补充讲义实验二 脉冲编码调制与解调实验讲义
- 格式:doc
- 大小:298.00 KB
- 文档页数:7
实验六PCM编译码及A/μ律转换实验一、实验目的1、掌握脉冲编码调制与解调的原理。
2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。
3、了解脉冲编码调制信号的频谱特性。
4、熟悉了解W681512。
二、实验器材1、主控&信号源模块、1号、3号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图图2-1 1号模块W681512芯片的PCM编译码实验图2-2 3号模块的PCM 编译码实验图2-3 A/μ律编码转换实验2、实验框图说明图2-1中描述的是信号源经过芯片W681512经行PCM 编码和译码处理。
W681512的芯片工作主时钟为2048KHz ,根据芯片功能可选择不同编码时钟进行编译码。
在本实验的项目一中以编码时钟取64K 为基础进行芯片的幅频特性测试实验。
图2-2中描述的是采用软件方式实现PCM 编译码,并展示中间变换的过程。
PCM 编码过程是将音乐信号或正弦波信号,经过抗混叠滤波(其作用是滤波3.4kHz 以外的频率,防止A/D 转换时出现混叠的现象)。
抗混滤波后的信号经A/D 转换,然后做PCM 编码,之后由于G.711协议规定A 律的奇数位取反,μ律的所有位都取反。
因此,PCM 编码后的数据需要经G.711协议的变换输出。
PCM 译码过程是PCM 编码逆向的过程,不再赘述。
A/μ律编码转换实验中,如实验框图2-3所示,当菜单选择为A 律转μ律实验时,使用3号模块做A 律编码,A 律编码经A 转μ律转换之后,再送至1号模块进行μ律译码。
同理,当菜单选择为μ律转A 律实验时,则使用3号模块做μ律编码,经μ转A 律变换后,再送入1号模块进行A 律译码。
四、实验步骤实验项目一 测试W681512的幅频特性 概述:该项目是通过改变输入信号频率,观测信号经W681512编译码后的输出幅频特性,了解芯片W681512的相关性能。
1信号源:FS 模块1:TH9(编码帧同步)提供编码帧同步信号信号源:FS 模块1:TH10(译码帧同步)提供译码帧同步信号模块1:TH8(PCM编码输出)模块1:TH7(PCM译码输入)接入译码输入信号2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【1号模块】→【第一路PCM 编译码方式】→【A律PCM编译码】。
实验2 脉冲编码调制PCM与时分复用实验—、实验目的1.加深对PCM编码过程的理解;2.熟悉PCM编、译码专用集成芯片的功能和使用方法;3.了解PCM系统的工作过程;4.掌握时分多路复用的工作过程;用同步正弦波信号观察A律PCM八比特编码的实验。
二、实验仪器1.HD8621D实验箱1台2.20M双踪示波器1台3.铆孔线5根三、实验电路工作原理(一PCM基本工作原理脉冲调制就是把一个的模拟信号变换成的数字信号后在信道中传输。
脉冲编码调制就是对模拟信号的过程。
所谓抽样,就是在抽样脉冲来到的时刻提取对模拟信号在,抽样把时间上的信号变成时间上的信号。
所谓量化,就是把经过抽样得到的瞬时值将其幅度,即用一组规定的电平,把瞬时抽样值用来表示。
一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。
话音信号先经滤波器,进行脉冲抽样,变成的抽样信号,然后将幅度连续的PAM 信号用“四舍五入”办法量化为的信号,再经编码后转换成。
对于语音电话通信,CCITT规定抽样率为8KHz,每抽样值编位码,即共有个量化值,因而每话路PCM 编码后的标准数码率是 b/s。
为解决均匀量化时小信号量化误差大、音质差的问题,在实际中采用量化方法,即量化特性在小信号时分层密、量化间隔小,而在大信号时分层疏、量化间隔大。
(二 PCM编译码电路【PCM编译码电路TP3067芯片】1.根据图4-4和图4-5说明单路PCM编译码器的工作原理答:计时,可以实现对编译码器的降功耗控制。
图4-5是短帧同步定时波形图。
四、实验内容1.用同步正弦波信号观察A律PCM八比特编码的实验;2.脉冲编码调制(PCM及系统实验;3.PCM八比特编码时分复用输出波形观察测量实验;4.PCM编码时分多路复用时序分析实验。
五、实验步骤及注意事项本PCM编译码系统分为PCM(一、PCM(二两个分系统(见图4-9、图4-10电原理图。
芯片U501及外围电路构成PCM(一,芯片U502及外围电路构成PCM(二。
实验二脉冲编码调制与解调实验—. 实验目的1.加深对PCM编码过程的理解。
2.熟悉PCM编、译码专用集成芯片的功能和使用方法。
3.了解PCM系统的工作过程。
二. 实验电路工作原理(一) PCM基本工作原理脉冲调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。
脉码调制就是对模拟信号先抽样,再对样值幅度量化、编码的过程。
所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
它的抽样速率的下限是由抽样定理确定的。
在该实验中,抽样速率采用8Kbit/s。
所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。
所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。
由此可见,脉冲编码调制方式就是一种传递模拟信号的数字通信方式。
PCM的原理如图2-1所示。
话音信号先经防混叠低通滤波器,进行脉冲抽样,变成8KHz 重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用“四舍五入”办法量化为有限个幅度取值的信号,再经编码,转换成二进制码。
对于电话,CCITT 规定抽样率为8KHz,每抽样值编8位码,即共有28=256个量化值,因而每话路PCM编码后的标准数码率是64kb/s。
为解决均匀量化时小信号量化误差大、音质差的问题,在实际中采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密、量化间隔小,而在大信号时分层疏、量化间隔大,如图2—2所示。
在实际中广泛使用的是两种对数形式的压缩特性:A律和 律。
A 律PCM 用于欧洲和我国,μ律用于北美和日本。
脉冲编码调制(PCM)实验一、 实验目的 1. 了解语音信号编译码的工作原理; 2. 验证PCM 编码原理; 3. 初步了解PCM 专用大规模集成电路的工作原理和应用; 4. 了解语音信号数字化技术的主要指标及测试方法。
二、 实验仪器双踪同步示波器1台;直流稳压电源l 台;低频信号发生器l 台;失真度测试仪l 台;PCM 实验箱l 台。
三、 实验原理 PCM 数字终端机的结构示意图如下:PCM 原理图如下:模拟信源 预滤波抽样器 波形编码器 量化、编码 数字信道波形解码器重建滤波器抽样保持、X/sinx 低通模拟终端()x t ()x n ()ˆxn ()ˆxt 发送端接收端PCM 编译码原理为:1.PCM主要包括抽样、量化与编码三个过程。
2.抽样:把连续时间模拟信号转换成离散时间连续幅度的抽样信号;3.量化:把离散时间连续幅度的抽样信号转换成离散时间离散幅度的数字信号;4.编码:将量化后的信号编码形成一个二进制码组输出。
5.国际标准化的PCM 码组(电话语音)是八位码组代表一个抽样值。
ITT G.712 详细规定了它的S/N指标,还规定比特率为64Kb/s. 使用A 律或u 律编码律。
A律13折线和其编码表为:A律13折线图A律13折线编码表段落序号段落码c2 c3 c4段内码c5 c6 c7 c88 111 0000…….11117 110 0000…….11116 101 0000…….11115 100 0000…….11114 011 0000…….11113 010 0000…….11112 001 0000…….11111 000 0000…….1111内为均匀分层量化,即等问隔16 个分层。
系统性能测试有三项指标,即动态范围、信噪比特性和频率特性。
在满足一定信噪比(SIN)条件下,编译码系统所对应的音频信号的幅度范围定义为动态范围。
PCM 编译码系统动态范围样板值图:动态范围测试框图:四、 实验步骤(一)时钟部分:1. 主振频率为4096KHz ;用示波器在测试点(1)观察主振波形,用示波器测量其频率。
一、实验目的1. 了解脉冲编码调制(PCM)的工作原理和实现过程;2. 掌握PCM编译码器的组成和功能;3. 验证PCM编译码原理在实际应用中的有效性;4. 分析PCM编译码过程中可能出现的问题及解决方法。
二、实验原理脉冲编码调制(PCM)是一种将模拟信号转换为数字信号的方法。
其基本原理是:首先对模拟信号进行抽样,使其在时间上离散化;然后对抽样值进行量化,使其在幅度上离散化;最后将量化后的信号编码成二进制信号。
PCM编译码器是实现PCM调制和解调的设备。
1. 抽样:抽样是指在一定时间间隔内对模拟信号进行采样,使其在时间上离散化。
抽样定理指出,为了无失真地恢复原信号,抽样频率必须大于信号最高频率的两倍。
2. 量化:量化是指将抽样值进行幅度离散化。
量化方法有均匀量化和非均匀量化。
均匀量化是将输入信号的取值域按等距离分割,而非均匀量化则是根据信号特性对取值域进行不等距离分割。
3. 编码:编码是指将量化后的信号编码成二进制信号。
常用的编码方法有自然二进制编码、格雷码编码等。
三、实验仪器与设备1. 实验箱:包括模拟信号发生器、抽样器、量化器、编码器、译码器等;2. 示波器:用于观察信号波形;3. 数字频率计:用于测量信号频率;4. 计算机软件:用于数据处理和分析。
四、实验步骤1. 模拟信号发生器输出一个连续的模拟信号;2. 通过抽样器对模拟信号进行抽样,得到一系列抽样值;3. 对抽样值进行量化,得到一系列量化值;4. 将量化值进行编码,得到一系列二进制信号;5. 将二进制信号输入译码器,恢复出量化值;6. 将量化值进行反量化,得到一系列反量化值;7. 将反量化值通过重建滤波器,恢复出模拟信号;8. 观察示波器上的信号波形,分析PCM编译码过程。
五、实验结果与分析1. 观察示波器上的信号波形,可以发现,通过PCM编译码过程,模拟信号被成功转换为数字信号,再恢复为模拟信号。
这验证了PCM编译码原理在实际应用中的有效性。
实验五脉冲编码调制解调实验一、实验目的1.掌握脉冲编码调制与解调的原理。
2.掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。
3.了解脉冲编码调制信号的频谱特性。
4.了解大规模集成电路W681512的使用方法。
二、实验内容1.观察脉冲编码调制与解调的结果,观察调制信号与基带信号之间的关系。
2.改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。
3.改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。
4.改变位同步时钟,观测脉冲编码调制波形。
三、实验器材1.信号源模块2.模拟信号数字化模块3.终端模块(可选)4.频谱分析模块5.20M双踪示波器一台6.音频信号发生器(可选)一台7.立体声单放机(可选)一台8.立体声耳机一副9.连接线若干四、实验原理模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。
如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。
编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。
脉码调制的过程如图8-1所示。
PCM主要包括抽样、量化与编码三个过程。
抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。
国际标准化的PCM 码组(电话语音)是八位码组代表一个抽样值。
编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。
预滤波是为了把原始语音信号的频带限制在300-3400Hz 左右,所以预滤波会引入一定的频带失真。
图8-1 PCM 调制原理框图在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码,通常,用信号与量化噪声的功率比,即信噪比S/N来表示,国际电报电话咨询委员会(ITU-T)详细规定了它的指标,还规定比特率为64kb/s,使用A律或 律编码律。
脉冲编码调制一、实验目的掌握脉冲编码调制原理及其实现方法二、实验内容用SystemView 软件仿真脉冲编码调制实现过程三、实验原理1. PCM 系统工作原理在现代通信系统中,以PCM 为代表的编码调制技术被广泛应用于模拟信号的数字传输。
除PCM外,DPCM 和ADPCM 的应用范围更广。
PCM 的主要优点是抗干扰能力强、失真小、传输特性稳定,尤其是远距离信号再生中继时,噪声不累积,而且可以采用压缩编码、纠错编码和保密编码等来提高系统的有效性、可靠性和保密性。
另外PCM 还可以在一个信道上将多路信号进行时分复用,传输脉冲编码调制PCM 是把模拟信号变换为数字信号的一种调制方式。
其最大的特点是把连续输入的模拟信号变换为在时域和振幅上都离散的量,然后将其转化为代码形式传输。
PCM 编码通过抽样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。
为便于用数字电路实现其量化电平数一般为2的整数次幂,有利于采用二进制编码表示。
采用均匀量化时,其抗噪声性能与量化级数有关,每增加一位编码,其信噪比增加约6dB ,但实现的电路复杂程度也随之增加,占用带宽也越宽。
因此,实际采用的量化方式多为非均匀量化,通常使用信号压缩与扩张技术来实现非均匀量化,在保持信号固有的动态范围前提下,在量化前将小信号进行放大,而对大信号进行压缩通常的压缩方法有13 折线A 律和律两种标准。
国际通信中多采用A 律,采用信号压缩后,用8位编码实际可以表示均匀量化11位编码时才能表示的动态范围,能有效提高小信号时的信噪比。
PCM 通信系统组成如图4-6 所示:图4-6 PCM 通信系统组成框图输入信号经抽样量化编码后变成数字信号(PCM 信号)经信道传输到达接收端,先由译码器恢复出抽样值序列,在经过低通滤波滤出模拟基带信号,通常将量化编码组合称为模/数变换器,将译码低通的组合称为数/模变换器。
2、A87.6/13折线编码的码位安排当n=8时,a1 a2……a9的安排如下:a1:极性码,当抽样值Is>0时,a1=1,否则为0;a2 a3 a4:段落吗,用来确定抽样值所在量化器的段落a5 a6 a7 a8:段内电平码。
实验三脉冲编码调制与解调实验一、实验目的1、掌握脉冲编码调制与解调的原理。
2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。
3、了解脉冲编码调制信号的频谱特性。
4、了解大规模集成电路TP3067的使用方法。
二、实验内容1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。
2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。
3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。
4、观察脉冲编码调制信号的频谱。
三、实验仪器1、信号源模块2、模拟信号数字化模块3、频谱分析模块(可选)4、终端模块(可选)5、20M双踪示波器一台6、音频信号发生器(可选)一台7、立体声单放机(可选)一台8、立体声耳机(可选)一副9、连接线若干四、实验原理先规定模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。
如果发送端用预的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。
脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。
脉码系统原理框图如图3-1所示。
PCM主要包括抽样、量化与编码三个过程。
抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。
国际标准化的PCM码组(电话语音)是用八位码组代表一个抽样值。
编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。
预滤波是为了把原始语音信号的频带限制在300-3400Hz左右,所以预滤波会引入一定的频带失真。
图3-1 PCM 系统原理框图在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码。
实验2脉冲编码调制与解调实验实验2 脉冲编码调制与解调实验⼀、实验⽬的1、掌握脉冲编码调制与解调的基本原理。
2、定量分析并掌握模拟信号按照13折线A律特性编成⼋位码的⽅法。
3、通过了解⼤规模集成电路TP3067的功能与使⽤⽅法,进⼀步掌握PCM通信系统的⼯作流程。
⼆、实验内容1、观察脉冲编码调制与解调的整个变换过程,分析PCM调制信号与基带模拟信号之间的关系,掌握其基本原理。
2、定量分析不同幅度的基带模拟正弦信号按照13折线A律特性编成的⼋位码,并掌握该编码⽅法。
三、实验仪器1、信号源模块2、模拟信号数字化模块3、20M双踪⽰波器⼀台4、连接线若⼲四、实验原理脉冲编码调制(PCM)与解调通信系统的原理框图如下:模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。
在单路编译码器中,经变换后的PCM码是在⼀个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对⼀个单路编译码器来说,它在⼀个PCM帧(32个时隙)⾥,只在⼀个特定的时隙中发送编码信号。
同样,译码电路也只是在⼀个特定的时隙(此时隙应与发送码数据的时隙相同,否则接收不到PCM编码信号)⾥才从外部接收PCM编码信号,然后再译码输出。
五、实验步骤及注意事项1、将信号源模块、模拟信号数字化模块⼩⼼地固定在主机箱中,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,再分别按下⼆个模块中的相应开关POWER1、POWER2,对应的发光⼆极管LED01、LED02发光,按⼀下信号源模块的复位键,⼆个模块均开始⼯作。
(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3、对任意频率、幅度的模拟正弦信号脉冲编码调制与解调实验(1)将信号源模块中BCD码分频值(拨码开关SW04、SW05)设置为0000000 0000001(分频后“BS”端输出频率即为基频2.048MHz),模拟信号数字化模块中拨码开关S1设置为0000,“编码幅度”电位器逆时针旋转到顶。
..a2012-2013 第二学期开放实验项目题目:两路话音+两路计算机数据综合传输系统实验学生姓名专业名称:电子信息工程指导教师:2013年5月20日脉冲编码调制解调实验一、实验原理(一)基本原理PCM 调制原理框图1、 量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合,模拟信号的量化分为均匀量化和非均匀量化。
模拟信号的量化2、 编码所谓编码就是把量化后的信号变换成二进制码,其相反的过程称为译码。
当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。
模拟入yx量化器量化值..(二)实验电路说明模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。
在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙)里,只在一个特定的时隙中发送编码信号。
同样,译码电路也只是在一个特定的时隙(此时隙应与发送时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM编码信号,然后进行译码,经过带通滤波器、放大器后输出。
(三)输入、输出点参考说明1、输入点说明MCLK:芯片工作主时钟,频率为2.048M。
SIN IN-A:模拟信号输入点。
BSX:PCM编码所需时钟信号输入点。
BSR:PCM解码所需时钟信号输入点。
FSXA:PCM编码帧同步信号输入点。
FSRA:PCM解码帧同步信号输入点。
PCMIN-A:PCM解调信号输入点。
EARIN1:耳机语音信号输入点。
MICOUT1:麦克风语音信号输出点。
K1、K2:A律、μ律切换开关PCMAOUT-A:脉冲编码调制信号输出点。
SIN OUT-A:PCM解调信号输出点。
二、实验步骤1、将信号源模块和模块2固定在主机箱上,将黑色塑封螺钉拧紧,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,将信号源模块和模块2的电源开关拨下,观察指示灯是否点亮,红灯为+5V电源指示灯,绿灯为-12V电源指示灯,黄色为+12V电源指示灯。
实验二脉冲编码调制与解调实验
—. 实验目的
1.加深对PCM编码过程的理解。
2.熟悉PCM编、译码专用集成芯片的功能和使用方法。
3.了解PCM系统的工作过程。
二. 实验电路工作原理
(一) PCM基本工作原理
脉冲调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。
脉码调制就是对模拟信号先抽样,再对样值幅度量化、编码的过程。
所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
它的抽样速率的下限是由抽样定理确定的。
在该实验中,抽样速率采用8Kbit/s。
所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。
所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。
由此可见,脉冲编码调制方式就是一种传递模拟信号的数字通信方式。
PCM的原理如图2-1所示。
话音信号先经防混叠低通滤波器,进行脉冲抽样,变成8KHz 重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用“四舍五入”办法量化为有限个幅度取值的信号,再经编码,转换成二进制码。
对于电话,CCITT 规定抽样率为8KHz,每抽样值编8位码,即共有28=256个量化值,因而每话路PCM编码后的标准数码率是64kb/s。
为解决均匀量化时小信号量化误差大、音质差的问题,在实际中采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密、量化间隔小,而在大信号时分层疏、量化间隔大,如图2—2所示。
在实际中广泛使用的是两种对数形式的压缩特性:A 律和μ律。
A 律PCM 用于欧洲和我国,μ律用于北美和日本。
它们的编码规律如图2-3所示。
图中给出了信号抽样编码字与输入电压的关系,其中编码方式(1)为符号/幅度数据格式,Bit7表示符号位,Bit6~0表示幅度大小;(2)为A 律压缩数据 格式,它是(1)的ADI (偶位反相)码;(3)为μ律压缩数据格式,它是由(1)的Bit6~0反相而得到,通常为避免00000000码出现,将其变成零抑制码00000010。
对压缩器而言,其输入输出归一化特性表示式为:
A 律:
⎪⎪⎩⎪
⎪⎨⎧+++=A
AV A
AV V ln 1)ln(1ln 1110)11
(
)1
0(11≤≤≤≤V A
A
V
(二)PCM编译码电路TP3067芯片介绍
1.编译码器的简单介绍
模拟信号经过编译码器时,在编码电路中,它要经过取样、量化、编码,如图2-4(a)所示。
到底在什么时候被取样,在什么时序输出PCM码则由A→D控制来决定,同样PCM 码被接收到译码电路后经过译码、低通滤波、放大,最后输出模拟信号,把这两部分集成在一个芯片上就是一个单路编译码器,它只能为一个用户服务,即在同一时刻只能为一个用户进行A\D及D\A变换。
编码器把模拟信号变换成数字信号的规律一般有二种,一种是μ律十五折线变换法,它一般用在PCM24路系统中,另一种是A律十三折线非线性交换法,它一般应用于PCM 30\32路系统中,这是一种比较常用的变换法.模拟信号经取样后就进行A律十三折线变换,最后变成8位PCM码,在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去,这个时序号是由A→D控制电路来决定的,而在其它时隙时编码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧里只在一个由它自己的A→D 控制电路决定的时隙里输出8位PCM码,同样在一个PCM 帧里,它的译码电路也只能在一个由它自己的D--A控制电路决定的时序里,从外部接收8位PCM 码。
其实单路编译码器的发送时序和接收时序还是可由外部电路来控制的,编译码器的发送时序由A→D控制电路来控制。
我们定义为FSx和FSr,要求FSx和FSr是周期性的,并且它的周期和PCM的周
2.本实验系统编译码器电路的设计
我们所使用的编译码器是把编译码电路和各种滤波器集成在一个芯片上,它的框图见图2-5所示。
该器件为TP3067。
图2-6是它的管脚排列图。
具体的同学们可以通过网络
图2-5 TP3067逻辑方框图
FSX 发送帧同步脉冲输入,它启动BCLKX并使DX上PCM数据移到DX上。
ANLB 模拟环回路控制输入,在正常工作时必须置为逻辑“0”,当拉到逻辑“1”时,发送滤波器和前置放大器输出被断开,改为和接收功率放大器的VPO+ 输出连
接。
GSX 发送输入放大器的模拟输出。
用来在外部调节增益。
VFXI- 发送输入放大器的倒相输入。
VFXI+ 发送输入放大器的非倒相输入。
VBB负电源引脚,VBB= -5V ± 5% 。
4.PCM编译码电路
PCM编译码电路所需的工作时钟为2.048MHz, FSR、FSX的帧同步信号为8KHz窄脉冲,图2-7是短帧同步定时波形图。
在本实验中选择A律变换,以2.048Mbit/s的速率来传送信息,信息帧为无信令帧,它的发送时序与接收时序直接受FSX和FSR 控制。
还有一点,编译码器一般都有一个PDN 降功耗控制端,PDN=0时,编译码能正常工作,PDN=1时,编译码器处于低功耗状态,这时编译码器其它功能都不起作用,我们在设计时,可以实现对编译码器的降功耗控制。
三、实验步骤
1.将信号源模块、模拟信号数字化模块小心地固定在主机箱中,确保电源接触良好。
2.插上电源线,打开主机箱右侧的交流开关,再分别按下二个模块中的开关POWER1、POWER2,对应的发光二极管LED001、LED002、LED300、LED301发光,按一下信号源模块的复位键,模块开始工作。
3.将信号源模块的拨码开关SW101、SW102设置为0000000 0000001。
4.将信号源模块产生的正弦波信号(频率2.5KHz,峰-峰值为3V)从点“S-IN”输入模拟信号数字化模块,将信号源模块的信号输出点“64K”、“8K”“BS”分别与模拟信号数字化模块的信号输入点“64K-IN”、“8K-IN”、“2048K-IN”连接,观察信号输出点“PCMB-OUT”的波形。
5.连接连接信号输出点“PCMB-OUT”和信号输入点“PCM-IN”,观察信号输出点“OUT”
的波形。
6.改变输入正弦信号的幅度,使其峰-峰值分别等于和大于5V(若幅度无法达到5V,可将输入正弦信号先通过信号源模块的模拟信号放大通道,再送入模拟信号数字化
模块),将示波器探头分别接在信号输出点“OUT”、“PCMB-OUT”上,观察满载和过载时的脉冲幅度调制和解调波形,记录下来(应可观察到,当输入正弦波信号幅度大于5V时,PCM解码信号中带有明显的噪声)。
7.改变输入正弦信号的频率,使其频率分别大于3400Hz或小于300Hz,观察点“OUT”、“PCMB-OUT”,记录下来(应可观察到,当输入正弦波的频率大于3400Hz或小于300Hz 时,PCM解码信号幅度急剧减小)。
四、输入、输出点参考说明
1.输入点参考说明
2048K-IN:PCM所需时钟输入点。
S-IN:模拟信号输入点(基带信号)。
64K-IN:PCM编码所需时钟输入点。
8K-IN:PCM编码帧同步信号输入点。
PCM-IN:PCM解调信号输入点。
(因为是对随机信号进行编码,所以用模拟示波器无法同步该点信号,必须用数字存储示波器才能清楚观察到该点
波形)
2.输出点参考说明
PCMB-OUT:脉冲编码调制信号输出点。
(因为是对随机信号进行编码,所以用模拟示波器无法同步该点信号,必须用数字存储示波器才能清楚观察到
该点波形)
OUT:PCM解调信号输出点。
五、实验思考题
1.分析TP3067主时钟与8KHz帧收、发同步时钟的相位关系。
2.当输入正弦信号的幅度大于3400Hz或小于300Hz时,分析脉冲编码调制和解调波形。