五年级奥数流水行船问题讲解及练习答案
- 格式:doc
- 大小:105.00 KB
- 文档页数:14
1、 掌握流水行船的基本概念2、 能够准确处理流水行船中相遇和追及的速度关系一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
二参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:① 水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系. 模块一、基本的流水行船问题【例 1】 一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?【考点】行程问题之流水行船 【难度】2星 【题型】解答【解析】 顺水速度为25328+=(千米/时),需要航行140285÷=(小时).【答案】5小时【巩固】 某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?【考点】行程问题之流水行船 【难度】2星 【题型】解答【解析】 从甲地到乙地的顺水速度为15318+=(千米/时),甲、乙两地路程为188144⨯=(千米),从乙地到甲地的逆水速度为15312-=(千米/时),返回所需要的时间为1441212÷=(小时).【答案】12小时【例 2】 一只小船在静水中的速度为每小时 25千米.它在长144千米的河中逆水而行用了 8小时.求返回原处需用几个小时?【考点】行程问题之流水行船 【难度】2星 【题型】解答【解析】 4.5小时知识精讲教学目标流水行船【答案】4.5小时【巩固】一只小船在静水中速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时?【考点】行程问题之流水行船【难度】2星【题型】解答【解析】这只船的逆水速度为:1761116-=(千米/时);返回原处所需时÷=(千米/时);水速为:301614间为:176(3014)4÷+=(小时).【答案】4小时【例 3】两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
五年级奥数题《流水行船问题1》及答案五年级奥数题《流水行船问题1》及答案船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的.路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。
解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
例2某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
流水行船问题的公式和例题含答案LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
五年级流水行船奥数题及答案【三篇】【第一篇】一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。
解:设静水速度为x。
总路程是相同的。
6×(x+2.5)=8×(x-2.5)6x+15=8x-20x=17.5答:静水速度为17.5千米/小时。
【第二篇】两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
求这条河的水流速度。
解:水流速度=(顺流速度-逆流速度)÷2=(418÷11-418÷19)÷2=(38-22)÷2=8(千米/时)答:这条河的水流速度为8千米/时。
【第三篇】已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米).解:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米),水的速度为:(12-8)÷2=2(千米),从A到B所用时间为:72÷12=6(小时),6小时木板的路程为:6×2=12(千米),与船所到达的B地距离还差:72-12=60(千米).答:船到B港时,木块离B港还有60米.。
(5升6暑假奥数)流水行船问题-学校数学五班级下册人教版一、单选题1.快艇从A码头动身,沿河顺流而下,途径B码头后连续顺流驶向C码头,到达C后掉头驶回B码头共用10小时。
若A、B距离20千米,快艇在静水中速度为40千米/小时,水流速度为10千米/小时,则AC间距离为:()A.120千米B.180千米C.200千米D.240千米2.一汽船来回于两码头间,逆流需要10小时,顺流需要6小时。
已知船在静水中的速度为12公里/小时。
问水流的速度是多少公里/小时?()A.2B.3C.4D.53.人乘竹排沿江顺水漂流而下,迎面遇到一般逆流而上的快艇。
他问快艇驾驶员:“你后面有轮船开过来吗?”快艇驾驶员回答:“半小时前我超过一般轮船。
”竹排连续顺水漂流了1小时遇到了迎面开来的这般轮船。
那么快艇静水速度是轮船静水速度的()倍。
A.2B.2.5C.3D.3.54.一条小河流过A,B,C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为11千米/时.B,C两镇之间有木船摆渡,木船在静水中的速度为3.5千米/时.已知A,C两镇水路相距50千米,水流速度为1.5千米/时.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时,那么A,B两镇的距离是()A.10千米B.20千米C.25千米D.30千米5.一架小飞机,在静止的空气中飞行速度为320千米/小时.现在有风,风速为40千米/小时(风速不变),逆风飞行全程需135分钟,顺风返回需()分钟.(飞机起飞和着陆的时间略去不计)A.94.5 B.105 C.112.5D.1206.一艘轮船从甲港开往乙港,由于顺水,每小时可以航行28千米,3小时到达.这艘轮船从乙港返回甲港时,由于逆水,每小时只能航行21千米.这艘轮船来回一次每小时的平均速度是()A.12千米B.24千米C.24.5千米D.25千米二、填空题7.轮船从深圳到上海要航行6 昼夜,而由上海到深圳要航行10 昼夜;那么由深圳顺水放一木筏到上海,途中需经昼夜。
《流水行船问题》练习题(含答案)在行程问题的基础上,这一讲我们将研究流水行船的问题.船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.另外一种与流水行船问题相类似的问题是“在风中跑步或行车”的问题,其实处理方法是和流水行船完全一致的.行船问题是一类特殊的行程问题,它的特殊之处就是多了一个水流速度,船速:在静水中行船,单位时间内所走的路程叫船速;逆水速度:逆水上行的速度叫逆水速度;顺水速度:顺水下行的速度叫顺水速度;水速:船在水中不借助其他外力只借助水流力量单位时间所漂流的路程叫水流速度(以下简称水速),顺水速度=船速+水速;逆水速度=船速-水速 .顺水行程=顺水速度×顺水时间逆水行程=逆水速度×逆水时间船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2 .(可理解为和差问题)【例1】甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?分析:从甲到乙顺水速度:234÷9=26(千米/小时);从乙到甲逆水速度:234÷13=18(千米/小时);船速是:(26+18)÷2=22(千米/小时);水速是:(26-18)÷2=4(千米/小时).【前铺】轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时到达相距144千米的乙港,再从乙港返回甲港需要多少小时?分析:要求轮船从乙港返回甲港所需的时间,即轮船顺水航行144千米所需时间,就要求出顺水航行的速度。
现在知道轮船在静水中的速度,只需求出水流速度.根据已知,自甲港逆水航行8小时,到达相距144千米的乙港,由此可求出轮船的逆水航行的速度.再根据逆水速度与船速、水速的关系即可求出水速.水流速度:21—144÷8=21—18=3(千米/小时),顺水速度:2l+3=24(千米/小时),乙港返回甲港所需时间:144÷24=6(小时).【巩固】甲、乙两港相距208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达.水流速度是多少?分析:顺水速度=208÷8=26(千米/小时),逆水速度=208÷13=16(千米/小时),水速=(顺水速度-逆水速度)÷2=(26-16)÷2=5(千米/小时).【例2】A、B两港相距560千米,甲船往返两港需要105小时,逆流航行比顺流航行多了35小时,乙船的静水速度是甲船静水速度的2倍,那么乙船往返两港需要多少小时?分析:先求出甲船往返航行的时间分别是:(105+35)÷2=70小时,(105-35)÷2=35.再求出甲船逆水速度每小时560÷70=8千米,顺水速度每小时560÷35=16千米,那么甲船在静水中的速度是每小时(16+8)÷2=12千米,水流的速度是每小时12-8=4千米,乙船在静水中的速度是每小时12×2=24千米,所以乙船往返一次所需要的时间是560÷(24+4)+560÷(24-4)=20+28=48小时.【例3】甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水航行7小时,行了133千米到达乙河,在乙河中还要逆水航行84千米,问:这艘船还要航行几小时?分析:船在甲河中的顺水速度为:133÷7=19(千米/小时),船速=19-3=16(千米/小时).船在乙河中的逆水速度=船速一水速=16-2=14(千米/小时),逆水时间=逆水行程÷逆水速度=84÷14=6(小时).【例4】一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离.分析:两港口间的距离=顺水速度×顺水时间=(船速+水速)×顺水时间=(船速+6)×4 ;两港口间的距离=逆水速度×逆水时间=(船速-6)×7;所以可得:(船速+6)×4=(船速-6)×7,解得:船速=22,可得两港口间的距离为:(22+6)×4=(22—6) ×7=112(千米).【例5】某船从甲地顺流而下,5天到达乙地;该船从乙地返回甲地用了7天.问:水从甲地流到乙地用了多少时间?分析:(法1)水流的时间=甲乙两地间的距离÷水速,而此题并未告诉我们“甲乙两地间距离”,且根据已知,顺水时间及逆水时间也无法求出,而它又是解决此题顺水速度、逆水速度和水速的关键.将甲、乙两地距离看成单位“1”,则顺水每天走全程的15,逆水每天走全程的17.水速=(顺水速度一逆水速度)÷2=135,所以水从甲地流到乙地需:113535÷=(天).当然,我们还可以把甲乙两地的距离设成其他方便计算的数字,这其实就是特殊值代入法!(法2)用方程思路,5×(船速+水速)=7×(船速—水速),即船速=6×水速,所以轮船顺流行5天的路程等于水流5+5×5=35(天)的路程,即木筏从A城漂到B城需35天.(法3)逆水比顺水多2天到达,即船要多行驶2天,为什么会多2天呢,因为顺水时得到了5天的水速帮助,逆水时又要去克服7天的水速,这一切都是靠2天的船速所实现的,即船速等于6天的水速;所以轮船顺流行5天的路程等于水流5+5×6=35(天)的路程,即木筏从A城漂到B城需35天.【例6】一艘小船在河中航行,第一次顺流航行33千米,逆流航行11千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米.这艘小船的静水速度和水流速度是多少?分析:(法1)两次航行顺流的路程差:33-24=9 (千米),逆流的路程差:14-11=3 (千米),也就是说顺流航行9千米所用的时间和逆流航行3千米所用时间相同,那么顺流航行33千米与逆流航行33÷3=11 (千米)时间相同,则逆流速度:(11+11)÷11=2(千米/小时),同样可得顺流速度为:(24+14×3)÷11=6(千米/小时),静水速度:(6+2)÷2=4(千米/小时),水流速度:(6-2)÷2=2(千米/小时).(法2)根据顺流航行9千米所用的时间和逆流航行3千米所用时间相同,9千米=顺流速度×时间=逆流速度×3倍的时间,可得:顺流速度=3×逆流速度,而后仿照法1部分思路解答.【例7】一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速.分析:逆水速度:18×2÷3=12(千米/小时),船速:(18+12)÷2=15(千米/小时)。
流水行船奥数题及答案流水行船奥数题及答案流水行船奥数题及答案1甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求.顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)流水行船奥数题及答案2例3 甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?分析要求帆船往返两港的时间,就要先求出水速.由题意可以知道,轮船逆流航行与顺流航行的时间和与时间差分别是35小时与5小时,用和差问题解法可以求出逆流航行和顺流航行的时间.并能进一步求出轮船的逆流速度和顺流速度.在此基础上再用和差问题解法求出水速。
解:轮船逆流航行的时间:(35+5)÷2=20(小时),顺流航行的时间:(35—5)÷2=15(小时),轮船逆流速度:360÷20=18(千米/小时),顺流速度:360÷15=24(千米/小时),水速:(24—18)÷2=3(千米/小时),帆船的顺流速度:12+3=15(千米/小时),帆船的逆水速度:12—3=9(千米/小时),帆船往返两港所用时间:360÷15+360÷9=24+40=64(小时)。
答:机帆船往返两港要64小时。
下面继续研究两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和.这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速。
五年级数学(上)奥数思维拓展《流水行船问题》测试题(含答案)一.填空题(共8小题)1.某轮船顺流航行3h,逆流航行1.5h,已知轮船在静水中的速度为akm/h,水流速度为ykm/h,则轮船共航行了km。
2.甲、乙两个景点相距15千米,一艘观光游船从甲景点出发,抵达乙景点后立即返回,共用3小时.已知第三小时比第一小时少行12千米,那么这条河的水流速度为每小时千米.3.一艘轮船的静水速度为每小时36千米,在河中逆水航行140千米用了4小时,那么这条河的水流速度是每小时千米.4.甲、乙两城相距350千米,一艘客轮在其间往返航行,从甲城到乙城是顺流,用去10小时;从乙城返回甲城是逆流,用去14小时.那么,船在静水中的速度是千米/时,水流速度是千米/时.5.甲乙两游船顺水航行的速度均是每小时7千米,逆水航行的速度均是每小时5千米.现甲乙两船从某地同时出发,甲先逆流而上再顺流而下,乙先顺流而下再逆流而上,1小时后他们又都回到了出发点.那么两船在这段时间内共有分钟行进方向相同.6.一只船在河中顺水航行了4小时,行程为48千米.已知水速为每小时3千米,则该船的静水速度为每小时千米.7.甲乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花了5小时,现有一机帆船,速度每小时12千米.这只机帆船往返两港要小时.8.一只小船从甲港到乙港顺流航行需1小时,水流速度增加一倍后,再从甲港到乙港航行需50分钟,水流速度增加后,从乙港返回甲港需航行.二.应用题(共13小题)9.甲船逆水航行360千米需18小时,返回原地需要10小时:乙船逆水航行同样一段距离需要15小时,返回原地需要多少小时?10.甲、乙两港相距334千米,此时风平浪静,一艘客船和一艘货船同时自两港相向航行,开出4.5小时后两船相距100千米,已知客船每小时行进比货船快4千米,货船每小时行多少千米?有几种可能?(用方程解)11.甲、乙两港相距100千米,一艘轮船从甲港到乙港是顺水航行,船在静水中的速度是每小时23.5千米,水流速度是每小时3.5千米。
第九讲 流水行船问题例题1. 答案:21千米/时;5千米/时详解:顺水速度为208826÷=千米/时,逆水速度为2081316÷=千米/时,船的静水速度为2616221+÷=()千米/时,水流速度为261625-÷=()千米/时.例题2. 答案:6小时详解:船在甲河中顺水航行的速度是133719÷=千米/时.而甲河水速是3千米/时,所以船速是19316-=千米/时.乙河水速是2千米/时,因此船在乙河中逆水航行的速度是16214-=千米/时,所以航行84千米还需要84146÷=小时.例题3. 答案:24天详解:假设从A 城到B 城的距离是24千米,那么轮船顺水航行的速度是2438÷=千米/天,而逆水航行的速度是2446÷=千米/天,由和差关系可知,水速为()8621-÷=千米/天,也就是木筏漂流的速度.因此木筏从A 城漂流到B 城需要24124÷=天.例题4. 答案:72千米;90千米详解:如图所示:(1)甲船的逆水速度是15312-=千米/时,乙船的逆水速度是1239-=千米/时.两船的路程差即为乙船先出发2小时逆水行驶的距离,也就是9218⨯=千米,所以甲船追上乙船需要()181296÷-=小时.这6小时内,甲船行驶了12672⨯=千米.因此甲船追上乙船时已经离开A 港72千米.(2)甲船追上乙船的地点与B 港相距18072108-=千米,那么它行驶到B 港还需要108129÷=小时.此时乙船又航行了9981⨯=千米,距离B 港1088127-=千米.甲船返回后,与乙船相向而行.此时甲船顺水行驶,速度是每小时15318+=千米.因此两船还需要()271891÷+=小时相遇.从图中可以看出,甲、乙相遇地点与追及地点的距离正好是乙行驶的路程,为()99190⨯+=千米.水流方向 A例题5.答案:33千米/时;27千米/时详解:甲、乙两船的速度和为300560÷=千米/时,甲、乙两船的速度差为+÷=千米/时,乙船的静水÷=千米/时,则甲船的静水速度为(606)233300506速度为603327-=千米/时.例题6.答案:50米/分详解:根据分析,游泳者发现丢水壶之前,与水壶相背而行,游泳者的速度是静水速度与水速的差,水壶的速度就是水速,所以他们的速度和是游泳者的静水速度,也就是60米/分.所以20分钟后,人⨯=米.他返回追水壶时,游泳者的速度是静水速度与水速的和,而水壶的速与水壶相距60201200÷=分钟.水壶一共度还是水速,二者的速度差仍然是15米/分,所以他追上水壶还需要12006020+=分钟,漂流的路程是2千米,而水速就是水壶的漂流速度,因此水速就是漂流了202040÷=米/分.20004050练习1.答案:8小时简答:顺风速度为9006150÷=千米/时,飞÷=千米/时,逆风速度为6006100艇在无风的速度为1501002125+÷=()千米/时,飞艇行驶1000公里要用÷=小时.10001258练习2.答案:12.5简答:甲船的顺水速度是24千米/时,逆水速度是16千米/时.那么往返一次所用的时间是120241201612.5÷+÷=小时.练习3.答案:15小时简答:假设从A地到B地的距离是60千米,那么这艘船的漂流速度为÷=千米/时,顺水速度为÷=千米/时,逆水航行的速度是6030260601+⨯=千米/时,因此这艘船从A地开到B地需要604152124÷=小时.练习4.答案:5简答:货船的顺水速度和客车的逆水速度都是12千米/小时,因此他们会在两个码头的中点相遇,相遇时离A码头90千米;货船还需要走()÷-=909315小时,客船还需要走()÷-=小时,时间差是5小时.9012310作业1.答案:8小时简答:顺流速度为每小时90615-⨯=千米.它÷=千米,所以逆流速度为每小时15525逆流航行要4058÷=小时.作业2.答案:5小时简答:由题目条件可求出从乙地到甲地的逆水速度为160820÷=千米/时,则水速为-=千米/时.返回时水速变为8千米/时,顺水速度为32千米/时,需用160325÷= 24204小时.作业3.答案:12.5秒简答:由题目条件可求出顺风速度为9米/秒,逆风速度为7米/秒,由此可知无风的速度为8米/秒.因此跑100米要用12.5秒.作业4.答案:40天简答:可设甲乙两地之间路程为60千米,可求出顺流速度为每天5千米,逆流速度为每天3千米,船速为每天4千米,水速为每天1千米.梅雨季节时,水速变为每天2千米,顺流速度为每天6千米,逆流速度为每天2千米.往返需要40天.作业5.答案:18千米/时简答:由题目条件可求出两船的静水速度和为30千米/时,静水速度差为6千米/时,由此可求出甲船的速度为18千米/时.。
流水行船问题讲座流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船的静水速+水速(1)逆水速度=船的静水速-水速(2)水速=顺水速度-船速(3)静水船速=顺水速度-水速(4)水速=静水速-逆水速度(5)静水速=逆水速度+水速(6)静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)例1:一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时).例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
解析:(352÷11-352÷16)÷2=5(千米/小时).例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港例470米,也用了1070÷10=7米/秒,那在无风时跑100米,需要的时间为100÷秒.例5:一只小船在静水中的速度为每小时25千米.它在长144千米的河中逆水而行用了8小时.求返回原处需用几个小时?解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷8=18(千米/时)因为船的静水速度是每小时25千米,所以水流的速度为:25-18=7(千米/时)返回时是顺水,船的顺水速度是25+7=32(千米/时)所以返回原处需要:144÷32=(小时)例6:(难度等级※)一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离?解析:(船速+6)×4=(船速-6)×7,可得船速=22,两港之间的距离为:6×7+6×4=66,66÷(7-4)=22(千米/时)(22+6)×4=112千米.例7:甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的距离相差多少千米?解析:在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差=(船速+水速) -(船速-水速)=2×水速,即:每小时甲船比乙船多走6×2=12(千米).4小时的距离差为12×4=48(千米)顺水速度-逆水速度速度差=(船速+水速) -(船速-水速)=船速+水速-船速+水速=2×6=12(千米)12×4=48(千米)例8:(难度等级※※)乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?解:乙船顺水速:120÷2=60(千米/小时).乙船逆水速:120÷4=30(千米/小时)。
水流速:(60-30)÷2=15(千米/小时).甲船顺水速:12O÷3=4O(千米/小时)。
甲船逆水速:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。
甲船返回原地比去时多用时间:12-3=9(小时).例9:(难度等级※※)船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。
由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时? 解析:本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出.但是由于暴雨的影响,水速发生变化,要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度.船在静水中的速度是:(180÷10+180÷15)÷2=15(千米/小时).暴雨前水流的速度是:(180÷10-180÷15)÷2=3(千米/小时).暴雨后水流的速度是:180÷9-15=5(千米/小时).暴雨后船逆水而上需用的时间为:180÷(15-5)=18(小时).例10:两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?解析:先求出甲船往返航行的时间分别是:逆流时间(105+35) ÷2=70(小时),顺流时间:(105-35) ÷2=35(小时).再求出甲船逆水速度每小时560÷70=8(千米),顺水速度每小时560÷35=16(千米),因此甲船在静水中的速度是每小时(16+8) ÷2=12(千米),水流的速度是每小时(16-8) ÷2=4(千米),乙船在静水中的速度是每小时12×2=24(千米),所以乙船往返一次所需要的时间是560÷(24+4)+560÷(24-4)=48(小时).例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
*例3一只船,顺水每小时行20千米,逆水每小时行12千米。
这只船在静水中的速度和水流的速度各是多少?解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:(20+12)÷2=16(千米/小时)因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:(20-12)÷2=4(千米/小时)答略。
*例4某船在静水中每小时行18千米,水流速度是每小时2千米。
此船从甲地逆水航行到乙地需要15小时。
求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?解:此船逆水航行的速度是:18-2=16(千米/小时)甲乙两地的路程是:16×15=240(千米)此船顺水航行的速度是:18+2=20(千米/小时)此船从乙地回到甲地需要的时间是:240÷20=12(小时)答略。
*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。
已知水速为每小时3千米。
此船从乙港返回甲港需要多少小时?解:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的路程是:18×8=144(千米)此船逆水航行的速度是:15-3=12(千米/小时)此船从乙港返回甲港需要的时间是:144÷12=12(小时)综合算式:(15+3)×8÷(15-3)=144÷12=12(小时)答略。
*例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。
求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?解:顺水而行的时间是:144÷(20+4)=6(小时)逆水而行的时间是:144÷(20-4)=9(小时)答略。
*例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米260千米。
求这只船沿岸边返回原地需要多少小时?解:此船顺流而下的速度是:260÷6.5=40(千米/小时)此船在静水中的速度是:40-8=32(千米/小时)此船沿岸边逆水而行的速度是:32-6=26(千米/小时)此船沿岸边返回原地需要的时间是:260÷26=10(小时)综合算式:260÷(260÷-8-6)=260÷(40-8-6)=260÷26=10(小时)答略。
*例8一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时。
顺水行150千米需要多少小时?解:此船逆水航行的速度是:120000÷24=5000(米/小时)此船在静水中航行的速度是:5000+2500=7500(米/小时)此船顺水航行的速度是:7500+2500=10000(米/小时)顺水航行150千米需要的时间是:150000÷10000=15(小时)综合算式:150000÷(120000÷24+2500×2)=150000÷(5000+5000)=150000÷10000=15(小时)答略。
*例9一只轮船在208千米长的水路中航行。
顺水用8小时,逆水用13小时。
求船在静水中的速度及水流的速度。
解:此船顺水航行的速度是:208÷8=26(千米/小时)此船逆水航行的速度是:208÷13=16(千米/小时)由公式船速=(顺水速度+逆水速度)÷2,可求出此船在静水中的速度是:(26+16)÷2=21(千米/小时)由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是:(26-16)÷2=5(千米/小时)答略。
*例10 A、B两个码头相距180千米。
甲船逆水行全程用18小时,乙船逆水行全程用15小时。
甲船顺水行全程用10小时。
乙船顺水行全程用几小时?解:甲船逆水航行的速度是:180÷18=10(千米/小时)甲船顺水航行的速度是:180÷10=18(千米/小时)根据水速=(顺水速度-逆水速度)÷2,求出水流速度:(18-10)÷2=4(千米/小时)乙船逆水航行的速度是:180÷15=12(千米/小时)乙船顺水航行的速度是:12+4×2=20(千米/小时)乙船顺水行全程要用的时间是:180÷20=9(小时)综合算式:180÷[180÷15+(180÷10-180÷18)÷2×3]=180÷[12+(18-10)÷2×2]=180÷[12+8]=180÷20=9(小时)巩固练习:11、光明号渔船顺水而下行200千米要10小时,逆水而上行120千米也要10小时.那么,在静水中航行320千米需要多少小时?解析:顺水速度:200÷10=20(千米/时),逆水速度:120÷10=12(千米/时),静水速度:(20+12)÷2=16(千米/时),该船在静水中航行320千米需320÷16=20(小时).12,甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,3小时后相遇.已知水流速度是4千米/时.求:相遇时甲、乙两船航行的距离相差多少千米?解析:在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差 (船速-水速) -(船速-水速)=2×水速,即:每小时甲船比乙船多走4×2=8(千米).3小时的距离差为8×3=24(千米).13、一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速.解析:这只船的逆水速度为:18×2÷3=12(千米/时);船速为:(18+12)÷2=15(千米/时);水流速度为:18-15=3(千米/时)14、甲乙两港相距360千米,一艘轮船往返两港需35小时,逆水航行比顺水航行多花了5小时,现在有一艘机帆船,静水中速度是每小时12千米,这艘机帆船往返两港需要多少小时? 解析:轮船逆水航行的时间为()355220+÷= (小时),顺水航行的时间为20515-=(小时),轮船逆流速度为3602018÷=(千米/时),顺流速度为3601524÷=(千米/时), 水速为()241823-÷=(千米/时),所以机帆船往返两港需要的时间为()()36012336012364÷++÷-=(小时)5,轮船用同一速度往返于两码头之间,它顺流而下行了8个小时,逆流而上行了10小时,如果水流速度是每小时3千米,两码头之间的距离是多少千米?解析:方法一:由题意可知,(船速+3) ×8=(船速-3) ×10,可得船速(8×3+3×10)÷2=27千米/时,两码头之间的距离为(27+3)×8=240(千米). 方法二:由于轮船顺水航行和逆水航行的路程相同,它们用的时间比为8:10,那么时间小的速度大,因此顺水速度和逆水速度比就是10:8(由于五年级学生还没学习反比例,此处教师可以渗透比例思想,为以后学习用比例解行程问题做些铺垫),设顺水速度为10份,逆水速度为8份,则水流速度为(108)21-÷=份恰好是3千米/时,所以顺水速度是10330⨯=(千米/时),所以两码头间的距离为308240⨯=(千米).16,一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求这两个港口之间的距离.解析:6×4+6×7=66千米静水速度:66÷(7-4)=22千米/时(22+6) ×4=112(千米)17、轮船用同一速度往返于两码头之间,在相同时间内如果它顺流而下能行10千米,如果逆流而上能行8千米,如果水流速度是每小时3千米,求顺水、逆水速度,解析:由题意知顺水速度与逆水速度比为10:8,设顺水速度为10份,逆水速度为8份,则水流速度为(10-8)÷2=1份恰好是3千米/时,所以顺水速度是10×3=30(千米/时),逆水速度为8×3=24(千米/时)8,甲、乙两船分别从A 港顺水而下至480千米外的B 港,静水中甲船每小时行56千米,乙船每小时行40千米,水速为每小时8千米,乙船出发后1.5小时,甲船才出发,到B 港后返回与乙迎面相遇,此处距A 港多少千米?解析:甲船顺水行驶全程需要:480(568)7.5÷+=(小时),乙船顺水行驶全程需要:480(408)10÷+=(小时).甲船到达B 港时,乙船行驶1.57.59+=(小时),还有1小时的路程(48千米)①,即乙船与甲船的相遇路程.甲船逆水与乙船顺水速度相等,故相遇时在相遇路程的中点处②,即距离B 港24千米处,此处距离A 港48024456-=(千米).注意:①关键是求甲船到达B港后乙离B港还有多少距离②解决①后,要观察两船速度关系,马上豁然开朗。