将各个参数分别以某种编码⽅法进⾏编码,然后再将他们的编码按照⼀定顺序连接在⼀起就组成了表⽰全部参数的个体编码。
5、多参数交叉编码:将各个参数中起主要作⽤的码位集中在⼀起,这样它们就不易于被遗传算⼦破坏掉。
评估编码的三个规范:完备性、健全性、⾮冗余性。
⼆、选择遗传算法中的选择操作就是⽤来确定如何从⽗代群体中按某种⽅法选取那些个体遗传到下⼀代群体中的⼀种遗传运算,⽤来确定重组或交叉个体,以及被选个体将产⽣多少个⼦代个体。
遗传算法例子2篇遗传算法是一种受自然演化启发的优化算法,可以用来解决各种优化问题。
它通过模拟自然选择、遗传和突变等进化过程来不断搜索最优解。
在实际应用中,遗传算法可以被用于求解函数优化、组合优化、约束优化等问题。
下面我将为你介绍两个关于遗传算法的例子。
第一篇:基于遗传算法的旅行商问题求解旅行商问题(Traveling Salesman Problem, TSP)是计算机科学中经典的组合优化问题之一。
其目标是找到一条最短路径,使得一个旅行商可以经过所有城市,最终返回起始城市。
这个问题在实际应用中经常遇到,比如物流配送、电路布线等。
遗传算法可以用来求解旅行商问题。
首先,我们需要定义一种编码方式来表示旅行路径。
通常采用的是二进制编码,每个城市用一个二进制位来表示。
接下来,我们需要定义适应度函数,也就是评估每个个体的优劣程度,可以使用路径上所有城市之间的距离之和作为适应度值。
在遗传算法的执行过程中,首先创建一个初始种群,然后通过选择、交叉和变异等操作对种群进行迭代优化。
选择操作基于适应度值,较优秀的个体有更高的概率被选中。
交叉操作将两个个体的基因片段进行交换,以产生新的个体。
变异操作则在个体的基因中引入一些随机变动。
通过不断迭代,遗传算法能够逐渐找到一个接近最优解的解。
当然,由于旅行商问题属于NP-hard问题,在某些情况下,遗传算法可能无法找到全局最优解,但它通常能够找到质量较高的近似解。
第二篇:遗传算法在神经网络结构搜索中的应用神经网络是一种强大的机器学习模型,它具备非常大的拟合能力。
然而,在设计神经网络结构时,选择合适的网络层数、每层的神经元数量和连接方式等是一个非常复杂的问题。
传统的人工设计方法通常需要进行大量的尝试和实验。
遗传算法可以应用于神经网络结构搜索,以实现自动化的网络设计。
具体来说,遗传算法中的个体可以被看作是一种神经网络结构,通过遗传算法的进化过程可以不断优化网络结构。
在神经网络结构搜索的遗传算法中,个体的基因表示了网络的结构和参数。
遗传算法一、遗传算法的简介及来源1、遗传算法简介遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《自然系统和人工系统的自适应》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法模仿了生物的遗传、进化原理, 并引用了随机统计理论。
在求解过程中, 遗传算法从一个初始变量群体开始, 一代一代地寻找问题的最优解, 直至满足收敛判据或预先设定的迭代次数为止。
它是一种迭代式算法。
2、遗传算法的基本原理遗传算法是一种基于自然选择和群体遗传机理的搜索算法, 它模拟了自然选择和自然遗传过程中发生的繁殖、杂交和突变现象。
在利用遗传算法求解问题时, 问题的每个可能的解都被编码成一个“染色体”,即个体, 若干个个体构成了群体( 所有可能解) 。
在遗传算法开始时, 总是随机地产生一些个体( 即初始解) , 根据预定的目标函数对每个个体进行评价, 给出了一个适应度值。
基于此适应度值, 选择个体用来繁殖下一代。
选择操作体现了“适者生存”原理, “好”的个体被选择用来繁殖, 而“坏”的个体则被淘汰。
然后选择出来的个体经过交叉和变异算子进行再组合生成新的一代。
这一群新个体由于继承了上一代的一些优良性状,因而在性能上要优于上一代, 这样逐步朝着更优解的方向进化。
因此, 遗传算法可以看作是一个由可行解组成的群体逐代进化的过程。
3、遗传算法的一般算法(1)创建一个随机的初始状态初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。
(2)评估适应度对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。