方法技巧训练7:几何图形中的最值问题
- 格式:ppt
- 大小:2.81 MB
- 文档页数:24
初中数学错题分类整理与分析在初中数学教学中,错题整理与分析是提高学生数学素养的重要环节。
通过对错题的深入剖析,学生可以更好地掌握数学知识,提升解题能力。
本文将从分类整理和分析的角度,探讨初中数学错题的处理策略。
一、错题分类1.概念性错误:学生对数学概念理解不透彻,导致解题过程中出现偏差。
例如,分不清有理数和无理数,将导致有关根号的题目解答错误。
2.计算性错误:学生在计算过程中,由于疏忽、马虎等原因,出现算术错误。
例如,简单的加减乘除运算错误,或者在小数点和分数运算中出现失误。
3.逻辑性错误:学生在解题过程中,逻辑思维不严密,导致解答不完整或者答案错误。
例如,在解一元一次方程时,忽略检验解的正确性。
4.应用题错误:学生在解决应用题时,不能正确将数学知识运用到实际问题中,或者对题目的理解出现偏差。
例如,在解决几何问题时,不能准确运用面积公式。
5.构图错误:学生在作图过程中,不能准确地根据题目要求绘制图形,导致解题思路混乱。
例如,在解几何证明题时,作图不准确,导致无法找到关键证明步骤。
二、错题整理1.建立错题本:学生应养成建立错题本的的习惯,将每次考试、练习中出现的错题记录下来。
2.归纳错题类型:学生在记录错题时,应注意归纳错题的类型,以便于后续分析和复习。
3.标注错题原因:学生在整理错题时,应在每道错题旁边标注出错的原因,以便于查找和改正。
4.定期复习:学生应定期复习错题本,巩固已掌握的知识点,避免重复犯错。
三、错题分析1.自我分析:学生应对错题进行自我分析,找出自己在解题过程中的不足之处,如概念理解不深、计算不准确等。
2.寻求帮助:学生在分析错题时,如有遇到困难,可以向老师、同学请教,以便更好地掌握知识点。
3.总结经验:学生应总结错题解析过程中的经验教训,提高解题能力。
4.反馈调整:学生应对错题进行分析总结后,对自己的学习方法、复习计划等进行调整,以提高学习效果。
四、教学建议1.注重概念教学:教师应加强对数学概念的教学,让学生充分理解并掌握基本概念。
初中数学解题技巧与思维训练试卷(答案见尾页)一、选择题1. 在解一元二次方程时,通常使用哪种方法?A. 直接开平方法B. 配方法C. 公式法D. 因式分解法2. 下列哪个选项是计算平均速度的正确公式?A. 平均速度 = 总路程 / 总时间B. 平均速度 = 总路程 / 总路程C. 平均速度 = 总时间 / 总路程D. 平均速度 = 总路程 / 平均时间3. 在几何图形中,下列哪个图形的对称轴数量最多?A. 等腰三角形B. 长方形C. 正方形D. 圆形4. 下列哪个选项是计算三角形面积的正确公式?A. 面积 = (底 × 高) / 2B. 面积 = 底 × 高C. 面积 = (周长 × 高) / 2D. 面积 = 周长 × 高5. 在解一元一次不等式时,我们通常首先做什么操作?A. 移项B. 合并同类项C. 系数化为1D. 除以系数6. 下列哪个选项是计算复利终值的正确公式?A. 终值 = 本金 × (1 + 年利率) ^ 年数B. 终值 = 本金 × 年利率 ^ 年数C. 终值 = 本金 × (1 - 年利率) ^ 年数D. 终值 = 本金 / (1 + 年利率) ^ 年数7. 在解直角三角形时,我们通常使用哪些三角函数?A. 正弦、余弦、正切B. 正弦、余弦、正割C. 正弦、余弦、余切D. 正弦、正切、余割8. 下列哪个选项是计算等差数列前n项和的正确公式?A. 和 = n × (a1 + an) / 2B. 和 = n × a1 + n × (n - 1) × d / 2C. 和 = n × (a1 + an) / 2 × dD. 和 = n × a1 + n × (n - 1) / 2 × d9. 在几何图形中,下列哪个图形的内角和最大?A. 平行四边形B. 长方形C. 正方形D. 圆形10. 下列哪个选项是判断两个三角形相似的根据?A. 两边成比例且夹角相等B. 三边成比例C. 两角成比例D. 一边成比例且夹角相等11. 在解决数学问题时,以下哪项不是常用的解题策略?A. 画图辅助理解B. 列表比较法C. 猜测答案后验证D. 忽略问题中的隐含条件12. 对于一元二次方程ax^ + bx + c = ,以下哪个选项不是求根公式?A. x = (-b ± √(b^2 - 4ac)) / (2a)B. x = (b ± √(b^2 - 4ac)) / (2a)C. x = (-b + √(b^2 - 4ac)) / (2a)D. x = (b - √(b^2 - 4ac)) / (2a)13. 在几何图形中,以下哪项不是平行四边形的性质?A. 对边平行且相等B. 对角线互相平分C. 四条边都相等D. 相邻角互补14. 在概率论中,以下哪个事件是必然事件?A. 抛一枚硬币正面朝上B. 明天会下雨C. 掷一枚骰子得到6点D. 太阳从东边升起15. 在代数式中,下列哪项表示的是两个变量的乘积?A. x + yB. xyC. x/yD. √(x + y)16. 在几何证明题中,以下哪项不是常用的辅助线画法?A. 画垂直平分线B. 画平行线C. 画延长线D. 画角平分线17. 在函数y = f(x)中,若f(x)在区间[a, b]上是增函数,那么以下哪个选项正确描述了f(x)的性质?A. f(a) < f(b)B. f(a) > f(b)C. f(a) = f(b)D. f(a)与f(b)的大小关系不确定18. 在统计图表中,以下哪项不是常用的数据展示方式?A. 条形图B. 折线图C. 饼图D. 散点图19. 在解方程组时,以下哪项不是常用的解法?A. 代入消元法B.加减消元法C. 图象法D. 直接代入法20. 在数学竞赛中,以下哪项不是提高解题速度的有效方法?A. 熟练掌握基础知识B. 多做练习题C. 依赖猜测D. 分析解题思路21. 在解决一元二次方程时,通常使用哪种方法?A. 直接开平方法B. 配方法C. 因式分解法D. 二次公式法22. 下列哪个选项是计算几何图形面积的正确公式?A. 长方形面积 = 长 × 宽B. 三角形面积 = 底 × 高 ÷ 2C. 圆形面积 = π × 半径²D. 梯形面积 = (上底 + 下底) × 高 ÷ 223. 在解不等式时,以下哪种情况需要改变不等号的方向?A. 当两边同时乘以或除以一个正数时B. 当两边同时乘以或除以一个负数时C. 当两边同时加上或减去同一个数时D. 当两边同时进行开方运算时24. 下列哪个选项是函数的基本概念?A. 变量B. 常量C. 函数关系D. 方程25. 在几何图形中,下列哪项描述是正确的?A. 平行四边形的对角线互相平分B. 三角形的内角和为180度C. 矩形的对角线相等但不一定互相垂直D. 菱形的四条边都相等,但对角线不一定垂直26. 在进行数学推理时,通常遵循哪种逻辑方法?A. 归纳法B. 类比法C. 演绎法D. 归纳法和演绎法结合使用27. 下列哪个选项是代数式中的基本运算?A. 加法B. 减法C. 乘法D. 除法28. 在解方程组时,哪种方法适用于两个方程线性相关的情况?A. 代入消元法B.加减消元法C. 图象法D. 无法解决29. 下列哪个选项是数学中的基本图形?A. 圆形B. 三角形C. 正方形D. 梯形30. 在进行数学证明时,通常使用哪种方法?A. 直接证明B. 反证法C. 归纳法D. 演绎法二、问答题1. 如何运用直接法快速解答元次方程?2. 特殊值法在解选择题时如何应用?3. 配方法在解元次方程时如何进行?4. 如何运用数形结合法解决几何问题?5. 在解分式方程时,通常采用哪些步骤?6. 如何运用方程思想解决实际问题?7. 在解复杂的应用题时,如何运用化归思想?8. 如何培养自己的数学思维品质?参考答案选择题:1. C2. A3. D4. A5. A6. A7. A8. B9. D 10. A11. D 12. C 13. C 14. D 15. B 16. D 17. A 18. D 19. D 20. C21. BCD 22. ABCD 23. B 24. C 25. AB 26. ACD 27. ABCD 28. AB 29. BCD 30. ABD 问答题:1. 如何运用直接法快速解答元次方程?直接法是解一元一次方程的基本方法。
专题02有理数常用技巧与方法(方法清单)(6个题型解读+提升训练)【方法清单】有理数运算是代数入门的重点,又是难点,是中学数学中一切运算的基础,怎样突破这难点,除了要正确理解概念和掌握运算法则外,还必须熟练有理数运算的一些技巧和方法,一定要正确运用有理数的运算法则和运算律,从而使复杂问题变得较简单。
一、四个原则1.整体性原则:乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。
2.简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来:运算中尽量运用简便方法,如五个运算律的运用。
3口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一习惯于口算,有助于培养反应能力和自信心。
4分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算二、运算技巧题型一:巧用凑整法计算将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以降低解题难度,提高解题效率【变式】(1)31+(-28)+28+69; (2)16+(-25)+24+(-35);(3)(+635)+(-523)+(425)+(1+123).题型二:运用拆项法计算题型三:巧用组合法计算运用交换律、结合律归类加减,将同类数(如正数或负数)归类计算,如整数与整数结合、如分数与分数结合、同分母与同分母结合等。
【例3】计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|;(2)-1423+11215-(-1223)-14+(-11215); (3)23-18-(-13)+(-38).题型四:巧用裂项相消法计算凡是带有省略号的分数加减运算,可以用这种方法【变式】先观察下列各式:11111434æö=-ç÷´èø;111147347æö=-ç÷´èø;11117103710æö=-ç÷´èø;…;1111(3)33n n n n æö=-ç÷++èø,根据以上观察,计算:1111447710+++´´´ (120052008)+´的值.题型五:正逆用分配律计算正难则反逆用运算定律以简化计算乘法分配律a(b+c)-ab+ac 在运算中可简化计算,而反过来,ab+ac=a(b+c)同样成立有时逆用也可使运算简便。
小学数学解题方法和技巧中小学数学,还包括奥数,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?希望大家能惯用这些思维和方法来解题!1形象思维方法形象思维方法是指人们用形象思维来认识、解决问题的方法。
它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。
它的认识特点是以个别表现一般,始终保留着对事物的直观性。
它的思维过程表现为表象、类比、联想、想象。
它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。
它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。
01实物演示法利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。
比如:数学中的相遇问题。
通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。
像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。
长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。
02图示法借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。
在课堂教学当中,要多用图示的方法来解决问题。
有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。
初中数学解题技巧方法归纳初中数学解题中的基本方法1. 观察与实验( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。
( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。
它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。
2. 比较与分类( 1 )比较法是确定事物共同点和不同点的思维方法。
在数学上两类数学对象必须有一定的关系才好比较。
我们常比较两类数学对象的相同点、相异点或者是同异综合比较。
( 2 )分类的方法分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。
如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。
3 .特殊与一般( 1 )特殊化的方法特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。
( 2 )一般化的方法4. 联想与猜想( 1 )类比联想类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。
通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:( 2 )归纳猜想牛顿说过:没有大胆的猜想就没有伟大的发明。
猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。
初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。
归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。
归纳有完全归纳和不完全归纳。
完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。
关键是猜之有理、猜之有据。
5. 换元与配方( 1 )换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
几何计算问题【经典范例引路】例1 ⊙O ′与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,圆心O ′的坐标是(1,-1)半径是5.(1)求A 、B 、C 、D 四点的坐标,(2)求过点D 的切线的解析式(3)问过点A 的切线与过点D 的切线是否垂直?若垂直请写出证明过程,若不垂直试说明理由.解 (1)连接O ′B ,过O ′分别作x 轴y 轴的垂线,垂足分别为H 、G .∵BH =22''H O B O -=1)5(2-=2, ∴OB =3,∴B (3,0),A (-1,0)同样可C (0,1),D (0,-3)(2)设过点D 的切线交x 轴于点E ,设EA =x ,则DE 2=EA ²EB=x(x+4)又在Rt △DOE 中,DE 2=EO 2+DO 2=(x+1)2 +32∴(x +1)2+9=x (x+4) ∴x =5即 E (-6,0)设所求切线的解析式为y =kx+b,∵直线过(0,-3)和点(-6,0),则b =-3,-6k+b =0,∴k = -21。
∴所求解析式为:y =-21x-3(3)过点A 的切线与过点D 的切线互相垂直证明:过点A 的切线与DE 相交于M 点,与y 轴交于N 点.∵AB =CD =4 ∴⌒AB =⌒CD ∴∠NAO=∠MDO又 ∵∠NAO+∠ANO=90° ∴∠MNO+∠MDN=90°, ∴∠AMD=90° ∴过点A 的切线与过点D 的切线互相垂直。
【解题技巧点拨】几何计算通常结合各种不同图形特征,并运用相关图形的性质,如:三角形面积公式,直径所对的圆周角是直角,梯形的性质,圆幂定理,解直角三角形等,运用数形结合的思想,建立方程是解此类问题的常用方法,具体解题中常要结合前面证明中获得的结论。
【综合能力训练】1.已知如图,割线DCB 交⊙O 于点C 、B ,DA 切⊙O 于点A ,BE ∥CA 交DA 于点E ,OD 交⊙O 于F ,AH ⊥OD ,垂足为H ,且OH ∶HF=2∶3,FD =9,AE =221,求cos ∠ODB 的值.2.如图,已知⊙O 1与⊙O 2外切于点P ,直线 ABC 交⊙O 1于A 、B ,交⊙O 2于点C ,且PB ∶PC =BC ∶ CD .(1)求证AC 是⊙O 2的切线(2)若⊙O 1的半径是⊙O 2半径的2倍,PD =10,AB =76,求 PC 的长.3.如图,已知P 是⊙O 外一点,割线PA 、PB 分别与⊙O 相交于A 、B 、C 、D 四点,PT 切⊙O 于点T ,点E 、F 分别在PB 、PA 上,且PE =PT ,∠PFE =∠ABP .(1)求证PD ²PF =PC ²PE ;(2)若PD =4,PC =5AF=2021,求PT 的长.4.如图,已知△ABC 中,AB =AC ,且⊙O 内切于△ABC ,D ,E ,F 是切点,又CF 交圆于G ,EG 延长线交BC 于M ,AG 交圆于K .(1)求证△MCG ∽△MEC ,①若EM ⊥CD ,求cos ∠FAK .5.如图,CD 是等腰直角三角形ABC 斜边AB 上的中线,点P 在AB 上,AP =5,以PB 为直径的半圆交CD 于点 Q ,CQ =3,求DQ 的长.6.如图,⊙O 是以AB 为直径的△ABC 的外接圆,D 是劣弧⌒BC 的中点,连AD 并延长与过C 点的切线交于P ,OD 与BC 相交于E .(1)求证OE=21AC ;(2)求证22AC BD AP DP;(3)当AC = 6,AB =10时,求切线PC的长.7.已知:如图,D 是⊙O 的直径AB 延长线上一点,DC 切⊙O 于C ,过D 作ED ⊥AD 与AC 的延长线相交于E .(1)求证:CD =DE ;(2)若tan ∠BAE=31,求AC CE的值;(3)设AB =2R ,当BC =CE 时,求BD 的长及tan ∠BAE 的值。
第二章直线和圆的方程【压轴题专项训练】一、单选题1.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP△面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A 【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB =点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABPSAB d ==∈故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.2.已知点()()2,3,3,2A B ---,直线:10l mx y m +--=与线段AB 相交,则直线l 的斜率k 的取值范围是()A .34k ≥或4k ≤-B .344k -≤≤C .15k <-D .344k -≤≤【答案】A 【详解】()()110m x y -+-=,所以直线l 过定点()1,1P ,所以34PB k =,4PA k =-,直线在PB 到PA 之间,所以34k ≥或4k ≤-,故选A .3.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若,a R b R ∈∈且0ab ≠,则2211a b +的最小值为A .1B .3C .19D .49【答案】A 【详解】试题分析:由题意得两圆22()4x a y ++=与22(2)1x y b y +-=相外切,即222149a b =+⇒+=,所以22222222221111(4)141()[5][5]1999a b a b a b a b b a ++=+=++≥+=,当且仅当22224=a b b a 时取等号,所以选A.考点:两圆位置关系,基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.4.过圆22:1O x y +=内一点11,42⎛⎫⎪⎝⎭作直线交圆O 于A ,B 两点,过A ,B 分别作圆的切线交于点P ,则点P 的坐标满足方程()A .240x y +-=B .240x y -+=C .240x y --=D .240x y ++=【答案】A 【分析】设出P 点坐标,求解出以OP 为直径的圆M 的方程,将圆M 的方程与圆O 的方程作差可得公共弦AB 的方程,结合点11,42⎛⎫⎪⎝⎭在AB 上可得点P 的坐标满足的方程.【详解】设()00,P x y ,则以OP 为直径的圆()()00:0M x x x y y y -+-=,即22000x y x x y y +--=①因为,PA PB 是圆O 的切线,所以,OA PA OB PB ⊥⊥,所以A ,B 在圆M 上,所以AB 是圆O 与圆M 的公共弦,又因为圆22:1O x y +=②,所以由①-②得直线AB 的方程为:0010x x y y +-=,又点11,42⎛⎫⎪⎝⎭满足直线AB 方程,所以00111042x y +-=,即240x y +-=.故选:A.5.在平面直角坐标系中,已知点(),P a b 满足1a b +=,记d 为点P 到直线20x my --=的距离.当,,a b m 变化时,d 的最大值为()A .1B .2C .3D .4【答案】C 【分析】根据直线:20l x my --=过定点A 确定出对于给定的一点P ,d 取最大值时PA l ⊥且max d PA =,然后根据点P 为正方形上任意一点求解出max PA ,由此可知max d .【详解】直线:20l x my --=过定点()2,0A ,对于任意确定的点P ,当PA l ⊥时,此时d PA =,当PA 不垂直l 时,过点P 作PB l ⊥,此时d PB =,如图所示:因为PB AB ⊥,所以PA PB >,所以max d PA =,由上可知:当P 确定时,max d 即为PA ,且此时PA l ⊥;又因为P 在如图所示的正方形上运动,所以max max d PA =,当PA 取最大值时,P 点与()1,0M -重合,此时()213PA =--=,所以max 3d =,故选:C.【点睛】关键点点睛:解答本题的关键在于利用图像分析d 取最大值时PA 与直线l 的位置关系,通过位置关系的分析可将问题转化为点到点的距离问题,根据图像可直观求解.6.若实数,x y 满足x -=x 最大值是()A .4B .18C .20D .24【答案】C 【分析】当0x =时,解得0y =;当0x >,令t =22x t -+=,设()22x f t t =-+,()g t =()f t 和()g t 有公共点,观察图形可求解.【详解】当0x =时,解得0y =,符合题意;当0x >时,令t =0t ≥,又0x y -≥,则t ≤,即t ⎡∈⎣,则原方程可化为22xt -+=,设()22xf t t =-+,()g t =t ⎡∈⎣,则()f t 表示斜率为2-的直线,()g t则问题等价于()f t 和()g t有公共点,观察图形可知,=20x =,当直线过点(时,2x=4x =,因此,要使直线与圆有公共点,[]4,20x ∈,综上,[]{}4,200x ∈⋃,故x 的最大值为20.故选:C.【点睛】关键点睛:解题得关键是令t =()22xf t t =-+与圆有公共点.7.已知圆222:()(21)2C x m y m m -+-+=,有下列四个命题:①一定存在与所有圆都相切的直线;②有无数条直线与所有的圆都相交;③存在与所有圆都没有公共点的直线;④所有的圆都不过原点.其中正确的命题个数是A .1B .2C .3D .4【答案】C 【分析】①可先设出切线方程,利用圆心到直线距离等于半径建立等式求解.②③根据直线与两条切线的相对位置,可找出与圆相交和相离的直线④假设过原点,有解【详解】由圆222:()(21)2C x m y m m -+-+=知圆心坐标为(),21m m -,半径|r m =,圆心在直线21y x =-上,①假设存在直线与所有圆均相切,设为y kx b =+则(),21m m -到y kx b =+的距离为|r m =可得|r m ==直线与所有圆均相切,故切线应与m 无关,可取1b =-=解得2k =-±即(21y x -±=-所以,存在与所有圆均相切的直线,故①正确;过点()0,1-介于两相切直线之间的直线,均与所有圆相交,故②正确;过点()0,1-在两相切直线之外部区域的直线,与所有圆均没有交点,故③正确;假设过原点,则222()(21)2m m m -+-+=,得1m =或13m =,故④错误.故选:C 【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.8.已知,x y R ∈)AB .3C.D .6【答案】C 【分析】将问题转化为“点()0,y 到点()2,1的距离加上点(),0x 到点()2,1的距离加上点(),0x 到点()0,y 的距离之和的最小值”,采用分类讨论的方法并画出辅助图示求解出最小值.【详解】()0,y 到点()2,1(),0x 到点()2,1的距离,表示点(),0x 到点()0,y 的距离,设()()()2,1,,0,0,A B x C y ,表示AB BC AC ++的长度和,显然当点(),0x 与点()0,y 在,x y 轴的非负半轴上,对应原式的结果更小,当()(),0,0,x y 均不在坐标原点,如下图所示:考虑到求解最小值,所以2,1x y ≤≤,设,B A 关于原点的对称点为,B A '',所以AB BC AC AC B C A B AB A B AA '''''''++=++≥+>==当()(),0,0,x y 其中一个在坐标原点,如下图所示:此时分别有2AC BC AB AC AC AC ++>+==2AC BC AB AB AB AB ++>+==,所以AC BC AB ++>当()(),0,0,x y 都在坐标原点时,AB AC BC ++==的最小值为故选:C.【点睛】(1)先将问题转化为点到点的距离之和问题;(2)画出图示,必要时借助点关于直线的对称点知识进行分析;(3)根据距离之和的最小值得到原式的最小值.二、多选题9.下列说法正确的是()A .直线21y ax a =-+必过定点(2,1)B .直线3240x y -+=在y 轴上的截距为-2C10y ++=的倾斜角为120°D .若直线l 沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后,回到原来的位置,则该直线l 的斜率为23-【答案】ACD 【分析】代入点的坐标判断A ,求出纵截距判断B ,求出斜率得倾斜角,判断C ,写出平移直线后的方程,与原方程一致,由此求得ba-,判断D .【详解】2211z a -+=,所以点(2,1)在直线上,A 正确;对3240x y -+=,令0x =,得2y =,直线3240x y -+=在y 轴上截距为2,B 错误;10y ++=的斜率为120︒,C 正确;设直线l 方程为0ax by c ++=,沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后得(3)(2)0a x b y c ++-+=,即320ax by c a b +++-=它就是0ax by c ++=,所以320a b -=,所以23a kb =-=-,D 正确.故选:ACD .【点睛】关键点点睛:本题考查直线方程,利用直线方程研究直线的性质是解析几何的基本方法.掌握直线的概念与特征是解题关键.10.已知点P 是直线3450x y -+=上的动点,定点()1,1Q ,则下列说法正确的是()A .线段PQ 的长度的最小值为45B .当PQ 最短时,直线PQ 的方程是3470x y +-=C .当PQ 最短时P 的坐标为1341,2525⎛⎫⎪⎝⎭D .线段PQ 的长度可能是23【答案】AC 【分析】当PQ 垂直直线3450x y -+=时,PQ 最短,即可判断A 、D ,设出P 坐标,根据最短使PQ 与直线垂直求解P 坐标,即可判断C ,由两点式求出直线方程,即可判断B .【详解】解:当PQ 垂直直线3450x y -+=时,PQ 最短,Q 到直线的距离为223454534-+=+,故A 正确;故PQ 的长度范围为4,5⎡⎫+∞⎪⎢⎣⎭,2435<,故D 错误;设35,4m P m +⎛⎫ ⎪⎝⎭,则3514413PQ m k m +-==--,解得1325m =,故P 为1341,2525⎛⎫⎪⎝⎭,故C 正确;此时直线PQ 的方程是114113112525y x --=--,即4370x y +-=,故B 错误,故选:AC .11.(2021•佛山模拟)已知圆2221:C x y r +=,圆2222:()()C x a y b r -+-=,(0r >,且a ,b 不同时为0)交于不同的两点1(A x ,1)y ,2(B x ,2)y ,下列结论正确的是A .221122ax by a b +=+B .1212()()0a x x b y y -+-=C .12x x a +=,12y y b+=D .M ,N 为圆2C 上的两动点,且||3MN r =,则||OM ON +的最大值为22a b r ++【答案】ABC【解析】根据题意,圆2221:C x y r +=和圆2222:(?)(?)(0)C x a y b r r +=>交于不同的两点A ,B ,∴两圆方程相减可得直线AB 的方程为:22220a b ax by +--=,即22220ax by a b +--=,分别把点1(A x ,1)y ,2(B x ,2)y 两点坐标代入22220ax by a b +--=得:221122??0ax by a b +=,222222??0ax by a b +=,所以选项A 正确,上面两式相减得:12122()2()0a x x b y y -+-=,即1212()()0a x x b y y -+-=,所以选项B 正确,两圆的半径相等,∴由圆的性质可知,线段AB 与线段12C C 互相平分,则有120222x x a a++==,12022y y bb ++==,变形可得12x x a +=,12y y b +=,C 正确;M ,N 为圆2C 上的两动点,且||3MN r =,设MN 的中点为D ,则2C D MN ⊥,所以22231()22C D r r r =-=,所以MN 的中点D 的轨迹为以2(,)C a b 为圆心,12r 为半径的圆,所以MN 的中点D 的轨迹方程为2221()()4x a y b r -+-=,又||2||OM ON OD +=,所以||OM ON +的最大值为222212()22a b r a b r +=+,故D 错误.故选ABC .三、填空题12.已知C 为圆:()2211x y -+=上一动点,点B 坐标为(3,点A 坐标为()4,0,则3AC BC +的最小值为_________.【答案】27【分析】设圆心为M ,由圆的方程得到圆心和半径,取4,03D ⎛⎫⎪⎝⎭,可证得CMDAMC ,得到3AC CD =,可知()333AC BC CD BC BD +=+≥,利用两点间距离公式可求得最小值.【详解】设圆:()2211x y -+=的圆心为M ,则()1,0M ,半径1MC =,取4,03D ⎛⎫ ⎪⎝⎭,13MD MC MCMA==,CMD CMA ∠=∠,CMD AMC ∴,3AC CD ∴=,()333AC BC CD BC BD ∴+=+≥(当且仅当,,B C D 三点共线且C 在线段BD 上时取等号),BD =,3AC BC ∴+≥即3AC BC +的最小值为故答案为:【点睛】关键点点睛:本题考查圆部分的最值问题的求解,解题关键是能够利用三角形相似将问题转化为三角形两边之和大于第三边的问题,由此确定三点共线时取得最小值.13.已知函数()f x ax b =--,其中a ,b R ∈,()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为___________.【答案】12【分析】数形结合分析可知(,)M a b 的最小值为()[]0,1g x x =∈与()h x ax b x =+=-纵向距离,从而可以求出结果.【详解】函数()(),f x ax b M a b =-≤,即四分之一圆[]0,1y x =∈上的点到直线1x y +=上的最大距离为12-,此时圆上的点记为P ,如图:只有过PN 的中点且平行于直线1x y +=的直线才满足条件,所以当211,2a b =-=时,(,)M a b 的最小值为()[]0,1g x x =∈与()212h x ax b x +=+=-的纵向距离,即(,)M a b 的最小值为1⎛- ⎝⎭故答案为:212.【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.14.已知直线()()()11410a x a y a -++-+=(其中a 为实数)过定点P ,点Q 在函数1y x x=+的图像上,则PQ 连线的斜率的取值范围是___________.【答案】[3)-+∞,【分析】把直线方程整理成a 的多项式,根据恒等式的知识求出定点P 的坐标,【详解】由()()()11410a x a y a -++-+=得(4)40x y a x y -+-++-=∴4040x y x y -+-=⎧⎨+-=⎩,解得0,4x y =⎧⎨=⎩,∴(0,4)P 。
DC BD S S S S S S AEC ABE EDC EBD ADC ABD ===∆∆∆∆∆∆DE AES S S S S S DBC ABC DEC AEC DEB AEB ===∆∆∆∆∆∆小升初考前专项冲刺集训——空间与图形(一)考点方法扫描图形问题是小升初考试的必考内容,而且常常以大题形式出现,重点名校选拔考试题目分值较高,并且难度有所增加,题型形式多样化。
本讲主要举例学习解答平面几何图形问题的方法与技巧,旨在训练同学们敏锐的观察力和空间想象力、灵活的思考能力和动手操作能力,悟出考题规律,积累解题方法技巧,快速提升图形问题的解题能力。
一、转化法在求图形面积时,有时需要把某个图形进行变换,变成另一个比较方便求的图形,常用的几何变换法有:平移、旋转、对称法 。
二、代数法18.设而要求,构造方程。
列出方程,巧用代数法来解决面积问题。
19.设而不求,整体代换。
设一个或几个字母参加列式运算,不求字母的值作整体代换。
三、比例法1、等底等高的三角形或平行四边形面积相等。
2、如果两个长方形的长(或宽)相等,那么它们面积之比等于它们的宽(或长)之比。
3、如果两个三角形(或平行四边形)的底(或高)相等,那么它们的面积比等于它们的高(或底)之比。
于是我们可以得出以下情形:四、差不变的原理若甲比乙的面积大,则甲和乙同时加上或减去相等的面积,他们的差不变。
五、面积一半的应用1、在正方形、长方形、平行四边形中,以其中一条边为底,在它的对边上任意取一点,所得到的三角形的面积等于整个图形面积的一半。
2、平行四边形内任意一点与四个顶点的连线所分成的四个三角形中,相对的两个三角形的面积之和相等。
3、以下图形中,阴影部分面积都占整个图形面积的一半:六、蝶形定理在任意凸四边形(如下左图)中有如下关系:(1)DO ∶OB=)()(32413421S S ∶S S S ∶S S ∶S ++==或者4231S S S S ⨯=⨯(2)AO ∶OC=)()(34213241S S ∶S S S ∶S S ∶S ++==七、在梯形(如下右图)中有如下关系:(1)42S S = (2)4231S S S S ⨯=⨯八、勾股定理如下图,在直角三角形ABC 中有222c b a =+名师经典解析例1 如图1所示,长方形ABCD 面积是40平方厘米,E 、F 、G 分别为AB 、BC 、CD 的中点,H 为AD 上任意一点,求阴影部分的面积。
第07讲勾股定理与几何最值问题突破技巧(学生版)第一部分专题典例剖析及针对训练类型一立体图形表面的最短路线问题典例1:如图,正四棱柱的底面边长为1.5cm,侧棱长为4cm,求一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处的最短路程的长。
典例2 在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为(π取3)针对训练1:1.如图所示,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C 1处,问怎样走路线最短?最短路线长为多少?2.(2020秋•罗湖区校级期末)如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.3.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么A1B1C1D1DA BC所用细线最短需要cm .类型二将军“饮马问题”中的最短路线典例3 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?类型三求一条线段的最小值典例4 (2020秋•遂宁期末)如图,OC平分∠AOB,点P是OC上一点,PM⊥OB于点M,点N是射线OA上的一个动点若OM=4,OP=5,则PN的最小值为()A.2B.3C.4D.5针对训练34.(2020秋•仪征市期中)如图,在△ABC中,AB=6,BC=8,∠B=90°,若P是AC上的一个动点,则AP+BP+CP的最小值是()A.14.8B.15C.15.2D.16类型四利用配方法求最值典例5 (2021•南通)平面直角坐标系xOy中,已知点P(m,3n2﹣9),且实数m,n满足m﹣n2+4=0,则点P到原点O的距离的最小值为.针对练习45.(2020秋•江都区期末)已知点P(3m,4﹣4m)为平面直角坐标系中一点,若O为原点,则线段PO 的最小值为()AB小河东北牧童小屋A.2B.2.4C.2.5D.3第二部分专题培优训练1.(2021•柳南区校级模拟)如图,C是线段AB上一动点,△ACD,△CBE都是等边三角形,M,N分别是CD,BE的中点,若AB=4,则线段MN的最小值为()A.√32B.3√34C.√3D.3√322.(2021春•饶平县校级期中)如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,D为AB边上一动点,连接CD,△ACD与△A′CD关于直线CD轴对称,连接BA′,则BA′的最小值为()A.12B.1C.√2D.√33.(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3√2+3√6)cm.4.(2021秋•青岛期末)如图,点M为线段AB上的一个动点,在AB同侧分别以AM和BM为边作等边△AMC 和等边△BMD,若AB=12,则线段CD的最小值为.5.(2021秋•锦江区校级期末)如果一个直角三角形的两边长分别是3,4,那么这个直角三角形斜边上的高长最小值为.6.(2020秋•霸州市期末)如图,在△ABC中,BA=BC,BH平分∠ABC,点P,D分别是BH和AB上的任意一点,设P A+PD=m.(1)连接CD交BH于点E,则m CD(填表示相等或大小关系的符号);(2)若BA=BC=5,AC=6,BH=4,则m的最小值是.7.(2021秋•大东区期中)如图,三角形ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC,则线段PC的最小值是.8.(2021•永嘉县校级模拟)如图,AB=1,以AB为斜边作直角△ABC,以△ABC的各边为边分别向外作正方形,EM⊥KH于M,GN⊥KH于N,则图中阴影面积和的最大值为.9.(2021春•海淀区校级期末)A(0,a),B(3,5)是平面直角坐标系中的两点,线段AB长度的最小值为.10.如图所示,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿着圆柱侧面爬行的最短路程是多少?(π的值取3)11.(2021秋•吉安期中)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=3,DE=2,BD=12,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)请问点C满足什么条件时,AC+CE的值最小,并求出此时AC+CE的最小值.(3)根据(2)中的规律和结论,重新构图求出代数式√x2+1+√(8−x)2+25的最小值.12.(2021秋•长丰县期末)如图,在△ABC中,∠A=90°,BD平分∠ABC交AC于点D,AB=4,BC=12,AD=3,若点P在BC上运动.(1)求线段DP的最小值;(2)当DP最小时,求△CDP的面积.第07讲 勾股定理与几何最值问题突破技巧(解析版)第一部分 专题典例剖析及针对训练类型一 立体图形表面的最短路线问题典例1:如图,正四棱柱的底面边长为1.5cm ,侧棱长为4cm ,求一只蚂蚁从正四棱柱底面上的点A 沿着棱柱表面爬到C 1处的最短路程的长。
2022年河北省邯郸市馆陶学区中考数学模拟试卷一、选择题(本大题共16小题,共42.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,数轴上点A、B、C、D表示的数中,表示互为相反数的两个点是( )A. 点B和点CB. 点A和点CC. 点B和点DD. 点A和点D2. 规定:(↑5)表示向上移动5,记作+5,则(↓3)表示向下移动3,记作( )A. +3B. −3C. +13D. −133. 如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是( )A. B. C. D.4. 若m+2022≤n+2022,则下列各项一定成立的是( )A. m≤nB. m≥nC. m+2022≤nD. m≥n+20225. 下列图形中,根据AB//CD,能得到∠1=∠2的是( )A.B.C.D.6. 一个数0.0…0618用科学记数法表示为6.18×10−9,则原数中“0”的个数(含小数点前的0)为( )A. 7B. 8C. 9D. 107. 如图,△ABC中,AB<AC,观察图中尺规作图的痕迹,则下列结论正确的是( )A. AM是∠BAC的角平分线B. AM是BC边上的中线C. AM是BC边的垂直平分线D. AM是BC边上的高8. 求证:直角三角形斜边上的中线等于斜边的一半.已知:如图,在△ABC中,∠ABC=90°,点O是AC的中点.AC.求证:OB=12证明:延长BO到D,使OD=OB,连接AD、CD,中间的证明过程排乱了:①∵∠ABC=90°,②∵OB=OD,OA=OC,③∴四边形ABCD是平行四边形,④∴四边形ABCD是矩形.∴AC=BD,∴OB=12BD=12AC.则中间证明过程正确的顺序是( )A. ①④②③B. ①③②④C. ②④①③D. ②③①④9. 在方格纸中,建立如图所示的平面直角坐标系,已知点A从(3,4)出发,绕O逆时针旋转一周,则点A不经过( )A. 点BB. 点CC. 点DD. 点E10. 小刚把(2022x+2021)2展开后得到ax2+bx+c,把(2021x+2020)2展开后得到mx2+nx+q,则a−m的值为( )A. 1B. −1C. 4043D. −404311. 如图,已知正六边形P1P2P3P4P5P6边长为2,在正六边形的边上距离P1最远的点到P1的距离为( )A. 3B. 4C. √6D. 2√312. 如图,有一块等腰三角形材料,底边BC=80cm,高AD=120cm,现要把它加工成正方形零件,使其一边在BC边上,其余两个顶点分别在AB、AC上,则这个正方形零件的边长为( )A. 36cmB. 40cmC. 48cmD. 60cm13. 如图,出租车司机王师傅从A地出发,要到距离A地13km的C地去,先沿:北偏东70°方向行驶了12km,到达B地,然后再从B地行驶了5km到达C地,此时王师傅位于B地的( )A. 北偏东20°方向上B. 北偏西20°方向上C. 北偏西30°方向上D. 北偏西40°方向上14. 某学校选取若干学生进行了“我最喜欢的球类运动”调查,将调查结果绘制成如图统计图表(不完整).体育运动网球篮球排球乒乓球羽毛球足球人数4060100根据图表提供的信息,下列结论错误的是( )A. 这次被调查的学生人数为400人B. 扇形统计图中羽毛球部分扇形的圆心角为72°C. 被调查的学生中喜欢羽毛球,足球的人数分别为80,70D. 喜欢排球的人数最少15. 如图,已知△ABC内接于⊙O,AB=2,AC=√3,BC=1,则AC⏜的长是( )A. π3B. 2π3C. √3π3D. 2√3π316. 如图,抛物线y=−12(x−6)2+2与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C2,将C2向左平移得到C1,C1与x轴交于点A、O,若直线y=12x+m与C1、C2共有3个不同的交点,则m的取值范围是( )A. −2<m<0B. −2<m<−78C. −78<m<0 D. −4<m≤−2二、填空题(本大题共3小题,共12.0分)17. 已知函数y=√x+2x−2,则自变量x的取值范围是______,若x=10,则y的值是______.18. 如图,将一个等腰三角形纸片沿图中虚线剪成四块图形,用这四块图形进行拼接,恰能拼成一个没有缝隙的正方形①或长方形②,若a=2,则b=______,这个等腰三角形纸片的面积是______.19. 如图,已知直线BC平行于y轴,分别交反比例函数y=6x (x>0)、y=−2x(x>0)于B、C两点,过点C作AC⊥BC,连接AB交y轴于点A,当直线BC经过(1,0)时,△ABC面积为______;若直线BC沿x轴继续向右平移,则△ABC面积______(填“变大”“变小”或“不变”).三、解答题(本大题共7小题,共66.0分。
2024年福建省宁德市中考数学二检试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列实数中最小的是()A. B.0 C. D.72.如图,该几何体的主视图为()A. B. C. D.3.下列图案是中心对称图形的是()A. B. C. D.4.计算的结果是()A. B. C. D.5.如图,在▱ABCD中,,则的度数是()A.B.C.D.6.如图是某地未来一周内每天的最高气温变化图象,下列关于该地气温描述正确的是()A.中位数是B.平均数是C.众数是D.方差是317.在中,,若,,则AB的长为()A.5B.12C.13D.158.如图,点A,B,C在上,,则的度数是()A.B.C.D.9.如图,正比例函数的图象与反比例函数的图象相交于A,B两点.已知点A的横坐标是,则点B的坐标是()A.B.C.D.10.如图,将绕着点A顺时针旋转得到,点B的对应点D落在AC边上,且B,D,E三点共线,则下列结论错误的是()A.B.C.D.二、填空题:本题共6小题,每小题4分,共24分。
11.若,则______.12.如图,直线AB,CD交于点O,,则______13.为提高学生护眼意识,某社区开展“护眼活动”.该社区有985名学生,如表是该社区随机抽取的100名学生左眼视力的检查结果,该调查方式是______填“普查”或“抽样调查”视力人数9151111视力人数131715914.一个多边形的每一个外角都是,这个多边形是______边形.15.如图,在等边三角形ABC中,D为AB的中点,于点E,,则AB的长是______.16.已知点,,在抛物线上.若点A在对称轴左侧,则,,的大小关系是______用“>”,“<”或“=”连接三、解答题:本题共9小题,共86分。
解答应写出文字说明,证明过程或演算步骤。
17.本小题8分计算:18.本小题8分解方程组:19.本小题8分如图,点A,B,D在同一条直线上,,,求证:20.本小题8分先化简,再求值:,其中21.本小题8分概率课上,王老师拟用摸球游戏的方式,将一件礼品送给甲、乙两位同学中的一位.规则如下:在不透明的袋子中装有三个小球,其中一个红球,两个白球,这些小球除颜色外完全相同,摸到红球的同学获得礼品.现由甲、乙同学先后进行摸球摸出的球不放回,求甲、乙两位同学获得礼品的概率分别是多少?22.本小题10分为丰富校园生活,某校九年级开展篮球比赛活动.比赛得分规则:在3分线外投篮,投中一球可得3分;在3分线内含3分线投篮,投中一球可得2分;罚球投中一球可得1分.班球队在某场比赛中,上半场共投中12个球,其中投中5个2分球,所得总分为23分,问该球队上半场比赛罚球得分是多少?班球队预想在下半场比赛中投中12个球,若在没有罚球的情况下,且下半场所得总分不少于29分,则该班级下半场比赛中至少投中多少个3分球?23.本小题10分综合与实践:活动主题扇面制作活动情景如图1,扇面字画是一种传统的中国艺术形式,它将字和绘画结合在扇面上,形成一种独特的艺术风格.为了迎接我市传统民俗文化活动的到来,某班组织同学们开展扇面制作展示活动.如图2,扇面形状为扇环,且,,活动小组甲组乙组制作工具直尺、三角板、量角器、圆规、剪刀制作材料任务一:确定弦的长度.如图2,求所对弦AB 的长度.任务二:设计甲组扇面.如图3,已知甲组的圆形卡纸直径为请运用所给工具在中设计与图2相同的扇面,并标出相应数据.任务三:确定卡纸大小.如图4,乙组利用矩形卡纸EFGH ,恰好设计出与图2相同的扇面,求矩形卡纸的最小规格即矩形的边长24.本小题13分蹦床是一项运动员利用蹦床的反弹在空中表现杂技技巧的竞技运动,有“空中芭蕾”之美称.甲、乙两位蹦床运动员在某次训练过程中同时起跳,甲运动员着落蹦床后便停止运动,乙运动员着落蹦床后继续做放松运动,每次蹦床运动间隔停留时间忽略不计.图1是甲、乙两位运动员的运动高度与运动时间的二次函数图象,点A 的坐标为,点B 的坐标为,点D 的坐标为,且所有二次函数图象开口大小相同.求甲运动员在这次训练中运动的最大高度;图2是教练员观测到乙运动员在这次训练中,每次运动的最高点都在同一视线DE上,教练员的视线与水平线的夹角为①若甲、乙运动员在时运动高度相同,求直线DE的表达式;②当时,求乙在第二次蹦床运动中最大运动高度的取值范围25.本小题13分如图,在四边形ABCD中,,,点E在CD上,连接AE,过点D作于点F,连接将沿DF折叠使得点C的对应点H落在AB上,连接求证:;求的度数;若,试探究EG与AG的数量关系,并予以证明.答案和解析1.【答案】A【解析】解:,所给的实数中最小的是故选:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数负实数,两个负实数绝对值大的反而小.2.【答案】B【解析】解:从正面看易得,该几何体的视图为B,故选:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中,看不到的棱需要用虚线来表示.本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,掌握主视图的概念是解题的关键.3.【答案】D【解析】解:选项A、B、C中的图形都不能找到一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形.选项D中的图形能找到一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形.故选:根据中心对称图形的概念判断.把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.【答案】A【解析】解:原式故选:根据同底数幂的乘法,底数不变指数相加,可得答案.本题考查了同底数幂的乘法,注意底数不变指数相加.5.【答案】B【解析】解:四边形ABCD是平行四边形,,故选:根据平行四边形的对角相等解答即可.此题考查平行四边形的性质,关键是根据平行四边形的对角相等解答.6.【答案】C【解析】解:根据折线图可知,每天的气温为:、、、、、、,A.将这组数由小到大排列为:29、30、31、31、31、32、32,中位数是31,故选项错误,不符合题意;B.平均数是,故选项错误,不符合题意;C.这组数的众数是,故选项正确,符合题意;D.这组方差为:,故选项错误,不符合题意;故选:根据折线图分别求出平均数、众数、中位数和方差进行判断即可.本题考查了折线图,平均数、众数、中位数、方差的计算,掌握折线图的特点,平均数、众数、中位数、方差的计算方法是关键.7.【答案】C【解析】解:在中,,,,由勾股定理得:;故选:在中,根据勾股定理求出AB即可.本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键.8.【答案】D【解析】解:,,故选:利用圆周角定理进行计算,即可解答.本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.9.【答案】C【解析】解:正比例函数的图象与反比例函数的图象相交于A,B两点,当时,,,点A、B关于原点的中心对称图形,点B坐标为故选:根据点点A的横坐标是,通过可以求出A点坐标,再根据反比例函数图象是关于原点的中心对称图形,从而得出B点坐标.本题考查了一次函数与反比例函数的交点问题,熟练掌握反比例函数图象是中心对称图形是解答本题的关键.10.【答案】A【解析】解:绕着点A顺时针旋转得到,,点A、E、C、B四点,,所以C选项不符合题意;,所以D选项不符合题意,绕着点A顺时针旋转得到,,,,所以B选项不符合题意,平分,只有时,即,,所以A选项符合题意.故选:先根据旋转的性质得到,则可判断点A、E、C、B四点,再根据圆内接四边形的性质可对C选项进行判断;根据圆周角定理可对D选项进行判断;接着根据旋转的性质得到,,利用圆周角定理和圆心角、弧、弦的关系可对B选项进行判断;由于AD平分,利用等腰三角形的三线合一,只有时,即,,从而可对A选项进行判断.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了四点共圆的判定与性质、圆周角定理.11.【答案】【解析】解:,故答案为:先把要求的式子化成,再代值计算即可.此题考查了比例的性质,解题的关键是把化成12.【答案】51【解析】解:,,故答案为:根据对顶角的定义即可作答.本题主要考查对顶角、邻补角,熟练掌握对顶角的性质是解题的关键.13.【答案】抽样调查【解析】解:该社区有985名学生,如表是该社区随机抽取的100名学生左眼视力的检查结果,该调查方式是抽样调查.故答案为:抽样调查.根据全面调查与抽样调查的特点进行判断.本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.14.【答案】十二【解析】解:一个多边形的每一个外角都是,它的边数是,即这个多边形是十二边形,故答案为:十二.根据多边形的外角和进行计算即可.本题考查多边形的外角和,此为基础且重要知识点,必须熟练掌握.15.【答案】20【解析】解:是等边三角形,,,,,,为AB的中点,,的长是20,故答案为:先利用等边三角形的性质可得,再根据垂直定义可得,从而利用直角三角形的两个锐角互余可得:,然后利用含30度角的直角三角形的性质可得,最后利用线段的中点定义可得,即可解答.本题考查了含30度角的直角三角形,等边三角形的性质,熟练掌握含30度角的直角三角形,以及等边三角形的性质是解题的关键.16.【答案】【解析】解:由题意,抛物线为,抛物线为,且抛物线开口向下.当时,y取得最大值为又A在对称轴左侧,又,,且,根据抛物线开口向下时,抛物线上的点离对称轴越近函数值越大,综上,故答案为:依据题意,由抛物线为,从而可得抛物线为,且抛物线开口向下,故当时,y取得最大值为,又A在对称轴左侧,则,可得,进而可得,又,,且,再根据抛物线开口向下时,抛物线上的点离对称轴越近函数值越大,即可判断得解.本题主要考查了二次函数的图象与性质,解题时要熟练掌握并能灵活运用是关键.17.【答案】解:【解析】首先计算负整数指数幂、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.18.【答案】解:,①-②得:,,把代入②得:,方程组的解为:【解析】先把两个方程相减,消去x,求出y,再把y的值代入方程②,求出x即可.本题主要考查了解二元一次方程组,解题关键是熟练掌握解二元一次方程组的一般步骤.19.【答案】证明:在与中,,≌,,【解析】根据SAS证明与全等,进而利用全等三角形的性质解答即可.此题考查全等三角形的判定与性质,关键是根据SAS证明与全等解答.20.【答案】解:原式;当时,原式【解析】先通分算括号内的,把除化为乘,约分后将a的值代入计算即可.本题考查分式化简求值,解题的关键是掌握分式的基本性质,把所求式子化简.21.【答案】解:列表如下:*红白白红*红,白红,白白白,红*白,白白白,红白,白*共有6种等可能的情况数,其中甲获得礼品的情况数有2种,乙获得礼品的情况数有2种,则甲同学获得礼品的概率是,乙同学获得礼品的概率是【解析】根据题意列出图表得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.此题考查了列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】解:设该球队上半场比赛罚球得分是x分,则投中3分球的得分是分,根据题意得:,解得:答:该球队上半场比赛罚球得分是4分;设该班级下半场比赛中投中y个3分球,则投中个2分球,根据题意得:,解得:,的最小值为答:该班级下半场比赛中至少投中5个3分球.【解析】设该球队上半场比赛罚球得分是x分,则投中3分球的得分是分,根据该球队上半场共投中12个球,可列出关于x的一元一次方程,解之即可得出结论;设该班级下半场比赛中投中y个3分球,则投中个2分球,根据该球队预想在下半场所得总分不少于29分,可列出关于y的一元一次不等式,解之取其中的最小值,即可得出结论.本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出一元一次方程;根据各数量之间的关系,正确列出一元一次不等式.23.【答案】解:任务一:过点O作,交AB于点H,,,,,,,任务二:如图,是以直径为底边,底角为30度,由任务一可知,,取,以O为圆心,分别以OA、OC为半径画弧,即可得到扇面.任务三:如图所示:当与矩形两边相切时,过点A作,则矩形FGNM为最小规格矩形,,,,,,,当与矩形两边相切,最小规格矩形的边长为45cm、30cm,【解析】任务一:由弧AB所对的圆心角为,可得,求得,应用勾股定理求出AH,即可求解;任务二:以直径为底边,构造底角为30度的等腰三角形OAB,则得到的三角形和任务一三角形全等,再按要求取C点,再以O为圆心,分别以OA、OC为半径画弧,得到的扇面图形与图2相同;任务三:在HG上取一点O使,以O为圆心,OG为半径的圆与EF相切,此时B点与G点重合,在圆上取一点A,使,即可得到扇面.过点A作,则矩形FGNM为最小规格矩形,本题考查了垂径定理,含角的直角三角形,矩形的性质,解题的关键是:熟练掌握相关性质定理.24.【答案】解:乙运动员的第一次的运动高度与运动时间的二次函数图象经过点,点,点,设其解析式为:,,解得:,即乙运动员的第一次的运动高度与运动时间的二次函数解析式为:,所有二次函数图象开口大小相同.设,把点代入得:,解得:,,即,故甲运动员在这次训练中运动的最大高度是米,时间是秒;①当秒时,,即乙二次起跳中,当秒时,其高度,设乙二次起跳中的解析式为,将点和代入得:,解得:,即,,点,设直线DE解析式为,得:,解得:,设直线DE解析式为;②延长DE交x轴于K,过点D作轴;点D的坐标为,,,当时,,,点K的坐标为,直线,设乙二次起跳中的解析式为,把点代入得:,,,当时,,,当时,,,,整理得:,不合题意,舍去,,当,,,故,随n增大而增大;故乙在第二次蹦床运动中最大运动高度的取值范围大于或等于,小于【解析】根据点A的坐标为,点D的坐标为,可求出乙运动员的函数图象解析式;根据开口相同求出甲的解析式,进而求出最高点;①根据点At和甲、乙运动员在时运动高度相同,求出乙运动员的高度,再用待定系数法求出乙二次起跳中的解析式,即可得出顶点坐标;由点,点求出直线解析式;②先求出时直线DE的表达式,根据设乙二次起跳中的解析式为,乙在第二次蹦床运动中的抛物线经过点A的坐标为,得出解析式为,由顶点高于直线得出,得出最大运动高度的取值范围大于或等于,小于本题考查了二次函数与一次函数的综合应用,解题关键是根据点的位置正确求出函数解析式,利用顶点坐标的位置求出直线解析式.25.【答案】解:延长DF交CH于点K,由折叠性质可知:点C与点H是关于DF的对称,,即:又,即:,,;由折叠性质可知:,又,,,,,,即:,,,过点A作,垂足为Q,过D点作,垂足为N,交EA于M,连接HM,,,四边形AQCD是矩形,,矩形AQCD是正方形,,,即,,,,,,,,,,,设,,,,,,,,,,,,,,,,,即,,,,,≌,,,,【解析】由折叠的性质可知,进而即可判定;由折叠性质可知,又有,所以,,再由,即可计算,即得的度数;过点A作,垂足为Q,过D点作,垂足为N,交EA于M,连接HM,可得,再证明,和均是等腰直角三角形,设,可得,,,由,可求,从而解题.本题主要考查了四边形综合,正方形的判定与性质,折叠问题和解三角形,全等三角形的判定,.解题关键是利用构造直角三角形;由等角转换线段比表示线段长.。
中考数学第二轮总复习精讲精练方法技巧当堂训练强化训练专题08 创新作图题在网格线中作图考点归纳知识梳理题型概述 在一定情境下,以无刻度直尺作为唯一的作图工具,结合运用图形的几何性质、基本定理、图形变换等进行分析、推理、归纳,寻找作图依据,主要的作图形式有:①找点:________________________________________;②画线:________________________________________;两条线相交的是点两点确定一条直线根据图形的判定方法构造三角形、四边形等(线可以是直线也可以是曲线)知识点利用常用技巧作图01利用性质作位置关系02利用性质作数量关系03按要求构造图形04A CB图1【例1】如图,在5×7的正方形网格中,△ABC是格点三角形,请仅用无刻度直尺完成以下作图.(1)在图1中作出△ABC中AB边上的高;(2)在图2中作出△ABC的重心A CB图2E ∴CE即为所求F∴点F即为所求知识点一典例精讲利用常用技巧作图1.如图,在由长为2,宽为1的矩形组成的网格中,已知A、B都是各点.请仅用无刻度的直尺在大长方形中完成下列作图.(1)在图1中,画出线段AB的垂直平分线MN;(2)在图2中,线段CD∥AB,画出线段CD的中点O.AB ABDCON M利用梯形四点共线作图利用轴对称的性质作图知识点一强化训练利用常用作图技巧作图知识点利用常用技巧作图01利用性质作位置关系02利用性质作数量关系03按要求构造图形04图2AB【例2】(2016·T17)如图,六个完全相同的小长方形拼成一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求: 1仅用无刻度直尺,2保留必要的画图痕迹.(1)在图1中画一个45º角,使点A或点B是这个角的顶点,AB为这个角的一边.(2)在图2中画出线段AB的垂直平分线.C图1AB如图1,∠BAC即为所求如图2,∠BAC即为所求E F如图,在6×6的正方形网格中花出图中AB的平行线和垂线A BAB DC C1.如图所示的是六个完全相同的小长方形拼成的一个大长方形,MN是连接其中两个小长方形的两个顶点的线段,请仅用无刻度的直尺在大长方形中完成下列作图.(1)在图1中,作线段AB∥MN; (2)在图2中,作线段CD⊥MN.图1MN图2N M ABA BC DCDDC2.如图,在正三角形网格内,A、B、P、Q均为网格格点,仅用无刻度的直尺完成以下作图.(1)在图1中,过点P作AB的平行线;(2)在图2中,过点Q作AB的平行线.ABP图1AB MN如图1,PM即为所求如图2,QN即为所求3.下面是由5×7个小正方形组成的网格图,已知A,B为格点,请仅用无刻度直尺完成以下作图.(1)在图1中,作线段AB的垂直平分线CD;(2)在图2中,作∠AOB的平分线OC.图1AB 图2OBAD C CAB图1AB图2E D4.如图是4×4的网格,请仅用无刻度直尺完成以下作图.(1)如图1,点A,B均在格点上,请过点A画出与AB垂直的直线AF;(2)如图2,点A,B,C,D均在格点上,E是AC与BD的交点,请画出∠AEB的平分线EG.AB图1G CC∴AC即为所求∴EG即为所求5.如图,在6×6的正方形网格中,△ABC的顶点在格点上,请仅用无刻度的直尺分别在图①、图②中画出△ABC的AB边上的高.HHD ∴CH就是AB边上的高∴CH就是AB边上的高ACB图1ABC 图2知识点利用常用技巧作图01利用性质作位置关系02利用性质作数量关系03按要求构造图形04【例3】(2014·T 17)已知梯形ABCD,请使用无刻度直尺画一个与梯形ABCD 面积相等的图形.(1)在图1中,画以CD为边的三角形; (2)在图2中,画以AB为边的平行四边形.EFE如图1,△CDE即为所求;ABCD如图1ABCD如图2如图2,□ABEF即为所求.1.在下列6×6的正方形网格中,若每一个小正方形的边长均为1,请用无刻度直尺按要求画图:(1)在图1中,以AB为边画一个正方形ABCD;(2)在图2中,以AB为边画一个面积为5的矩形ABCD。