神经网络及应用第三章感知器神经网络
- 格式:pdf
- 大小:524.70 KB
- 文档页数:19
人工神经网络学习总结笔记主要侧重点:1.概念清晰2.进行必要的查询时能从书本上找到答案第一章:绪论1.1人工神经网络的概述“认识脑”和“仿脑”:人工智能科学家在了解人脑的工作机理和思维的本质的基础上,探索具有人类智慧的人工智能系统,以模拟延伸和扩展脑功能。
我认为这是人工神经网络研究的前身。
形象思维:不易被模拟人脑思维抽象推理逻辑思维:过程:信息概念最终结果特点:按串行模式人脑与计算机信息处理能力的不同点:方面类型人脑计算机记忆与联想能力可存储大量信息,对信息有筛选、回忆、巩固的联想记忆能力无回忆与联想能力,只可存取信息学习与认知能力具备该能力无该能力信息加工能力具有信息加工能力可认识事物的本质与规律仅限于二值逻辑,有形式逻辑能力,缺乏辩证逻辑能力信息综合能力可以对知识进行归纳类比和概括,是一种对信息进行逻辑加工和非逻辑加工相结合的过程缺乏该能力信息处理速度数值处理等只需串行算法就能解决的应用问题方便,计算机比人脑快,但计算机在处理文字图像、声音等类信息的能力远不如人脑1.1.2人脑与计算机信息处理机制的比较人脑与计算机处理能力的差异最根本的原因就是信息处理机制的不同,主要有四个方面方面类型人脑计算机系统结构有数百亿神经元组成的神经网络由二值逻辑门电路构成的按串行方式工作的逻辑机器信号形式模拟量(特点:具有模糊性。
离散的二进制数和二值逻辑容易被机器模拟的思维方式难以被机器模拟)和脉冲两种形式形式信息储存人脑中的信息分布存储于整个系统,所存储的信息是联想式的有限集中的串行处理机制信息处理机制高度并行的非线性信息处理系统(体现在结构上、信息存储上、信息处理的运行过程中)1.1.3人工神经网络的概念:在对人脑神经网络的基本认识的基础上,用数理方法从信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,称之为人工神经网络,是对人脑的简化、抽象以及模拟,是一种旨在模仿人脑结构及其功能的信息处理系统。
其他定义:由非常多个非常简单的处理单元彼此按某种方式相互连接而形成的计算系统,外部输入信息之后,系统产生动态响应从而处理信息。
感知器神经网络感知器是一种前馈人工神经网络,是人工神经网络中的一种典型结构。
感知器具有分层结构,信息从输入层进入网络,逐层向前传递至输出层。
根据感知器神经元变换函数、隐层数以及权值调整规则的不同,可以形成具有各种功能特点的人工神经网络。
本节将介绍单层感知器和多层感知器的工作原理。
5.3.1单层感知器1958年,美国心理学家Frank Rosenblatt 提出一种具有单层计算单元的神经网络,称为Perceptron ,即感知器。
感知器是模拟人的视觉接受环境信息,并由神经冲动进行信息传递的层次型神经网络。
感知器研究中首次提出了自组织、自学习的思想,而且对所能解决的问题存在着收敛算法,并能从数学上严格证明,因而对神经网络研究起了重要推动作用。
单层感知器的结构与功能都非常简单,以至于在解决实际问题时很少采用,但由于它在神经网络研究中具有重要意义,是研究其它网络的基础,而且较易学习和理解,适合于作为学习神经网络的起点。
1.感知器模型单层感知器是指只有一层处理单元的感知器,如果包括输入层在内,应为两层,如图5-14所示。
图中输入层也称为感知层,有n 个神经元节点,这些节点只负责引入外部信息,自身无信息处理能力,每个节点接收一个输入信号,n 个输入信号构成输入列向量X 。
输出层也称为处理层,有m 个神经元节点,每个节点均具有信息处理能力,m 个节点向外部输出处理信息,构成输出列向量O 。
两层之间的连接权值用权值列向量Wj 表示,m 个权向量构成单层感知器的权值矩阵W 。
3个列向量分别表示为:()()()121212,,,,,,,,,,,,,,,,1,2,,T i n Ti n Tj j j ij nj X x x x x O o o o o W w w w w j m====图5-14单层感知器对于处理层中任一节点,由第二节介绍的神经元数学模型知,其净输入j net '为来自输入层各节点的输入加权和∑==ni i ij j x w net 1'(5-26)输出o j 为节点净输入与阈值之差的函数,离散型单计算层感知器的转移函数一般采用符号函数。
感知神经网络的结构和功能感知神经网络(Perceptron)是一种最基本的人工神经网络模型。
它是通过对传感器输入的特征进行计算和分类,来实现对不同物体、场景等概念的识别和辨别。
感知神经网络的结构简单,功能强大,被广泛应用于机器人、自动驾驶、图像识别等领域。
感知神经网络主要由神经元和它们之间的连接组成。
每个神经元具有多个输入和一个输出。
输入可以来自其他神经元的输出,也可以是外部环境的传感器输出。
神经元的输出是一个数值,用于传递给其他神经元或执行输出动作。
神经元之间的连接可以有不同的权重,决定了不同输入在输出上的影响力大小。
感知神经网络的主要功能是分类。
通过将输入特征输入到感知神经网络中,神经网络会根据预设的权重和阈值,对输入进行计算和判断。
如果得到的结果与预期相符,则将该结果作为输出;否则通过调整权重和阈值,不断优化神经网络的分类效果。
感知神经网络还可以进行学习。
学习的核心就是调整连接权重和阈值。
感知神经网络学习的方法叫做“感知训练法”。
该方法的基本思想是不断地输入训练数据,然后根据输入数据的正确分类,调整权重和阈值,使神经网络得到更好的分类能力。
感知训练法可以通过梯度下降算法来实现,该算法可以计算每个权重和阈值的误差贡献,然后按照贡献大小来依次进行调整,从而不断优化神经网络的分类能力。
感知神经网络在图像识别、物体跟踪、自动驾驶等领域有着广泛的应用。
例如,在自动驾驶领域,感知神经网络可以通过摄像头输入和激光雷达输出,来实现对道路、障碍物等物体的识别和分类。
当车辆行驶至特定场景时,感知神经网络可以自动做出相应的决策,保证车辆的安全行驶。
总的来说,感知神经网络的结构简单,但其分类和学习的功能具有实用性和广泛性。
在不同的领域中,感知神经网络已经得到了广泛的应用。
未来,随着人工智能技术的不断发展,感知神经网络还将有更广泛的应用前景。
感知器神经网络[例4.1]考虑一个简单的分类问题。
设计一个感知器,将二维的四组输入矢量分成两类。
输入矢量为:P=[-0.5 -0.5 0.3 0;-0.5 0.5 -0.5 1];目标矢量为:T=[1.0 l.0 0 0],解:通过前面对感知器图解的分析可知,感知器对输入矢量的分类实质是在输入矢量空间用W*P十b=0的分割界对输人矢量进行切割而达到分类的目的。
根据这个原理,对此例中二维四组输人矢量的分类问题,可以用下述不等式组来等价表示出:实际上可以用代数求解法来求出上面不等式中的参数w1、w2和w3。
经过迭代和约简,可得到解的范围为:一组可能解为:而当采用感知器神经网络来对此题进行求解时,意味着采用具有阈值激活函数的神经网络,按照问题的要求设计网络的模型结构,通过训练网络权值W=[w11,w12]和b,并根据学习算法和训练过程进行程序编程,然后运行程序,让网络自行训练其权矢量,直至达到不等式组的要求。
鉴于输入和输出目标矢量已由问题本身确定,所以所需实现其分类功能的感知器网络结构的输人节点r,以及输出节点数,已被问题所确定而不能任意设置。
根据题意,网络结构图如图4.5所示。
图4.5 网络结构图由此可见,对于单层网络,网络的输入神经元数r和输出神经元数s分别由输入矢量P和目标矢量T唯一确定。
网络的权矩阵的维数为:W s×r,B s×1权值总数为s×r个,偏差个数为s个。
在确定了网络结构并设置了最大循环次数和赋予权值初始值后,设计者可方便地利用MATLAB,根据题意以及感知器的学习、训练过程来编写自己的程序。
下面是对[例4.1]所编写的网络权值训练用的MATLAB程序:%percep1.m%P=[—0.5 —0.5 0.3 0;—0.5 0.5 —0.5 1];T=[1,1,0,0];%初始化[R, Q]=size(P);[S, Q]=size(T);W=rands(S,R);B=rands(S, 1);max_epoch=20;%表达式A=hardlim(W*P,B);%求网络输出for epoch=1:max_epoch %开始循环训练、修正权值过程%检查if all(A==T) %当A=T时结束epoch=epoch-1;beakend%学习[dW, dB]=learnp(P, A, T); %感知器学习公式W=W十dw;B=B十dB;A=hardlim(W*P,B);%计算权值修正后的网络输出end %程序结束以上就是根据前面所阐述的感知器训练的三个步骤:表达式、检查和学习而编写的MATLAB网络设计的程序。
神经网络在信号处理中的应用第一章神经网络和信号处理的概述神经网络是一种模拟大脑结构和功能的计算模型,其能够模拟人脑神经元之间的相互作用,并能够从中学习和推理复杂的信息。
与此相伴随的是信号处理技术的不断发展,如数字信号处理技术、傅里叶分析、小波变换等,这些技术提供了丰富的信号分析和处理方法。
由于神经网络具有强大的学习和自适应特性,因此在信号处理应用中得到了广泛的应用。
本文将从神经网络的基本原理、信号处理的常用方法和神经网络在信号处理中的应用三个方面对神经网络在信号处理中的应用进行论述。
第二章神经网络的基本原理2.1 感知器模型感知器模型,又称为线性感知器,是神经网络的最基础形式。
感知器由输入层、输出层和一个或多个中间层组成,其中每个中间层与前一层和后一层之间的神经元以及它们之间的权值相连。
2.2 反向传播算法反向传播算法是一种用于训练神经网络的算法,其利用梯度下降法和链式规则来调整网络权值,使得网络求解的误差最小化。
反向传播算法是一种常用的监督学习算法,它要求输入数据的正确输出值必须是已知的。
第三章信号处理的常用方法3.1 傅里叶分析傅里叶分析是一种将时间或空间信号转换到频域的方法,它以正弦和余弦函数的和表示信号的频率成分。
通过傅里叶变换,我们可以将一个信号分解成一系列单一的频率成分,然后对这些成分进行分析和处理。
3.2 小波变换小波分析是一种多分辨率信号分析方法,它利用不同分辨率的波形基函数对信号进行分析,可以有效地揭示信号的细节信息。
小波变换广泛应用于信号分析、数据压缩、模式识别等领域。
3.3 过滤技术过滤技术是一种常用的信号处理方法,它利用一些特定的数字滤波器对信号进行处理,以提取信号的某些特征。
过滤技术在信号预处理、去噪、滤波等方面应用广泛。
第四章神经网络在信号处理中的应用4.1 信号分类神经网络在信号分类方面得到了广泛的应用。
例如,在医学图像识别中,神经网络可以根据不同的特征进行分类,并可以自适应地学习和调整,以获取更准确的医学诊断结果。
《神经网络电子教案》PPT课件第一章:神经网络简介1.1 神经网络的定义1.2 神经网络的发展历程1.3 神经网络的应用领域1.4 神经网络的基本组成第二章:人工神经元模型2.1 人工神经元的结构2.2 人工神经元的激活函数2.3 人工神经元的训练方法2.4 人工神经元的应用案例第三章:感知机3.1 感知机的原理3.2 感知机的训练算法3.3 感知机的局限性3.4 感知机的应用案例第四章:多层前馈神经网络4.1 多层前馈神经网络的结构4.2 反向传播算法4.3 多层前馈神经网络的训练过程4.4 多层前馈神经网络的应用案例第五章:卷积神经网络5.1 卷积神经网络的原理5.2 卷积神经网络的结构5.3 卷积神经网络的训练过程5.4 卷积神经网络的应用案例第六章:递归神经网络6.1 递归神经网络的原理6.2 递归神经网络的结构6.3 递归神经网络的训练过程6.4 递归神经网络的应用案例第七章:长短时记忆网络(LSTM)7.1 LSTM的原理7.2 LSTM的结构7.3 LSTM的训练过程7.4 LSTM的应用案例第八章:对抗网络(GAN)8.1 GAN的原理8.2 GAN的结构8.3 GAN的训练过程8.4 GAN的应用案例第九章:强化学习与神经网络9.1 强化学习的原理9.2 强化学习与神经网络的结合9.3 强化学习算法的训练过程9.4 强化学习与神经网络的应用案例第十章:神经网络的优化算法10.1 梯度下降算法10.2 动量梯度下降算法10.3 随机梯度下降算法10.4 批梯度下降算法10.5 其他优化算法简介第十一章:神经网络在自然语言处理中的应用11.1 词嵌入(Word Embedding)11.2 递归神经网络在文本分类中的应用11.3 长短时记忆网络(LSTM)在序列中的应用11.4 对抗网络(GAN)在自然语言中的应用第十二章:神经网络在计算机视觉中的应用12.1 卷积神经网络在图像分类中的应用12.2 递归神经网络在视频分析中的应用12.3 对抗网络(GAN)在图像合成中的应用12.4 强化学习在目标检测中的应用第十三章:神经网络在推荐系统中的应用13.1 基于内容的推荐系统13.2 协同过滤推荐系统13.3 基于神经网络的混合推荐系统13.4 对抗网络(GAN)在推荐系统中的应用第十四章:神经网络在语音识别中的应用14.1 自动语音识别的原理14.2 基于神经网络的语音识别模型14.3 深度学习在语音识别中的应用14.4 语音识别技术的应用案例第十五章:神经网络在生物医学信号处理中的应用15.1 生物医学信号的特点15.2 神经网络在医学影像分析中的应用15.3 神经网络在生理信号处理中的应用15.4 神经网络在其他生物医学信号处理中的应用重点和难点解析重点:1. 神经网络的基本概念、发展历程和应用领域。