有理数的加减法专项训练
- 格式:doc
- 大小:94.00 KB
- 文档页数:2
有理数的加减法练习题(周末)篇一:有理数的加减法——计算题练习有理数的加减法——计算题练习1、加法计算(直接写出得数,每小题1分):(1)(-6)+(-8)=(4)(-7)+(+4)=(7)-3+2=(10)(-4)+6=(2)(-4)+2.5=(5)(+2.5)+(-1.5)=(8)(+3)+(+2)=(3)(-7)+(+7)=(6)0+(-2)=(9) -7-4=(11)??3??1=(12) a???a?=2、减法计算(直接写出得数,每小题1分):(1) (-3)-(-4)=(4) 1.3-(-2.7)=(7) 13-(-17)=(10) 0-6=(2) (-5)-10=(5) 6.38-(-2.62)=(8) (-13)-(-17)=(11) 0-(-3)=(3)9-(-21)=(6)-2.5-4.5=(9) (-13)-17=(12) -4-2=1??1??1?(13) (-1.8)-(+4.5)=(14) ????????=(15) (?6.25)???34?=???4??3?3、加减混合计算题(每小题3分):(1) 4+5-11;(2) 24-(-16)+(-25)-15 (3) -7.2+3.9-8.4+12(4) -3-5+7(5) -26+43-34+17-48 (6) 91.26-293+8.74+191(7) 12-(-18)+(-7)-15(8) (?83)?(?26)?(?41)?(?15)(9) (?1.8)?(?0.7)?(?0.9)?1.3?(?0.2)(10) (-40)-(+28)-(-19)+(-24)-(32)(11) (+4.7)-(-8.9)-(+7.5)+(-6)(12) -6-8-2+3.54-4.72+16.46-5.284、加减混合计算题:?1?5??3??1??4??1? (1)15?? (2) (-1.5)++(+3.75)+?3?5??3??2??6????4??????????6??7??6??7??4??2?2??1??1?22??2??3??1??(3)???5????????????5????1?(4) 4?8???3????1????2? 3??4??3?13??4??13??5??5?2??3??2?(5) ???3????2????1??(?1.75)(6) 3??4??3???7??1??1??1???4????5????4????3? ?8??2??4??8?1??5??1??1??1??3??1?(7) ???1????1????2????3????1?(8) ??1.2?2????5???3.4?(?1.2) 6??6?2??4??4???2??4??(9)11111111?????????? (10)1?22?38?99?101?33?597?9999?101有理数的加减法——提高题练习一、选择题:1、若m是有理数,则m?|m|的值()A、可能是正数B、一定是正数C、不可能是负数D、可能是正数,也可能是负数2、若m?0,则m?|m|的值为()A、正数B、负数C、0D、非正数3、如果m?n?0,则m与n的关系是( )A、互为相反数B、m=?n,且n≥0C、相等且都不小于0D、m是n的绝对值4、下列等式成立的是( )A、a??a?0B、?a?a=0C、?a?a?0D、?a-a=05、若a?2?b?3?0,则a?b的值是()A、5B、1C、-1D、-56、在数轴上,a表示的点在b表示的点的右边,且a?6,b?3,则a?b的值为(A.-3B.-9C.-3或-9D.3或97、两个数的差为负数,这两个数( )A、都是负数B、两个数一正一负C、减数大于被减数D、减数小于被减数6、负数a与它相反数的差的绝对值等于( )A、0B、a 的2倍C、-a的2倍D、不能确定8、下列语句中,正确的是( )A、两个有理数的差一定小于被减数B、两个有理数的和一定比这两个有理数的差大C、绝对值相等的两数之差为零D、零减去一个有理数等于这个有理数的相反数9、对于下列说法中正确的个数()①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和,可能是其中的一个加数)④两个有理数的和可能等于0A、1B、2C、3D、410、有理数a,b在数轴上的对应点的位置如图所示,则()A、a+b=0B、a+b>0C、a-b<0D、a-b>011、用式子表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )A、a+b-c=a+b+c B、a-b+c=a+b+cC、a+b-c=a+(-b)=(-c)D、a+b-c=a+b+(-c)12、若a?b?0?c?d,则以下四个结论中,正确的是()A、a?b?c?d一定是正数B、c?d?a?b可能是负数C、d?c?a?b一定是正数D、c?d?a?b一定是正数13、若a、b为有理数,a与b的差为正数,且a与b两数均不为0,那么()A、被减数a为正数,减数b为负数B、a与b均为正数,切被减数a大于减数bC、a与b两数均为负数,且减数b的绝对值大D、以上答案都可能14、若a、b表示有理数,且a>0,b<0,a+b<0,则下列各式正确的是()A、-b<-a<b<aB、-a<b<a<-bC、b<-a<-b<aD、b<-a<a<-b15、下列结论不正确的是()A、若a?0,b?0,则a?b?0B、若a?0,b?0,则a?b?0C、若a?0,b?0,则a???b??0D、若a?0,b?0,且a?b,则a?b?016、若x?0,y?0时,x,x?y,y,x?y中,最大的是()A、xB、x?yC、x?yD、y17、数m和n,满足m为正数,n为负数,则m,m-n,m+n的大小关系是( )A、m>m-n>m+nB、m+n>m>m-nC、m-n>m+n>mD、m-n>m>m+n18、若a?0,b?0,则下列各式中正确的是( )A、a?b?0B、a?b?0C、a?b?0D、?a?b?019、如果a、b是有理数,则下列各式子成立的是( )A、如果a<0,b<0,那么a+b>0B、如果a>0,b<0,那么a+b>0C、如果a>0,b<0,那么a+b<0D、如果a<0,b>0,且︱a︱>︱b︱,那么a+b<0二、填空题:20、已知x?6,y?3,那么x?y21、三个连续整数,中间一个数是a,则这三个数的和是___________.22、若a?8,b?3,且a?0,b?0,则a?b=________.23、当b?0时,a、a?b、a?b中最大的是_______,最小的是_______.24、若a?0,那么a?(?a)等于___________.25、若数轴上,A点对应的数为-5,B点对应的数是7,则A、B两点之间的距离是.26、有若干个数,第一个数记为a1,第二个数记为a2,第3个数记为a3,…,第n个数记为an ,若a1=-0.5,从第二个数起,每个数都等于“1”与它前面的那个数的差的倒数。
1.3 有理数的加减法一、选择题1.计算−3+(−1)的正确结果是()A.2 B.-2 C.4 D.-42.某城市一月份某一天的天气预报中,最低气温为−6℃,最高气温为2℃,这一天这个城市的温差为()A.8℃B.−8℃C.6℃D.2℃3.不改变原式的值,将1-(+2)-(-3)+(-4)写成省略加号和括号的形式是()A.-1-2+3-4 B.1-2-3-4C.1-2+3-4 D.1-2-3—44.超市出售的某种品牌的大米袋上,标有质量为(50±0.4) kg的字样,从超市中任意拿出两袋大米,它们的质量最多相差()A.0.4 kg B.0.6 kg C.0.8 kg D.1 kg5.绝对值大于1且小于5的所有整数的和是()A.7 B.-7 C.0 D.56.若有理数a,b,满足|a|=﹣a,|b|=b,a+b<0,则a,b的取值正确的是()A.a=2,b=﹣1 B.a=﹣1,b=2C.a=﹣2,b=1 D.a=﹣1,b=﹣27.若m是-6的相反数,且m+n=-11,则n的值是()A.-5 B.5 C.-17 D.178.若|a|=8,|b|=5,且a+b>0,则a-b的值为()A.13或-1 B.13或3 C.3或-3 D.–3或-13二、填空题9.计算|−12|−12的结果是.10.A、B、C三点相对于海平面分别是-13m,6m,-21m,那么最高的地方比最低的地方高m.11.绝对值不大于3的所有整数的和为.12.小刚在计算21+n的时候,误将“+”看成“-”结果得-10,则21+n的值为.13.已知|m|=5,|n|=2,且n<0,则m+n的值是.三、解答题14.计算:(1)﹣3﹣4+19﹣11;(2)﹣9+(﹣3 34 )+3 34 ;(3)−12+(−16)−(−14)−(+23) ;(4)|﹣2 12 |﹣(﹣2.5)+1﹣|1﹣2 12 |;(5)8+(﹣ 14 )﹣5﹣(﹣0.25);(6)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).15.五袋白糖以每袋50kg 为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,-4,+2.3,-3.5,+2.5.这五袋白糖共超过多少kg ?总重量是多少kg ?16.有理数a 既不是正数,也不是负数,b 是最小的正整数,c 表示下列一组数:-2,1.5,0,130%, - 27 ,860,-3.4中非正数的个数,则a+b+c 等于多少?17.若|a|=5,|b|=3,(1)求a+b 的值;(2)若|a+b|=a+b ,求a ﹣b 的值.参考答案1.D2.A3.C4.C5.C6.C7.C8.B9.010.2711.012.5213.3或﹣714.(1)解:﹣3﹣4+19﹣11=19-18=1;(2)解:﹣9+(﹣3 34 )+3 34 =﹣9﹣3 34 +3 34 =-9;(3)解: −12+(−16)−(−14)−(+23)=−612−212+312−812= −1312 ;(4)解:|﹣2 12 |﹣(﹣2.5)+1﹣|1﹣2 12 |=2.5+2.5+1−|−1.5|=2.5+2.5+1−1.5=4.5;(5)解:8+(﹣ 14 )﹣5﹣(﹣0.25)=8-0.25-5+0.25=3;(6)解:[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5)=(1.4+3.6-5.2-4.3)+1.5=-4.5+1.5=-3.15.解:白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,﹣4,+2.3,﹣3.5,+2.5.这五袋白糖共超过(4.5﹣4+2.3﹣3.5+2.5)=1.8千克,故这五袋白糖共超过1.8千克;总重量是5×50+1.8=251.8千克,故五袋白糖的总重量是251.8千克.16.解:根据“有理数a既不是正数,也不是负数”,可得到a是0;b是最小的正整数,则b是1;-2,1.5,0,130%,- 27,860,-3.4这组数中,是非正数的有:-2,0,- 27,-3.4,一共有4个;所以a+b+c=5.17.解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3.当a=5,b=3时,a﹣b=2,当a=5,b=﹣3时,a﹣b=8.。
初中一年级数学上册计算题专项训练题(228)好的,以下是针对初中一年级数学上册计算题专项训练题的内容:### 初中一年级数学上册计算题专项训练题(228)#### 一、有理数的加减法1. 计算下列各题:- \( 3 + (-5) \)- \( -7 + 4 \)- \( 0 + (-8) \)- \( -3 + 6 \)2. 解决实际问题:- 一个数是 \( 12 \),另一个数比它少 \( 5 \),求这两个数的和。
#### 二、有理数的乘除法3. 计算下列各题:- \( 8 \times (-2) \)- \( -9 \div 3 \)- \( (-4) \times (-3) \)- \( 0 \div (-7) \)4. 解决实际问题:- 一个数的 \( 3 \) 倍是 \( 18 \),求这个数。
#### 三、有理数的混合运算5. 计算下列各题:- \( 7 + (-3) \times 2 \)- \( (-6) \div (-2) + 4 \)- \( 5 - (-3) \div 3 \)- \( (-2) \times 4 - 6 \)6. 解决实际问题:- 一个数的 \( 4 \) 倍加上 \( 8 \) 等于 \( 20 \),求这个数。
#### 四、绝对值和有理数的大小比较7. 计算下列各题:- \( |-5| \)- \( |3| \)- \( |-7| - |3| \)- \( |-2| + |-4| \)8. 比较下列各数的大小:- \( -3 \) 和 \( -1 \)- \( 0 \) 和 \( -5 \)- \( 7 \) 和 \( -7 \)- \( -2 \) 和 \( 3 \)#### 五、代数式的求值9. 已知 \( a = 2 \),\( b = -3 \),求下列代数式的值:- \( a + b \)- \( a - b \)- \( a \times b \)- \( \frac{a}{b} \)10. 已知 \( x = 5 \),\( y = -2 \),求下列代数式的值:- \( x + y \)- \( x - y \)- \( x \times y \)- \( \frac{x}{y} \)#### 六、方程的解法11. 解下列方程:- \( 3x + 5 = 14 \)- \( 2x - 7 = 1 \)- \( 4x = 12 \)- \( 5x - 3 = 2x + 1 \)12. 解下列方程:- \( 3(x + 2) = 15 \)- \( 2(x - 3) = 4 \)- \( 5x = 10 \)- \( 2x + 3 = 3x - 2 \)完成这些题目后,可以有效地训练和提高初一学生的计算能力,为后续更复杂的数学学习打下坚实的基础。
初中一年级数学上册计算题专项训练题(366)好的,以下是针对初中一年级数学上册计算题专项训练题(366)的内容:一、有理数的加减法1. 计算:(-2) + 3 + (-5) + 22. 计算:(-7) + 6 + (-3) + 43. 计算:(-8) + 5 + 2 + (-3)4. 计算:(-9) + 7 + (-4) + 65. 计算:(-10) + 8 + 1 + (-2)二、有理数的乘除法6. 计算:(-3) × 4 × (-2)7. 计算:(-5) × 6 × (-3)8. 计算:(-7) × 2 × 59. 计算:(-9) × 3 × (-4)10. 计算:(-11) × 1 × 6三、有理数的混合运算11. 计算:(-2) × 3 + 4 × (-1) - 512. 计算:(-4) × 2 + 6 × (-3) + 713. 计算:(-6) × 1 + 8 × (-5) - 214. 计算:(-8) × 4 + 10 × (-7) + 315. 计算:(-10) × 5 + 12 × (-9) - 1四、绝对值的计算16. 计算:|-3| + |-7| - |-2|17. 计算:|-5| + |-9| + |-1|18. 计算:|-11| - |-4| + |-6|19. 计算:|-13| + |-2| - |-8|20. 计算:|-15| - |-10| + |-12|五、有理数的乘方21. 计算:(-2)^222. 计算:(-3)^323. 计算:(-4)^224. 计算:(-5)^325. 计算:(-6)^2以上就是初中一年级数学上册计算题专项训练题(366)的内容,涵盖了有理数的加减法、乘除法、混合运算、绝对值计算和乘方等知识点,难度适中,适合初一学生进行专项训练。
七年级上册数学《第2章有理数及其运算》专题有理数加减运算计算题◎有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.①转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.◎有理数的加减混合运算常用的方法技★1、互为相反数的两数相结合★2、符号相同的数相结合★3、同分母的分数相结合★4、相加减得整数的相结合-- -凑整法★5、按加数的类型灵活结合★6、先把分数分离整数后再分组相结合-- -拆项法题型一 有理数的加法计算1.(2023秋•河东区校级月考)计算:(1)27+(﹣13);(2)(﹣19)+(﹣91);(3)(﹣2.4)+2.4;(4)53+(−23). 【分析】根据有理数的加法法则进行解题即可.【解答】解:(1)27+(﹣13)=14;(2)(﹣19)+(﹣91)=﹣110;(3)(﹣2.4)+2.4=0;(4)53+(−23)=1. 【点评】本题考查有理数的加法,掌握加法法则是解题的关键.2.计算:(1)(﹣3)+(﹣9);(2)6+(﹣9);(3)15+(﹣22);(4)0+(−25);(5)12+(﹣4);(6)﹣4.5+(﹣3.5).【分析】根据有理数加法的计算法则逐个进行计算即可.【解答】解:(1)(﹣3)+(﹣9)=﹣(3+9)=﹣12;(2)6+(﹣9)=﹣(9﹣6)=﹣3;(3)15+(﹣22)=﹣(22﹣15)=﹣7;(4)0+(−25)=−25;(5)12+(﹣4)=12﹣4=8;(6)﹣4.5+(﹣3.5)=﹣(4.5+3.5)=﹣8.【点评】本题考查有理数加法,掌握有理数加法的计算法则是正确计算的前提.3.(2023秋•南郑区校级月考)计算:(1)(+7)+(﹣6)+(﹣7);(2)(−32)+(−512)+52+(−712). 【分析】根据有理数的加减计算法则求解即可.【解答】解:(1)原式=7﹣6﹣7=﹣6;(2)原式=(−32)−512+52−712=(−32+52)−(512+712)=1﹣1=0.【点评】本题主要考查了有理数的加减混合计算,熟知相关计算法则是解题的关键.4.计算:(1)15+(﹣19)+18+(﹣12)+(﹣14);(2)2.75+(﹣234)+(+118)+(﹣1457)+(﹣5.125). 【分析】(1)去括号利用,再利用加法的交换律与结合律进行计算即可.(2)去括号利用,再利用加法的交换律与结合律进行计算即可.【解答】解:(1)原式=15﹣19+18﹣12﹣14=(15+18)+(﹣19﹣12﹣14)=33+(﹣45)=﹣12;(2)原式=234−234+118−1457−518 =(234−234)+(118−518)﹣1457 =﹣1857. 【点评】本题主要考查了有理数的加法,掌握运算法则,利用加法的交换律与结合律进行计算是解题关键.5.用合理的方法计算下列各题:(1)103+(−114)+56+(−712);(2)(−12)+(−25)+(+32)+185+395. 【分析】(1)把原式写成去掉括号的形式,分别计算正数和负数的和,即可得到答案;(2)应用加法的交换,结合律,即可计算.【解答】解:(1)103+(−114)+56+(−712) =103+56−114−712=256−206 =56;(2)(−12)+(−25)+(+32)+185+395 =(−12+32)+(−25+185+395)=1+11=12.【点评】本题考查有理数的加法,关键是掌握有理数的加法法则.6.(2023秋•桐柏县校级月考)提升计算:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(2)23+(﹣17)+6+(﹣22);(3)(+14)+(+18)+6+(−38)+(−38)+(−6).【分析】(1)根据有理数的加法法则计算即可;(2)根据有理数的加法法则计算即可;(3)根据有理数的加法法则计算即可.【解答】解:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7=[(﹣2.4)+(﹣4.6)]+[(﹣3.7)+5.7]=﹣7+2=﹣5;(2)23+(﹣17)+6+(﹣22)=(23+6)+[(﹣17)+(﹣22)]=29+(﹣39)=﹣10;(3)(+14)+(+18)+6+(−38)+(−38)+(−6)=[(+14)+(+18)+(−38)]+(−38)+[6+(−6)]=0+(−38)+0=−38.【点评】本题考查了有理数的加法,熟练掌握有理数的加法法则是解题的关键. 题型二 有理数的减法计算7.计算:(1)(﹣73)﹣41;(2)37﹣(﹣14);(3)(−13)−190; (4)37−12. 【分析】根据有理数减法法则进行计算即可.【解答】解:(1)原式=﹣73﹣41=﹣114;(2)原式=37+14=51;(3)原式=−3090−190=−3190; (4)原式=614−714=−114.【点评】本题考查有理数的减法,掌握有理数减法法则是解题的关键.8.计算:(1)(﹣14)﹣(+15);(2)(﹣14)﹣(﹣16);(3)(+12)﹣(﹣9);(4)12﹣(+17);(5)0﹣(+52);(6)108﹣(﹣11).【分析】根据有理数的减法法则进行计算即可.【解答】解:(1)原式=﹣14﹣15=﹣29;(2)原式=﹣14+16=2;(3)原式=12+9=21;(4)原式=12﹣17=﹣5;(5)原式=0﹣52=﹣52;(6)原式=108+11=119.【点评】本题考查有理数的减法,掌握有理数的减法法则是解题的关键.9.计算:(1)(﹣34)﹣(+56)﹣(﹣28);(2)(+25)﹣(−293)﹣(+472).【分析】根据有理数的减法法则,把减法化成加法,写成省略加号和的形式,再利用加法运算律进行简便计算即可.【解答】解:(1)原式=(﹣34)+(﹣56)+(+28)=﹣34﹣56+28=﹣90+28=﹣62;(2)原式=(+25)+(+293)+(−472)=25+293−472=25+586−1416=2086−1416=676.【点评】本题主要考查了有理数的减法,解题关键是熟练掌握有理数的加减法则.10.计算下列各题.(1)(5﹣8)﹣2;(2)(3﹣7)﹣(2﹣9);(3)(﹣3)﹣12﹣(﹣4);(4)0﹣(﹣7)﹣4.【分析】根据有理数的减法法则计算即可,有理数减法法则:减去一个数,等于加上这个数的相反数.【解答】解:(1)(5﹣8)﹣2=﹣3+(﹣2)=﹣5;(2)(3﹣7)﹣(2﹣9)=(﹣4)﹣(﹣7)=﹣4+7=3;(3)(﹣3)﹣12﹣(﹣4)=﹣15+4=﹣11;(4)0﹣(﹣7)﹣4=0+7﹣4=3.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.11.计算:(1)﹣30﹣(﹣85);(2)﹣3﹣6﹣(﹣15)﹣(﹣10);(3)23−(−23)−34. 【分析】(1)根据有理数的减法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的减法法则计算即可.【解答】解:(1)﹣30﹣(﹣85)=﹣30+85=55;(2)﹣3﹣6﹣(﹣15)﹣(﹣10)=﹣3﹣6+15+10=16;(3)23−(−23)−34 =23+23−34=712.【点评】本题考查了有理数的减法,熟练掌握有理数的减法法则是解题的关键.12.(2023秋•新城区校级月考)计算:0.47﹣4﹣(﹣1.53).【分析】原式根据有理数加减法法则进行计算即可得到答案.【解答】解:0.47﹣4﹣(﹣1.53)=0.47﹣4+1.53=(0.47+1.57)﹣4=2﹣4=﹣2.【点评】本题主要考查了有理数的加减,熟练掌握有理数加减法法则是解答本题的关键.13.(2023秋•皇姑区校级期中)计算:16﹣(﹣12)﹣24﹣(﹣18).【分析】将减法统一成加法,然后再计算.【解答】解:原式=16+12+(﹣24)+18=28+(﹣24)+18=4+18=22.【点评】本题考查有理数加减混合运算,掌握有理数加减法运算法则是解题关键.14.(2023秋•射洪市校级月考)计算:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2).【分析】减去一个数,等于加上这个数的相反数,由此计算即可.【解答】解:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2)=﹣7+10+8+2=13.【点评】本题考查了有理数的减法,熟记其运算法则是解题的关键.15.(2024春•闵行区期中)计算:0.125−(−234)−(318−0.25).【分析】按照有理数的减法法则,把减法化成加法,写成省略加号和的形式,然后进行简便计算即可.【解答】解:原式=18+234−318+14=234+14+18−318=3﹣3=0. 【点评】本题主要考查了有理数的减法运算,解题关键是熟练掌握有理数的加减法则.16.计算:4.73−[223−(145−2.63)]−13.【分析】根据有理数的减法法则进行求解即可,先算小括号,再算中括号,能用简便方法的用简便方法.【解答】解:原式=4.73﹣[223−(﹣0.83)]−13 =4.73﹣(83+0.83)−13 =4.73−83−0.83−13=0.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解题的基础. 题型三 运用加法运算律进行简便计算17.计算:16+(﹣25)+24+(﹣35).【分析】把括号去掉,用加法的交换律和结合律计算.【解答】解:16+(﹣25)+24+(﹣35),=16﹣25+24﹣35=(16+24)+(﹣25﹣35)=40+(﹣60)=﹣20.【点评】本题考查了有理数加法,掌握有理数加法法则,加法的交换律和结合律的熟练应用是解题关键.18.计算:(﹣34)+(+8)+(+5)+(﹣23)【分析】此题可以运用加法的交换律交换加数的位置,原式可变为[(﹣34)+(﹣23)]+(8+5),然后利用加法的结合律将两个加数相加.【解答】解:(﹣34)+(+8)+(+5)+(﹣23),=[(﹣34)+(﹣23)]+(8+5),=﹣57+13,=﹣44.【点评】本题考查了有理数的加法.解题关键是综合应用加法交换律和结合律,简化计算.19.计算:213+635+(−213)+(−525).【分析】原式1、3项结合,2、4项结合,计算即可得到结果.【解答】解:原式=(213−213)+(635−525)=115. 【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.20.计算:(﹣1.8)+(+0.7)+(﹣0.9)+1.3+(﹣0.2).【分析】利用有理数的加法法则及加法的运算律进行计算即可.【解答】解:原式=[﹣1.8+(﹣0.2)]+(0.7+1.3)+(﹣0.9)=﹣2+2+(﹣0.9)=﹣0.9.【点评】本题考查有理数的加法运算,熟练掌握相关运算法则是解题的关键.21.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.22.计算:−0.5+(−314)+(−2.75)+(+712).【分析】先用加法的交换律和结合律,再根据有理数加法法则进行计算.【解答】解:原式=[﹣0.5+(+712)]+[(﹣3.25)+(﹣2.75)] =7+(﹣6)=1.【点评】本题考查了有理数加法,掌握加法法则,用加法的交换律和结合律是解题关键.23.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.24.(2023秋•汉中期末)计算:12+(−23)+47+(−12)+(−13). 【分析】利用加法结合律变形后,相加即可得到结果.【解答】解:原式=[12+(−12)]+[(−23)+(−13)]+47 =0﹣1+47=−37.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.25.(2023春•普陀区期中)计算:(−357)+(+15.5)+(−1627)+(−512).【分析】先按照同分母结合,再算加法.【解答】解:原式=(﹣357−1627)+(15.5﹣5.5)=﹣20+10=﹣10. 【点评】本题考查了有理数的加法,掌握加法运算律是解题的关键.26.(2024春•普陀区期中)计算:−3.19+21921+(−6.81)−(−2221).【分析】将小数与小数结合,分数与分数结合后再运算即可.【解答】解:−3.19+21921+(−6.81)−(−2221) =(﹣3.19﹣6.81)+(21921+2221)=﹣10+5=﹣5. 【点评】本题考查了有理数加减混合运算,分组计算是关键.27.(2023春•浦东新区校级期中)(−2513)+(+15.5)+(−7813)+(−512). 【分析】先将小数化分数,利用加法交换律将分母相同的放一起进行计算.【解答】解:原式=(−2513)+(+1512)+(−7813)+(−512)=[1512+(−512)]+[(−2513)+(−7813)] =10﹣10=0.【点评】本题考查有理数的加法运算,利用加法交换律将分母相同的数放一起进行计算是解题的关键.28.(2023秋•惠城区月考)用适当的方法计算:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36).【分析】(1)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;(2)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;【解答】解:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14=(0.36+0.14+0.5)+[(﹣7.4)+(﹣0.6)]=1+(﹣8)=﹣7;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36)=[(﹣51)+(﹣7)+(﹣11)]+[(+12)+(+36)]=(﹣69)+48=﹣21.【点评】本题考查有理数的加法,利用运算定律可使计算简便.29.计算:(1)137+(﹣213)+247+(﹣123); (2)(﹣1.25)+2.25+7.75+(﹣8.75).【分析】根据有理数加法法则与运算律进行计算便可.【解答】解:(1)137+(﹣213)+247+(﹣123) =(137+247)+[(﹣213)+(﹣123)]=4+(﹣4)=0;(2)(﹣1.25)+2.25+7.75+(﹣8.75)=[(﹣1.25)+(﹣8.75)]+(2.25+7.75)=(﹣10)+10=0.【点评】本题考查有理数加法,加法运算律,关键是熟记有理数加法运算法则与运算律.30.(2023秋•齐河县校级月考)计算题.(1)5.6+4.4+(﹣8.1);(2)(﹣7)+(﹣4)+(+9)+(﹣5);(3)14+(−23)+56+(−14)+(−13); (4)(﹣9512)+1534+(﹣314)+(﹣22.5)+(﹣15712).【分析】(1)运用加法结合律简便计算即可求解;(2)运用加法交换律和结合律简便计算即可求解;(3)运用加法交换律和结合律简便计算即可求解;(4)运用加法交换律和结合律简便计算即可求解.【解答】解:(1)原式=10﹣8.1=1.9;(2)原式=(﹣7)+[(﹣4)+(﹣5)+(+9)]=﹣7+0=﹣7;(3)原式=[14+(−14)]+[(−23)+(−13)]+56=0+(﹣1)+56=−16;(4)原式=[(﹣9512)+(﹣15712)]+[1534+(﹣314)]+(﹣22.5) =﹣25+1212+(﹣2212) =﹣25+(﹣10)=﹣35.【点评】本题主要考查了有理数的加法,灵活运用加法交换律和结合律进行简便计算是解题的关键. 题型四 有理数的加减混合运算31.(2024春•浦东新区校级期中)计算:(−2513)−(−15.5)+(−7813)+(−512).【分析】根据加法交换律、加法结合律,求出算式的值即可.【解答】解:(−2513)−(−15.5)+(−7813)+(−512)=﹣2513+15.5﹣7813−512 =(﹣2513−7813)+(15.5﹣512)=﹣10+10=0.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.32.(2024春•崇明区期中)计算:414−1.5+(512)−(﹣2.75). 【分析】根据有理数加减混合运算法则运算即可.【解答】解:原式=4.25﹣1.5+5.5+2.75=(4.25+2.75)+(5.5﹣1.5)=7+4=11.【点评】本题考查了有理数加减混合运算,分数转化为小数后分组运算是关键.33.(2024春•黄浦区期中)计算:(−7.7)+(−656)+(−3.3)−(−116).【分析】根据有理数的加减混合运算法则进行计算.【解答】解:原式=﹣7.7−416−3.3+76=﹣11−346=−503.【点评】本题考查了有理数的加减混合运算,掌握有理数的加减混合运算法则是关键.34.(2022•南京模拟)计算:(﹣478)﹣(﹣512)+(﹣414)﹣318. 【分析】原式利用减法法则变形,结合后相加即可得到结果.【解答】解:(﹣478)﹣(﹣512)+(﹣414)﹣318 =−478−318+512−414=−8+114=−634.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.灵活运用加法结合律进行凑整运算可以简化计算.35.(2023秋•万柏林区校级月考)计算:−|−113|−(−225)−|−313|+(−125).【分析】利用绝对值的意义,加法交换律和有理数加减法运算法则计算即可.【解答】解:−|−113|−(−225)−|−313|+(−125)=−113+225−313−125=−113−313+225−125=−423+1=−323.【点评】本题考查有理数的加减运算,解答时涉及绝对值的意义,加法交换律,掌握有理数加减法运算法则是解题的关键,36.(2023秋•万柏林区校级月考)计算:(1)6﹣(﹣2)+(﹣3)﹣1;(2)−1.2+(−34)−(−1.75)−14.【分析】(1)(2)两个小题均按照有理数的减法法则,把减法化成加法,写成省略加号和括号的形式,进行简便计算即可.【解答】解:(1)原式=6+2﹣3﹣1=8﹣4=4;(2)原式=−1.2−34+1.75−14=−1.2+1.75−34−14=0.55﹣1=﹣0.45.【点评】本题主要考查了有理数的加减运算,解题关键是熟练掌握有理数的加减法则.37.(2023秋•泰兴市期末)计算:(1)(−49)+(−59)﹣(﹣9);(2)(56−12−712)+(−124). 【分析】(1)根据有理数的加减运算法则计算即可;(2)先算括号里面的,然后根据有理数的加法法则计算即可.【解答】解:(1)(−49)+(−59)﹣(﹣9)=−49+(−59)+9=﹣1+9=8;(2)(56−12−712)+(−124) =(1012−612−712)+(−124) =−14+(−124)=−724.【点评】本题考查了有理数的加减运算,熟练掌握有理数的加减运算法则是解题的关键.38.(2023秋•管城区校级月考)计算:(1)20+(﹣13)﹣|﹣9|+15;(2)﹣61﹣|﹣71|﹣9﹣(﹣3).【分析】(1)先根据绝对值的性质进行化简,再写成省略加号和的形式进行简便计算即可;(2)先根据绝对值的性质进行化简,然后进行简便计算即可.【解答】解:(1)原式=20+(﹣13)﹣9+15=20﹣13﹣9+15=20+15﹣13﹣9=35﹣22=13;(2)原式=﹣61﹣71﹣9+3=﹣141+3=﹣138.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减法则.39.(2023秋•珠海校级月考)计算:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6);(2)(−710)+(+23)+(−0.1)+(−2.2)+(+710)+(+3.5).【分析】根据有理数加减运算法则计算即可.【解答】解:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6)=4.1+8.9﹣7.4﹣6.6=13﹣14=﹣1;(2)(−710)+(+23)+(﹣0.1)+(﹣2.2)+(+710)+(+3.5)=−710+23﹣0.1﹣2.2+710+3.5=24.2.【点评】本题主要考查了有理数加减运算,掌握有理数加减运算法则是解决问题的关键.40.(2023秋•碑林区校级月考)计算:(1)(﹣2)+3+1+(﹣13)+2;(2)−(−2.5)−(+2.4)+(−312)−1.6.【分析】(1)从左向右依次计算即可;(2)根据加法交换律、加法结合律计算即可.【解答】解:(1)(﹣2)+3+1+(﹣13)+2=1+1﹣13+2=﹣9.(2)−(−2.5)−(+2.4)+(−312)−1.6=2.5﹣2.4﹣3.5﹣1.6=(2.5﹣3.5)+(﹣2.4﹣1.6)=﹣1+(﹣4)=﹣5.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.41.(2023秋•乌鲁木齐期末)计算:(1)﹣313+(−12)−(−13)+112; (2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8).【分析】先分别变有理数加减混合运算为有理数加法,再运用加法交换结合律进行求解.【解答】解:(1)−313+(−12)−(−13)+112=(﹣313+13)+(−12+112) =﹣3+1=﹣2;(2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8)=﹣5.3+2.5﹣3.2﹣4.8=2.5﹣(5.3+3.2+4.8)=2.5﹣13.3=﹣10.8.【点评】此题考查了有理数的混合运算能力,关键是能准确确定运算顺序和方法,并进行正确地计算.42.(2023秋•顺德区校级月考)计算:(1)(+13)﹣(+12)﹣(−34)+(−23).(2)(+478)﹣(﹣514)+(﹣414)﹣(+318). 【分析】利用有理数的加减法则计算各题即可.【解答】解:(1)原式=13−12+34−23=4−6+9−812=−112; (2)原式=478+514−414−318=(478−318)+(514−414) =134+1 =234.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.43.(2023秋•谯城区校级月考)计算题:(1)6﹣(+3)﹣(﹣7)+(﹣2);(2)103+(−114)﹣(−56)+(−712). 【分析】各个小题均把减法写成加法,然后省略加号和括号,进行简便计算即可.【解答】解:(1)原式=6+(﹣3)+7﹣2=6﹣3+7﹣2=6+7﹣3﹣2=13﹣5=8;(2)原式=103−114+56−712 =4012−3312+1012−712 =4012+1012−3312−712 =5012−4012=1012=56.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减运算法则.44.(2023秋•禅城区校级月考)计算:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(2)0−12−(−3.25)+234−|−712|.【分析】(1)根据有理数加减混合运算法则运算即可;(2)去绝对值后,根据有理数加减混合运算法则运算即可.【解答】解:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)=4.3+4﹣2.3﹣4=2;(2)0−12−(−3.25)+234−|−712|=0−12+3.25+234−712 =﹣8+3.25+2.75=﹣8+6=﹣2.【点评】本题考查了有理数加减混合运算,熟练掌握运算法则是解答本题的关键.45.(2023秋•天桥区校级月考)简便运算:(1)31+(﹣28)+28+69;(2)﹣414+8.4﹣(﹣4.75)+335. 【分析】(1)根据有理数的加法交换律和结合律计算即可;(2)据有理数的加法交换律和结合律计算即可.【解答】解:(1)31+(﹣28)+28+69=(31+69)+[(﹣28)+28]=100+0=100;(2)﹣414+8.4﹣(﹣4.75)+335 =(﹣4.25+4.75)+(8.4+3.6)=0.5+12=12.5.【点评】本题考查了有理数的加减混合运算,掌握相关运算法则是解答本题的关键.46.(2023秋•宁阳县期中)计算:(1)13+(﹣24)﹣25﹣(﹣20);(2)(−13)+(−52)+(−23)+(+12);(3)−20.75−3.25+14+1934;(4)−|−23−(+32)|−|−15+(−25)|.【分析】(1)利用有理数的加减法则计算即可;(2)利用有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)先算绝对值,再算加减即可.【解答】解:(1)原式=﹣11﹣25+20=﹣36+20=﹣16;(2)原式=(−13−23)+(12−52) =﹣1﹣2=﹣3;(3)原式=(﹣20.75+1934)+(14−3.25) =﹣1﹣3=﹣4;(4)原式=﹣|−4+96|﹣|−35| =−136−35=−65+1830 =−8330. 【点评】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.47.(2023秋•台儿庄区月考)计算题:(1)﹣32﹣(﹣17)﹣23+(﹣15);(2)(−323)−(−2.4)+(−13)−(+425);(3)(−13)﹣(﹣316)﹣(+223)+(﹣616); (4)(﹣45)﹣(+9)﹣(﹣45)+(+9).【分析】(1)先把算式写成省略加号、括号和的形式,再把负数与正数分别相加;(2)(3)先把算式写成省略加号、括号和的形式,再把分母相同的相加;(3)先把算式写成省略加号、括号和的形式,再把互为相反数的两数相加.【解答】解:(1)﹣32﹣(﹣17)﹣23+(﹣15)=﹣32+17﹣23﹣15=﹣70+17=﹣53;(2)(−323)−(−2.4)+(−13)−(+425)=﹣323+2.4−13−4.4 =﹣323−13+2.4﹣4.4=﹣4﹣2=﹣6; (3)(−13)﹣(﹣316)﹣(+223)+(﹣616) =−13+316−223−616 =−13−223+316−616=﹣3﹣3=﹣6;(4)(﹣45)﹣(+9)﹣(﹣45)+(+9)=﹣45﹣9+45+9=(45﹣45)+(9﹣9)=0.【点评】本题考查了有理数的加减法,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.48.(2023秋•临河区月考)(1)(﹣4.3)﹣(+5.8)+(﹣3.2)﹣3.5+(﹣2.7);(2)−|−15|−(+45)−|−37|−|−47|;(3)513+(−423)+(−613);(4)−12+(−13)−(−14)+(−15)−(−16).【分析】(1)利用有理数的加减法则计算即可;(2)利用绝对值的性质及有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)利用有理数的加减法则计算即可.【解答】解:(1)原式=﹣4.3﹣5.8﹣3.2﹣3.5﹣2.7=﹣(4.3+5.8+3.2+3.5+2.7)=﹣19.5;(2)原式=−15−45−37−47=﹣1﹣1=﹣2;(3)原式=513−613−423 =﹣1﹣423 =﹣523; (4)原式=−12−13+14−15+16=−56+14−15+16=−56+16+14−15=−23+14−15=−40+15−1260=−3760.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.49.(2023秋•越秀区校级期中)阅读下面的解题方法.计算:﹣556+(﹣923)+1734+(﹣312). 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(−54)=−54.上述解题方法叫做拆项法,按此方法计算:(﹣202156)+404323+(﹣202223)+156. 【分析】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案.【解答】解:原式=[(﹣2021)+(−56)+4043+23+(﹣2022)+(−23)]+(1+56)=[(﹣2011)+4043+(﹣2022)+1]+[(−56)+(−23)+23+(56)] =11+0=11.【点评】本题考查了有理数的加法,拆项法是解题关键.仿照上面的方法,请你计算:(−2022724)+(−202158)+(−116)+4044. 【分析】仿照上述拆项法解题即可.【解答】解:(−2022724)+(−202158)+(−116)+4044=[(﹣2022)+(−724)]+[(﹣2021)+(−58)]+[(﹣1)+(−16)]+4044 =[(﹣2022)+(﹣2021)+(﹣1)+4044]+[(−724)+(−58)+(−16)] 50.(2023秋•襄汾县期中)阅读下面的计算过程,体会“拆项法”计算:﹣556+(﹣923)+1734+(﹣312) 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(﹣114)=﹣114 启发应用用上面的方法完成下列计算:(1)(﹣3310)+(﹣112)+235−(﹣212); (2)(﹣200056)+(﹣199923)+400023+(﹣112).【分析】原式根据阅读材料中的方法变形,计算即可得到结果.【解答】解:(1)(﹣3310)+(﹣112)+235−(﹣212) =(﹣3−310)+(﹣1−12)+(2+35)+(2+12)=(﹣3﹣1+2+2)+(−310−12+35+12)=0+310=310;(2)(﹣200056)+(﹣199923)+400023+(﹣112) =(﹣2000−56)+(﹣1999−23)+(4000+23)+(﹣1−12)=(﹣2000﹣1999+4000﹣1)+(−56−23+23−12)=0﹣113 =﹣113. 【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.。
初中一年级数学上册计算题专项训练题(148)好的,以下是针对初中一年级数学上册计算题专项训练题(148)的内容:1. 有理数加减法:(1) 计算:(-3) + 5 + (-7) + 2(2) 计算:8 - (-4) + 3 - (-6)2. 有理数乘除法:(1) 计算:(-2) × (-3) × 4(2) 计算:(-12) ÷ (-3) ÷ 23. 有理数混合运算:(1) 计算:(-5) × 2 + 6 ÷ (-3) - 4(2) 计算:(-8) + 3 × (-2) - 5 ÷ (-1)4. 绝对值:(1) 计算:|-7| + |-3|(2) 计算:|-6| - |-4|5. 有理数的乘方:(1) 计算:(-2)^3(2) 计算:(-3)^26. 有理数的乘方与加减法混合运算:(1) 计算:(-2)^2 + 3 × (-1) - 4(2) 计算:(-3)^3 + 2 × (-5) + 67. 有理数的乘方与乘除法混合运算:(1) 计算:(-2)^3 ÷ (-1) × 4 - 6(2) 计算:(-3)^2 × (-2) ÷ 3 + 48. 有理数的混合运算:(1) 计算:(-4) × 3 + 2^2 - 5 ÷ (-1)(2) 计算:(-5) × (-2) + 3^2 ÷ 3 - 79. 有理数的混合运算:(1) 计算:(-6) × 2 + 4^2 ÷ 4 - 3(2) 计算:(-7) × (-3) + 5^2 ÷ 5 + 210. 有理数的混合运算:(1) 计算:(-8) × (-1) + 6^2 ÷ 6 - 4(2) 计算:(-9) × 2 + 7^2 ÷ 7 + 3以上题目涵盖了初中一年级数学上册有理数的加减法、乘除法、乘方以及混合运算,难度适中,适合作为专项训练题。
初中三年级数学上册计算题专项训练题(708)好的,以下是一份针对初中三年级数学上册计算题的专项训练题:1. 有理数的加减法- 计算:\(-3 + 5 - 8 + 2\)- 计算:\(\frac{1}{2} + \frac{3}{4} - \frac{1}{3} +\frac{5}{6}\)2. 有理数的乘除法- 计算:\(-2 \times 3 \div (-6)\)- 计算:\(\frac{2}{3} \times \frac{5}{4} \div \frac{1}{2}\)3. 有理数的混合运算- 计算:\((-4) \times (-3) \div 2 + 6\)- 计算:\(\frac{3}{4} \times (-2) + \frac{1}{3} \div (-3)\)4. 绝对值的计算- 计算:\(|-7| - |-3|\)- 计算:\(|-\frac{5}{2}| \times |-\frac{3}{4}|\)5. 平方根和立方根的计算- 计算:\(\sqrt{16}\)- 计算:\(\sqrt[3]{8}\)6. 代数式的简化- 简化:\(3x + 2x - 5x\)- 简化:\(4y^2 - 2y^2 + y^2\)7. 多项式乘以单项式- 计算:\(3x \times (2x^2 - 5x + 1)\) - 计算:\(-2y \times (4y^2 + 3y - 7)\)8. 多项式乘以多项式- 计算:\((x + 2)(x - 3)\)- 计算:\((2y - 1)(3y + 4)\)9. 完全平方公式- 计算:\((x + 3)^2\)- 计算:\((y - 2)^2\)10. 平方差公式- 计算:\((x + 4)(x - 4)\)- 计算:\((a + b)(a - b)\)11. 立方和与立方差公式- 计算:\((x + 2)^3\)- 计算:\((x - 3)^3\)12. 因式分解- 因式分解:\(x^2 - 9\)- 因式分解:\(y^2 - 16y + 64\)13. 解一元一次方程- 解方程:\(2x + 3 = 7\)- 解方程:\(5y - 2 = 18\)14. 解一元二次方程- 解方程:\(x^2 - 5x + 6 = 0\)- 解方程:\(y^2 + 7y - 18 = 0\)15. 解比例- 解比例:\(\frac{a}{3} = \frac{b}{4}\),其中 \(a = 6\)- 解比例:\(\frac{c}{5} = \frac{d}{7}\),其中 \(d = 14\)这些题目覆盖了初中三年级数学上册的主要计算知识点,包括有理数的运算、代数式的简化、多项式的乘法、完全平方公式、平方差公式、立方和与立方差公式、因式分解、解一元一次和二次方程以及解比例。
初中数学试卷灿若寒星整理制作有理数加减法练习题有理数的加法 一、 填空题1.(1)同号两数相加,取 并把 。
(2)绝对值不相等的异号两数相加,取 的符号,并用较大的绝对值 较小的绝对值。
(3)互为相反数的两数相加得 。
(4)一个数与零相加,仍得 。
2.计算: (1)(+5)+(+2)= (2)(-8)+(-6)= (3)(+8)+(-3)= (4)(-15)+(+10)= (5)(+208)+0=3.小华向东走了-8米,又向东走了-5米,他一共向东走了 米。
4.在下列括号内填上适当的数。
(1)0+( )= -8 (2)5+( )=-2 (3)10+( )=0 (4)12 +( )= -125.计算:—6+3=二选择题1. 下列计算正确的是( )A. (+6) +(-13) =+7B. (+6) +(-13) =-19C. (+6) +(-13) =-7D. (-5) +(-3) =8 2. 下列计算结果错误的是( )A. (-5) +(-3) =-8B. (-5) +(=3) =2C. (-3) +5 =2D. 3 +(-5) =-2 3. 下列说法正确的是( )A .两数相加,其和大于任何一个加数 B. 0与任何数相加都得0C .若两数互为相反数,则这两数的和为0 D.两数相加,取较大一个加数的符号 ◎ 能力提高 一、 填空题1. 若a+3=0,则a= 。
2. -31的绝对值的相反数与332的相反数的和为 。
3. 绝对值小于2010的所有整数的和为 。
4. 已知两个数是18和-15,这两个数的和的绝对值是 ,绝对值的和是 。
5. a 的相反数是最大的负整数,b 是最小的正整数,那么a+b= 。
二、选择题1. 下列计算中错误的是( )A. (+2) +(-13) =- (13-2) =-11B. (+20) +(+12) =+(20+12) =32C. (-121) +(-132) =+ (121+132) =361D. (-3.4) +(+4.3) =0.9 2. 在1,-1,-2这三个数中任意两数之和的最大值是( ) A .1 B.0 C.-1 D.-33. 某工厂今年第一季度盈利2800元,第二季度亏损4300元,则该厂今年上半年盈余(或亏损)可用算式表示为( )A. (+2800)+(+4300)B. (-2800)+(+4300)C. (-2800)+(-4300)D. (+2800)+(-4300)4. 张老师和同学们做了这样一个游戏:张老师左手和右手分别拿一个写有数字的卡片,请同学们说出它们的和,其中小亮说出的结果比每个加数都小,那么这两个加数( )A. 都为正数B. 都为负数C. 一正一负D.都不能确定 三、计算题1.(-13)+(+19)2. (-4.7)+(-5.3)3.(-2009)+ (+2010)4. (+125) + (-128)5. (+0.1) + (-0.01)6. (-1.375)+(-1.125)7.(-0.25)+ (+43)8. (-831)) + (-421)9. (-1.125) + (+87) 10. (-15.8) + (+3.6)◎ 最新动态1. 如果a+b=0,那么a+b 两个数一定是( )A. 都等于0B. 一正一负C. 互为相反数D. 互为倒数 2. 数轴上A 、B 两点所表示的有理数的和是-5-4-3-2-1012345xA B(第2题图)3. 如果□.+2=0,那么“□.”内应填的数是 。
人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案一.选择题(共10小题 满分20分 每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( ) A .411 B .910 C .19 D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭ 91123722182218=+-+ 92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭ 7111=-+ 411=. 故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号 去掉括号和负号 括号内各项都要变号”先去括号 再利用加法的交换律和结合律 将分母相同的加数结合在一起 进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃ 中午上升了7°C 半夜又下降了8℃ 则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C 【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B【思路引导】根据题意可得算式:-3+7-8 计算即可。
3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( ) A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ B .11133234⎛⎫--+ ⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412 -+=+-++=A1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭B 1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭C1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭D1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。
有理数的加减法练习题及过程1、加法计算:+=+=-3+2=+6=+2.5=+=+=+= 0+=-7-4= ??3??1= aa?=2、减法计算:-=1.3-=13-=0-6=-10= .38-=-= 0-=-=-2.5-4.5=-17=-4-2=1??1??1? -== 34?= 4??3?3、加减混合计算题:+5-11; 4-+-1 -7.2+3.9-8.4+12-3-5+-26+43-34+17-41.26-293+8.74+19112-+-11.3? --+---+-6-8-2+3.54-4.72+16.46-5.284、加减混合计算题: ?1?5??3??1??4??1? 15?? +++?3?5??3??2??64??6??7??6??7??4??2?2??1??1?22??2??3??15??5????1??8???3?1?24??3?13??4??13??5??5?2??3??2? ???321?? ??4??3???7??1??1??14?5?4?3? ?8??2??4??8?1??5??1??1??1??3??1? ???11231? ?? 1.2?25???3.4?6??6?2??4??42??4??11111111 1?22?38?99?101?33?597?9999?101有理数的加减法——提高题练习一、选择题:1、若m是有理数,则m?|m|的值A、可能是正数B、一定是正数C、不可能是负数D、可能是正数,也可能是负数2、若m?0,则m?|m|的值为A、正数B、负数C、0D、非正数3、如果m?n?0,则m与n的关系是A、互为相反数B、 m=?n,且n≥0C、相等且都不小于0D、m是n的绝对值4、下列等式成立的是A、a??a?0B、?a?a=0C、?a?a?0D、?a-a=05、若a?2?b?3?0,则a?b的值是A、5B、1C、-1D、-56、在数轴上,a表示的点在b表示的点的右边,且a?6,b?3,则a?b的值为A、都是负数B、两个数一正一负C、减数大于被减数D、减数小于被减数6、负数a与它相反数的差的绝对值等于A、 0B、a 的2倍C、-a的2倍D、不能确定8、下列语句中,正确的是A、两个有理数的差一定小于被减数B、两个有理数的和一定比这两个有理数的差大C、绝对值相等的两数之差为零D、零减去一个有理数等于这个有理数的相反数9、对于下列说法中正确的个数①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和,可能是其中的一个加数)④两个有理数的和可能等于0A、1B、2C、D、410、有理数a,b在数轴上的对应点的位置如图所示,则A、a+b=0B、a+b>0C、a-b<0D、a-b>011、用式子表示引入相反数后,加减混合运算可以统一为加法运算,正确的是A、a+b-c=a+b+cB、a-b+c=a+b+cC、a+b-c=a+=D、a+b-c=a+b+12、若a?b?0?c?d,则以下四个结论中,正确的是A、a?b?c?d一定是正数B、c?d?a?b可能是负数C、d?c?a?b一定是正数D、c?d?a?b一定是正数13、若a、b为有理数,a与b的差为正数,且a与b 两数均不为0,那么A、被减数a为正数,减数b为负数B、a与b均为正数,切被减数a大于减数bC、a与b两数均为负数,且减数 b的绝对值大D、以上答案都可能14、若a、b表示有理数,且a>0,b<0,a+b<0,则下列各式正确的是A、-b<-a<b<aB、-a<b<a<-bC、b<-a<-b<aD、b<-a<a<-b15、下列结论不正确的是A、若a?0,b?0,则a?b?0B、若a?0,b?0,则a?b?0C、若a?0,b?0,则ab??0D、若a?0,b?0,且a?b,则a?b?016、若x?0,y?0时,x,x?y,y,x?y中,最大的是A、xB、x?yC、x?yD、y17、数m和n,满足m为正数,n为负数,则m,m-n,m+n的大小关系是A、m>m-n>m+nB、m+n>m>m-nC、m-n>m+n>mD、m-n>m>m+n18、若a?0,b?0,则下列各式中正确的是A、a?b?0B、a?b?0C、a?b?0D、?a?b?019、如果 a、b是有理数,则下列各式子成立的是A、如果a<0,b<0,那么a+b>0B、如果a>0,b<0,那么a+b>0C、如果a>0,b<0,那么a+b<0D、如果a<0,b>0,且︱a︱>︱b︱,那么a+b<0二、填空题:20、已知x?6,y?3,那么x?y21、三个连续整数,中间一个数是a,则这三个数的和是___________.22、若a?8,b?3,且a?0,b?0,则a?b=________.23、当b?0时,a、a?b、a?b中最大的是_______,最小的是_______.24、若a?0,那么a?等于___________.25、若数轴上,A点对应的数为-5,B点对应的数是7,则A、B两点之间的距离是.26、有若干个数,第一个数记为a1,第二个数记为a2,第3个数记为a3,…,第n个数记为an ,若a1=-0.5,从第二个数起,每个数都等于“1”与它前面的那个数的差的倒数。
30道有理数加减法计算题练习一(一)计算题:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)(二)用简便方法计算:(1)(-17/4)+(-10/3)+(+13/3)+(11/3)(2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)(三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25, 求:(-X)+(-Y)+Z的值(四)用">","0,则a-ba (C)若ba (D)若a<0,ba(二)填空题:(1)零减去a的相反数,其结果是_____________;(2)若a-b>a,则b是_____________数;(3)从-3.14中减去-π,其差应为____________;(4)被减数是-12(4/5),差是4.2,则减数应是_____________;(5)若b-a<-,则a,b的关系是___________,若a-b<0,则a,b的关系是______________;(6)(+22/3)-( )=-7(三)判断题:(1)一个数减去一个负数,差比被减数小.(2)一个数减去一个正数,差比被减数小.(3)0减去任何数,所得的差总等于这个数的相反数.(4)若X+(-Y)=Z,则X=Y+Z(5)若a<0,b|b|,则a-b>0练习二(一)计算:(1)(+1.3)-(+17/7) (2)(-2)-(+2/3)(3)|(-7.2)-(-6.3)+(1.1)| (4)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)(二)如果|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.(三)若a,b为有理数,且|a|<|b|试比较|a-b|和|a|-|b|的大小(四)如果|X-1|=4,求X,并在数轴上观察表示数X的点与表示1的点的距离.练习三(一)选择题:(1)式子-40-28+19-24+32的正确读法是( )(A)负40,负28,加19,减24与32的和(B)负40减负28加19减负24加32(C)负40减28加19减24加32(D)负40负28加19减24减负32(2)若有理数a+b+C<0,则( )(A)三个数中最少有两个是负数(B)三个数中有且只有一个负数(C)三个数中最少有一个是负数(D)三个数中有两个是正数或者有两个是负数(3)若m<0,则m和它的相反数的差的绝对值是( )(A)0 (B)m (C)2m (D)-2m(4)下列各式中与X-y-Z诉值不相等的是( )(A)X-(Y-Z) (B)X-(Y+Z) (C)(X-y)+(-z) (D)(-y)+(X-Z)(二)填空题:(1)有理数的加减混合运算的一般步骤是:(1)________;(2)_________;(3)_______________;(4)__________________.(2)当b0,(a+b)(a-1)>0,则必有( )(A)b与a同号 (B)a+b与a-1同号 (C)a>1 (D)b1(6)一个有理数和它的相反数的积( )(A)符号必为正 (B)符号必为负 (C)一不小于零 (D)一定不大于零(7)若|a-1|*|b+1|=0,则a,b的值( )(A)a=1,b不可能为-1 (B)b=-1,a不可能为1 (C)a=1或b=1 (D)a与b的值相等(8)若a*B*C=0,则这三个有理数中( )(A)至少有一个为零 (B)三个都是零 (C)只有一个为零 (D)不可能有两个以上为零(二)填空题:(1)有理数乘法法则是:两数相乘,同号__________,异号_______________,并把绝对值_____, 任何数同零相乘都得__________________.(2)若四个有理数a,b,c,d之积是正数,则a,b,c,d中负数的个数可能是______________;(3)计算(-2/199)*(-7/6-3/2+8/3)=________________;(4)计算:(4a)*(-3b)*(5c)*1/6=__________________;(5)计算:(-8)*(1/2-1/4+2)=-4-2+16=10的错误是___________________;(6)计算:(-1/6)*(-6)*(10/7)*(-7/10)=[(-1/6)*(-6)][(+10/7)*(-7/10)]=-1的根据是_______(三)判断题:(1)两数之积为正,那么这两数一定都是正数;(2)两数之积为负,那么这两个数异号;(3)几个有理数相乘,当因数有偶数个时,积为正;(4)几个有理数相乘,当积为负数时,负因数有奇数个;(5)积比每个因数都大.(一)计算题:(1)(-4)(+6)(-7) (2)(-27)(-25)(-3)(-4)(3)0.001*(-0.1)*(1.1) (4)24*(-5/4)*(-12/15)*(-0.12)(5)(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7)(6)(-24/7)(11/8+7/3-3.75)*24(二)用简便方法计算:(1)(-71/8)*(-23)-23*(-73/8)(2)(-7/15)*(-18)*(-45/14)(3)(-2.2)*(+1.5)*(-7/11)*(-2/7)(三)当a=-4,b=-3,c=-2,d=-1时,求代数式(ab+cd)(ab-cd)的值.(四)已知1+2+3+......+31+32+33=17*33,计算下式1-3+2-6+3-9-12+...+31-93+32-96+33-99的值(一)选择题:(1)已知a,b是两个有理数,如果它们的商a/b=0,那么( ) (A)a=0且b≠0 (B)a=0(C)a=0或b=0 (D)a=0或b≠0 (2)下列给定四组数1和1;-1和-1;0和0;-2/3和-3/2,其中互为倒数的是( ) (A)只有 (B)只有 (C)只有 (D)都是 (3)如果a/|b|(b≠0)是正整数,则( ) (A)|b|是a的约数 (B)|b|是a的倍数 (C)a与b同号 (D)a与b异号 (4)如果a>b,那么一定有( ) (A)a+b>a (B)a-b>a (C)2a>ab(D)a/b>1(二)填空题:(1)当|a|/a=1时,a______________0;当|a|/a=-1时,a______________0;(填>,0,则a___________0; (11)若ab/c0,则b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3 (C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106 (4)若a为有理数,且a2>a,则a的取值范围是( ) (A)a<0 (B)0<1 (C)a1 (D)a>1或a<0 (5)下面用科学记数法表示106000,其中正确的是( ) (A)1.06*105 (B)10.6*105 (C)1.06*106 (D)0.106*107 (6)已知1.2363=1.888,则123.63等于( ) (A)1888 (B)18880 (C)188800 (D)1888000 (7)若a是有理数,下列各式总能成立的是( ) (A)(-a)4=a4 (B)(-a)3=A4(C)-a4=(-a)4 (D)-a3=a3 (8)计算:(-1)1-(-2)2-(-3)3-(-4)4所得结果是( )(A)288 (B)-288 (C)-234 (D)280(二)填空题:(1)在23中,3是________,2是_______,幂是________;若把3看作幂,则它的底数是________,指数是________; (2)根据幂的意义:(-2)3表示________相乘; (-3)2v表示________相乘;-23表示________. (3)平方等于36/49的有理数是________;立方等于-27/64的数是________ (4)把一个大于10的正数记成a*10n(n为正整数)的形成,a的范围是________,这里n比原来的整数位数少_________,这种记数法称为科学记数法; (5)用科学记数法记出下面各数:4000=___________;950000=________________;地球的质量约为49800...0克(28位),可记为________; (6)下面用科学记数法记出的数,原来各为多少 105=_____________;2*105=______________;9.7*107=______________9.756*103=_____________ (7)下列各数分别是几位自然数 7*106是______位数 1.1*109是________位数; 3.78*107是______位数1010是________位数; (8)若有理数m 0,b0 (B)a-|b|>0 (C)a2+b3>0 (D)a<0 (6)代数式(a+2)2+5取得最小值时的a值为( ) (A)a=0 (B)a=2 (C)a=-2 (D)a0(B)b-a>0 (C)a,b互为相反数; (D)-ab (C)a(5)用四舍五入法得到的近似数1.20所表示的准确数a的范围是( )(A)1.195≤a<1.205 (B)1.15≤a<1.18 (C)1.10≤a<1.30 (D)1.200≤a<1.205 (6)下列说法正确的是( ) (A)近似数3.80的精确度与近似数38的精确度相同; (B)近似数38.0与近似数38的有效数字个数一样 (C)3.1416精确到百分位后,有三个有效数字3,1,4; (D)把123*102记成1.23*104,其有效数字有四个.(二)填空题:(1)写出下列由四舍五入得到的近似值数的精确度与有效数字: (1)近似数85精确到________位,有效数字是________; (2)近似数3万精确到______位,有效数字是________; (3)近似数5200千精确到________,有效数字是_________; (4)近似数0.20精确到_________位,有效数字是_____________. (2)设e=2.71828......,取近似数2.7是精确到__________位,有_______个有效数字; 取近似数2.7183是精确到_________位,有_______个有效数字. (3)由四舍五入得到π=3.1416,精确到0.001的近似值是π=__________; (4)3.1416保留三个有效数字的近似值是_____________;(三)判断题:(1)近似数25.0精确以个痊,有效数字是2,5; (2)近似数4千和近似数4000的精确程度一样; (3)近似数4千和近似数4*10^3的精确程度一样; (4)9.949精确到0.01的近似数是9.95.练习八(B级)(一)用四舍五入法对下列各数取近似值(要求保留三个有效数字): (1)37.27(2)810.9 (3)0.0045078 (4)3.079(二)用四舍五入法对下列各数取近似值(要求精确到千位): (1)37890.6(2)213612.4 (3)1906.57(三)计算(结果保留两个有效数字): (1)3.14*3.42 (2)972*3.14*1/4练习九(一)查表求值:(1)7.042 (2)2.482 (3)9.52 (4)2.0012 (5)123.42 (6)0.12342 (7)1.283(8)3.4683 (9)(-0.5398)3 (10)53.733(二)已知2.4682=6.901,不查表求24.682与0.024682的值(三)已知5.2633=145.7,不查表求(1)0.52633 (2)0.05263 (3)52.632 (4)52633(四)已知21.762^2=473.5,那么0.0021762是多少保留三个有效数字的近似值是多少(五)查表计算:半径为77cm的球的表面积.(球的面积=4π*r2)有理数练习题一填空题1.-(-2 )的倒数是_________,相反数是__________,绝对值是__________。
初中一年级数学下册计算题专项训练题(559)好的,以下是针对初中一年级数学下册计算题的专项训练题,题号为(559):一、有理数的加减法1. 计算下列有理数的和:\[(-3) + (+5) + (-2) + 0\]2. 计算下列有理数的差:\[(+7) - (-4) - (+2)\]二、有理数的乘除法3. 计算下列有理数的乘积:\[(-3) \times (-2) \times 4\]4. 计算下列有理数的商:\[\frac{(-6)}{(+3)} \div (-2)三、有理数的混合运算5. 计算下列有理数的混合运算:\[(-8) + (+3) \times (-2) \div (-1)\]6. 计算下列有理数的混合运算:\[(+5) \times (-3) + (-4) \div (-2)\]四、绝对值的计算7. 计算下列绝对值:\[|-7| + |+2| - |-5|\]8. 计算下列绝对值:\[|-10| \times |+3| \div |-0.5|\]五、代数式的求值9. 已知 \(a = -2\),\(b = 3\),求下列代数式的值: \[a^2 - b^210. 已知 \(x = 4\),\(y = -1\),求下列代数式的值:\[3x^2 + 2y^2\]请同学们按照运算顺序,认真计算每一题,注意有理数的加减乘除法则,以及绝对值和代数式的求值方法。
通过这些专项训练题,可以加强同学们对有理数运算的理解和应用能力。
初中一年级数学下册计算题专项训练题(829)好的,以下是针对初中一年级数学下册计算题专项训练的题目内容:一、有理数的加减法1. 计算下列有理数的和:\[(-3) + 5 + (-2) + 4\]2. 计算下列有理数的差:\[8 - (-7) - 3\]二、有理数的乘除法3. 计算下列有理数的乘积:\[(-4) \times (-2) \times 3\]4. 计算下列有理数的商:\[\frac{12}{(-3)} \div (-2)\]三、有理数的混合运算5. 计算下列表达式:\[(-6) \times 3 + 4 \times (-2) - 5\]6. 计算下列表达式:\[\frac{15}{3} - (-4) \times 2 + 6 \div (-3)\]四、绝对值和相反数7. 计算下列绝对值:\[|-7| + |5| - |-3|\]8. 计算下列相反数的和:\[(-8) + (+8) + (-5) + (+5)\]五、代数式求值9. 已知 \( a = 3 \),\( b = -2 \),计算代数式的值: \[a -b + 2a - 3b\]10. 已知 \( x = -1 \),\( y = 2 \),计算代数式的值:\[3x^2 - 2xy + y^2\]六、解一元一次方程11. 解方程:\[2x + 3 = 7\]12. 解方程:\[5 - 3x = 2x - 1\]请同学们仔细审题,认真计算,注意运算顺序和符号的处理。
这些题目覆盖了初中一年级数学下册计算题的多个方面,旨在帮助同学们巩固和提高计算能力。
祝同学们练习愉快!。
初中一年级数学下册计算题专项训练题(732)好的,以下是针对初中一年级数学下册计算题的专项训练题内容:一、有理数的加减法1. 计算:\((-3) + 4\)2. 计算:\((-7) + (-2)\)3. 计算:\(5 + (-3)\)4. 计算:\((-8) + 6\)5. 计算:\((-4) + (-9)\)二、有理数的乘除法6. 计算:\((-3) \times 4\)7. 计算:\((-2) \times (-5)\)8. 计算:\(6 \div (-3)\)9. 计算:\((-7) \div (-2)\)10. 计算:\((-8) \times (-2)\)三、有理数的混合运算11. 计算:\((-3) + 4 \times (-2)\)12. 计算:\((-5) \times (-3) + 6\)13. 计算:\((-4) \div 2 - 3\)14. 计算:\((-7) \times 2 + 8 \div (-2)\)15. 计算:\((-9) + 3 \times (-4) - 2\)四、绝对值和有理数的大小比较16. 计算:\(|-5|\)17. 计算:\(|3| - |-3|\)18. 比较大小:\(-7\) 和 \(-3\)19. 比较大小:\(-2\) 和 \(2\)20. 比较大小:\(-8\) 和 \(-6\)五、代数式的求值21. 当 \(x = 2\) 时,计算 \(3x - 5\)22. 当 \(y = -3\) 时,计算 \(-2y + 4\)23. 当 \(a = -1\) 时,计算 \(2a + 3\)24. 当 \(b = 4\) 时,计算 \(-b + 7\)25. 当 \(c = -2\) 时,计算 \(3c - 6\)请注意,这些题目需要学生掌握有理数的加减乘除法则、混合运算的顺序、绝对值的概念以及代数式的求值方法。
在解答时,要按照数学运算的规则,先乘除后加减,并注意括号内的运算优先进行。