高中数学知识点求数列的通项公式
- 格式:doc
- 大小:264.50 KB
- 文档页数:4
..一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序〞排列的,在这里,只强调有“次序〞,而不强调有“规律〞.因此,如果组成两个数列的数一样而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列a n的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即af(n)n.3.递推公式:如果数列a n的第一项〔或前几项〕,且任何一项a n与它的前一项a〔或前几项〕间的关系可以用一个式子来表示,即a n f(a n1)或a n f(a n1,a n2),n1那么这个式子叫做数列a的递推公式.如数列an中,a11,a n2a n1,其中na n2a n1是数列a n的递推公式.4.数列的前n项和与通项的公式①Sn a1a2a;②nS(n1)1a n.SS(n2)nn15.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何nN,均有a n1a n.②递减数列:对于任何nN,均有a n1a n.③摆动数列:例如:1,1,1,1,1,.④常数数列:例如:6,6,6,6,⋯⋯.⑤有界数列:存在正数M使a n M,n N.⑥无界数列:对于任何正数M,总有项a使得a n M.n1、n*a2(nN)nn156,那么在数列{}a的最大项为__〔答:n125〕;2、数列{}a的通项为nana n,其中a,b均为正数,那么a n与a n1的大小关系为___〔答:bn1aa n1〕;n23、数列{a}中,a是递增数列,XX数的取值X围〔答:3〕;ann,且{}nnn4、一给定函数yf(x)的图象在以下图中,并且对任意a(0,1),由关系式a n1f(a n)1*得到的数列{}a满足a n1a n(nN),那么该函数的图象是〔〕〔答:A〕neord完美格式..二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
数列通项公式的求解方法总结求数列的通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学。
一、累加法:利用an=a1+(a2-a1)+…(an-an-1)求通项公式的方法称为累加法。
累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f(n)可求前n项和).例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式。
解:由an+1=an+2n+1得an+1-an=2n+1则an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1=2[(n-1)+(n-2)+…+2+1]+(n-1)+1=2+(n-1)+1=(n-1)(n+1)+1=n2所以数列an的通项公式为an=n2。
例2:在数列{an}中,已知an+1= ,求该数列的通项公式.备注:取倒数之后变成逐差法。
解:两边取倒数递推式化为:=+,即-=所以-=,-=,-=…-=.…,将以上n-1个式子相加,得:-=++…+即=+++…+==1-故an==二、累乘法:利用恒等式an=a1…(an≠0,n?叟n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g(n)an的递推数列通项公式的基本方法(数列g(n)可求前n项积).例3.已知数列{an}中a1=,an=·an-1(n?叟2)求数列{an}的通项公式。
解:当n?叟2时,=,=,=,…=将这n-1个式子累乘,得到=,从而an=×=,当n=1时,==a1,所以an= 。
注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.三、公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?叟2),等差数列或等比数列的通项公式。
高中数列知识点总结1. 等差数列的定义与性质定义:1n n a a d +-=〔d 为常数〕,()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和:()()11122n n a a n n n S nad +-==+性质:〔1〕假如m n p q +=+,如此m n p q a a a a +=+;〔2〕{}n a 为等差数列2n S an bn ⇔=+〔a b ,为常数,是关于n 的常数项为0的二次函数〕2. 等比数列的定义与性质定义:1n na q a +=〔q 为常数,0q ≠〕,11n n a a q -=.等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩〔要注意公比q 〕性质:{}n a 是等比数列〔1〕假如m n p q +=+,如此mn p q a a a a =·· 3.求数列通项公式的常用方法一、公式法例1 数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式.解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,如此113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-.二、累加法 )(1n f a a n n =--例2 数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式.解:由121n n a a n +=++得121n n a a n +-=+如此所以数列{}n a 的通项公式为2n a n =.例3数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 如此111213333n n n n n a a +++-=+三、累乘法)(1n f a a n n=- 例4 数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,如此12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5 〔2004年全国I 第15题,原题是填空题〕数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式. 解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-=如此1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 四、待定系数法〔重点〕例6 数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式.解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-例7 数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+⑥将13524nn n a a +=+⨯+代入⑥式,得整理得(52)24323n nx y x y +⨯++=⨯+.令52343x x y y +=⎧⎨+=⎩,如此52x y =⎧⎨=⎩,代入⑥式得115223(522)n nn n a a +++⨯+=+⨯+⑦例8 数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,如此等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z+=⎧⎪++=⎨⎪+++=⎩,如此31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++⑨五、对数变换法例9 数列{}n a 满足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,.在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++错误! 六、迭代法例10 数列{}n a 满足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.解:因为3(1)21n n n n a a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 七、数学归纳法 例11 11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.〔其他方法呢?〕 解:由1228(1)(21)(23)n n n a a n n ++=+++与189a =,得 由此可猜想22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论. 〔1〕当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. 〔2〕假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,如此当1n k =+时, 由此可知,当1n k =+时等式也成立.根据〔1〕,〔2〕可知,等式对任何*n N ∈都成立. 八、换元法例12 数列{}n a满足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =如此21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥ 如此123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-, 九、不动点法例13 数列{}n a 满足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,如此1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为十、倒数法11212nn n a a a a +==+,,求n a 4. 求数列前n 项和的常用方法一、公式法利用如下常用求和公式求和是数列求和的最根本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法〔等差乘等比〕[例3]求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②〔设制错位〕 ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 〔错位相减〕∴1224-+-=n n n S三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列〔反序〕,再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-〔反序〕又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-〔反序相加〕 ∴nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②〔反序〕又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 〔反序相加〕)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,假如将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… [例8] 求数列{n<n+1><2n+1>}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132〔分组〕五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解〔裂项〕如:〔1〕)()1(n f n f a n -+= 〔2〕n n n n tan )1tan()1cos(cos 1sin -+=+ 〔3〕111)1(1+-=+=n n n n a n 〔4〕)121121(211)12)(12()2(2+--+=+-=n n n n n a n 〔5〕])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n<6> nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+〔裂项〕 ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S 〔裂项求和〕 =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cosn n --= 〔找特殊性质项〕∴S n = 〔cos1°+ cos179°〕+〔 cos2°+ cos178°〕+〔cos3°+ cos177°〕+···+〔cos89°+ cos91°〕+ cos90° 〔合并求和〕= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ……∵0665646362616=+++++++++++k k k k k k a a a a a a 〔找特殊性质项〕 ∴ S 2002=2002321a a a a +⋅⋅⋅+++〔合并求和〕=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,假如103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+〔找特殊性质项〕 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=〔合并求和〕=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构与特征进展分析,找出数列的通项与其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法. [例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个〔找通项与特征〕 ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n 〔分组求和〕 =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.数列练习一、选择题}{n a 的公比为正数,且3a ·9a =225a ,2a =1,如此1a =A.21B. 22C.2 D.22.为等差数列,,如此等于{}n a 的前n 项和为n S .假如4a 是37a a 与的等比中项, 832S =,如此10S 等于A. 18B. 24C. 60D. 90 . 4设n S 是等差数列{}n a 的前n 项和,23a =,611a =,如此7S 等于A .13B .35C .49D . 63 5.{}n a 为等差数列,且7a -24a =-1,3a =0,如此公差d = 〔A 〕-2 〔B 〕-12 〔C 〕12〔D 〕2 {n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,如此数列的前10项之和 A. 90 B. 100 C. 145 D. 1907.等差数列{}n a 的前n 项和为n S ,2110m m ma a a -++-=,2138m S -=,如此m = 〔A 〕38 〔B 〕20 〔C 〕10 〔D 〕9 .{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,如此{}n a 的前n 项和n S =A .2744n n +B .2533n n +C .2324n n+D .2n n +{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,如此数列的前10项之和是 A. 90 B. 100 C. 145 D. 190 . 二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,如此44S a =.2.设等差数列{}n a 的前n 项和为n S ,如此4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,如此4T , , ,1612T T 成等比数列.}{n a 中,6,7253+==a a a ,如此____________6=a .4.等比数列{n a }的公比0q >, 2a =1,216n n n a a a +++=,如此{n a }的前4项和4S = .数列练习参考答案一、选择题1.[答案]B[解析]设公比为q ,由得()22841112a q a q a q ⋅=,即22q =,又因为等比数列}{n a 的公比为正数,所以2q =故2122a a q ===,选B 2.[解析]∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B.[答案]B3.答案:C[解析]由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得 1278a d +=如此12,3d a ==-,所以1019010602S a d =+=,.应当选C 4.解:172677()7()7(311)49.222a a a a S +++====应当选C. 或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯=所以1777()7(113)49.22a a S ++===应当选C. 5.[解析]a 7-2a 4=a 3+4d -2<a 3+d>=2d =-1 ⇒ d =-12[答案]B 6.[答案]B[解析]设公差为d ,如此)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =1007.[答案]C[解析]因为{}n a 是等差数列,所以,112m m m a a a -++=,由2110m m m a a a -++-=,得:2m a -2m a =0,所以,m a =2,又2138m S -=,即2))(12(121-+-m a a m =38,即〔2m -1〕×2=38,解得m =10,应当选.C.8.[答案]A 解析设数列{}n a 的公差为d ,如此根据题意得(22)22(25)d d +=⋅+,解得12d =或0d =〔舍去〕,所以数列{}n a 的前n 项和2(1)1722244n n n n nS n -=+⨯=+ 9.[答案]B[解析]设公差为d ,如此)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =100二、填空题1.[命题意图]此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分表现了通项公式和前n 项和的知识联系.[解析]对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--2.答案:81248,T T T T [命题意图]此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过条件进展类比推理的方法和能力3.[解析]:设等差数列}{n a 的公差为d ,如此由得⎩⎨⎧++=+=+6472111d a d a d a 解得132a d =⎧⎨=⎩,所以61513a a d =+=.答案:13.[命题立意]:此题考查等差数列的通项公式以与根本计算.4.[答案]152[解析]由216n n n a a a +++=得:116-+=+n n n q q q ,即062=-+q q ,0q >,解得:q =2,又2a =1,所以,112a =,21)21(2144--=S =152三、大题{}n a 的各项均为正数,且212326231,9.a a a a a +==1〕.求数列{}n a 的通项公式.2〕.设31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.{an}满足a2=0,a6+a8=-10〔I 〕求数列{an}的通项公式;〔II 〕求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和.2*.正项等差数列{}n a 的前n 项和为n S ,假如312S =,且1232,,1a a a +成等比数列. 〔Ⅰ〕求{}n a 的通项公式;〔Ⅱ〕记3nn n a b =的前n 项和为n T ,求n T . 3. 数列{a n }满足a 1=1,a 2=3,a n+2=3a n+1-2a n 〔n ∈N +〕〔1〕证明:数列{a n+1-a n }是等比数列;〔2〕求数列{a n }的通项公式{}n a 的各项满足:k a 311-=)(R k ∈,1143n n n a a --=-.<1> 判断数列}74{nn a -是否成等比数列;〔2〕求数列{}n a 的通项公式{}n a 和正项等比数列{}n b ,111==b a ,1073=+a a ,3b =4a〔1〕求数列{}n a 、{}n b 的通项公式〔2〕假如n n n b a c •=,求数列{}n c 的前n 项和n T。
2019高考数学知识点总结之数列公式及结论总结一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=Sn=Sn=当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。
4、等比数列的通项公式:an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n 的正比例式);当q1时,Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{anbn}、仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{an}为等差数列,则(c0)是等比数列。
12、{bn}(bn0)是等比数列,则{logcbn} (c0且c1) 是等差数列。
求数列通项公式的11种方法数列通项公式是数学中一种重要的概念,它通过确定数列中任意一项的值来描述数列的规律。
它与算法不同,可在一定程度上减少计算量。
本文将介绍求数列通项公式的11种方法,帮助读者更好地理解数列通项公式的意义。
第一种方法是利用数列中已知项,来求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么数列的通项公式为a1+a2+ a3+ a4+a5,通过求和得出该数列的公式。
第二种方法是使用特征系数展开式求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以使用特征系数展开式求出该数列的通项公式:a1+2a2+3a3+4a4+5a5。
第三种方法是倒数展开式求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以使用倒数展开式求出该数列的通项公式:a1+a2/2+a3/3+a4/4+a5/5。
第四种方法是由观察法求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以通过观察发现,这是一个等比数列,则该数列的通项公式为a1qn-1,其中q为公比。
第五种方法是由增量法求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,增量法可以用来求出a2=a1+d1,a3=a2+d2,a4=a3+d3,a5=a4+d4,其中d1,d2,d3,d4为增量。
将这四式代入原式:a1+a2+a3+a4+a5,即可求出该数列的通项公式:a1+(n-1)(d1+d2+d3+d4)/2+nd5。
第六种方法是由公因式法求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以将这五项分别除以共同的因子,求出最小因式,例如给定数列a1,a2,a3,a4,a5=2,4,8,16,32,其中32是最大因子,将其他四项都除以32,得到d1=1/2,d2=1/4,d3=1/8,d4=1/16,将d1,d2,d3,d4代入原式a1+a2+a3+a4+a5,即可求出该数列的公式。
高中数列的通项公式的几种常用求法数列是高考的必考内容,也是同学们比较怕的一个知识点。
其实归结起来数列常考的就三个知识点:等差等比数列性质的应用、求数列的通项公式、求数列的前n 项和。
而数列的通项公式往往又决定着前n 项和的求法,所以求出数列的通项公式至关重要。
下面我将对数列通项公式的几种常用求法进行总结。
一. 观察法1 适用类型:已知数列前若干项,求该数列的通项时。
2 具体方法:一般对所给的项观察分析,找出项数n 与项n a 之间的关系,从而根据规律写出此数列的一个通项.3 例题示范例1:根据数列的前4项,写出它的一个通项公式:(1)4,44,444,4444,…(2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21--4 方法总结:(1)有分式又有整式的统一表示成假分式,再分子分母分别观察规律。
(2)正负相间的先把负号去了观察规律,再用1)1()1(+--n n 或来调节符号.二. 公式法1 适用类型:当已知数列为等差或等比数列时。
2 具体方法:可直接利用等差或等比数列的通项公式,只需求得首项及公差公比.等差数列:d n a a n )1(1-+=等比数列:)0(11≠=-q q a a n n三. 已知n s 求n a1适用类型:已知数列的前n 项和求通项时。
2具体发方法:通常用公式⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 。
3例题示范例1、已知数列{}n a 的前n 项和为:① n n S n -=22 ② 12++=n n S n求数列{}n a 的通项公式。
四. 由递推式求数列通项1 适用类型:已知数列的递推公式求通项公式时.2 具体方法:(1)形如d a a n n +=-1或q a a n n 1-=——-—利用等差等比来求例1 n n n a a a a 求已知2,111=-=+的通项公式(2)形如q pa a n n +=+1--——---构造等比数列例2 已知数列}{n a 满足11=a ,321+=+n n a a ,求n a【解析】123n n a a +=+,∴1326n n a a ++=+,即)3(231+=++n n a a ,1323n n a a ++∴=+. ∴{3}n a +是以134a +=为首项,2为公比的等比数列,∴113422n n n a -++=⨯=,即321-=+n n a .(3)形如--——--——累加法例3 已知数列}{n a 满足12a = ,121,(2)n n a a n n -=+-≥,求n a【解析】∵当2n ≥时,121n n a a n -=+-,∴121n n a a n --=-,∴11221()()()n n n n n a a a a a a a ---=-+-++-1a +[(21)(23)3]2n n =-+-+++2[(21)3](1)212n n n -+=⋅-+=+, ∵21211a ==+,∴21n a n =+(4)形如——-—--——-累乘法例4 已知数列}{n a 满足11a =,12n n n a a +=⋅,求n a .【解析】∵12n n n a a +=⋅,∴12n n na a +=, ∴3241231n n a a a a a a a a -⋅⋅⋅⋅⋅⋅⋅121222n -=⨯⨯⋅⋅⋅⋅⨯, ∴(1)12(1)2122n n n n a a -++⋅⋅⋅+-==, 又11a =,∴(1)22n n n a -=.(5)形如1n n n a pa q +=+方法:①将原递推公式两边同除以1n q +,②得111n n n n a a p q q q q ++=⋅+,③n n n a b q =,得11n n p b b q q+=+, ④再利用“递推关系形如1n n a pa q +=+”方法来求. 例5 已知数列}{n a 满足11a =,123n n n a a +=+,求n a【解析】在123n n n a a +=+两边除以13n +,得11213333n n n n a a ++=⋅+, 令3n n n a b =,则12133n n b b +=+,∴121(1)3n n b b +-=-, ∴11221(1)()()33n n n b b --=-⋅=-, ∴21()3n n b =-.∴332n n n n n a b =⋅=-. 总之,数列的通项公式的求法有很多,着需要我们多做题,多总结.做到从题目中来到题目中去.。
高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。
2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。
高中数学等差数列公式有哪些高中数学等差数列公式1、等差数列的通项公式为:an=a1+(n-1)d(1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N__,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)__项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1高考数学怎样复习(一)最后冲刺要靠做“存题”数学学科的最后冲刺无非解决两个问题:“一个是扎实学科基础,另一个则是弥补学生自己的薄弱环节。
”要解决这两个问题,就是要靠“做存题”。
所谓的“存题”,就是现有的、以前做过的题目。
数学的复习资料里有一些归纳知识点和知识结构的资料,考生可以重新翻看这些资料,把过去的知识点进行重新梳理和“温故”,这也是冲刺阶段可以做的。
(二)数学错题重做临近考试,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。
错题重做是查漏补缺的很好途径,这样做可以花较少的时间,解决较多的问题。
等差数列通项公式总结等差数列通项公式总结_数列公式学好数学的关键是公式的掌握,数学是一种工具学科,是学习其他学科的基础,同时还是提高人的判断能力、分析能力、理解能力的学科。
下面是小编为大家整理的等差数列通项公式总结,希望能帮助到大家!等差数列通项公式总结an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b 高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。
首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。
3、抓住重点内容,注重能力培养高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。
象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
4、关心教育动态,注意题型变化由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。
一定要用新的教学理念进行高三数学教学与复习,5、细心审题、耐心答题,规范准确,减少失误计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。
高中数学等比数列通项公式高中数学等比数列通项公式大全学好数学的关键是公式的掌握,数学在多个不同领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。
下面是小编为大家整理的高中数学等比数列通项公式,希望能帮助到大家!等比数列通项公式an=a1__q’(n-1)(其中首项是a1,公比是q)an=Sn-S(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为Sn=a1(1-q’n)/(1-q)=(a1-a1__q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为Sn=na1高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。
首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。
3、抓住重点内容,注重能力培养高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。
象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
4、关心教育动态,注意题型变化由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。
求数列的通项公式
知识要点:
求数列的通项公式是认识数列进而研究数列的关键,实际上,当数列的各项,如果能用项数n 的解析式来表示即:()a f n n =,找到这个解析式就得到了数列的各项,又因为数列是一类特殊的函数,作为函数来研究数列的性质时,若有解析式:()a f n n =,设法求得这个通项公式则与之有关的问题应刃而解。
由于数列的类型多,每个数列的通项公式表现是不同的,有的是“显性”在给出的数列中只要认真观察,联想便可得到,有的数列实际上是等差数列或等比数列,其通项公式已有定式,也有的数列其a n 与项数n 的规律必须从题目中设法挖掘出来。
为此,依求通项公式的方法可以有以下几种。
1、观察法:
一些数列给出前n 项便可归纳出通项公式,有的数列观察前几项便可分析出是等差数列或等比数列,由等差、等比数列的通项公式,直接写出通项公式。
如:写出下列各数列的一个通项公式:
①2,-6,18,-54,162,-486,……
这可以分析依等比数列(公比为(-3))的通项公式得到:
()a n n =--231 ②1121213131414151516-----,,,,,…… 观察规律:n a n ==-----123451121213131414151516………… 归纳得出:a n n n =-+111
③15,25,35,45,55,……
观察,数列各项间有:a a a a a a 21324310-=-=-==…
这是个等差数列:()a n n n =+-=+15110105
2、已知数列{}a n 的前n 项的和S n ,求通项公式a n 。
这是又一种数列的给出形式即:()S g n n =型一般是以a n 与S n 的关系考虑:
()a S a S S n n n n 1112==-≥-
如:已知数列{}a n 的前n 项的和S n n n =+-31求它的通项公式。
解法是:a S 111111==+-=
()()()[]n n n n n n a S a n n n =+---+--=-+===-+3321121111
332
2332此时∴为所求数列的通项公式
3、已知递推关系式求通项公式
如果一个数列若干项后的任一项都可以用与它相邻的前面若干项表示出来。
则这个关系式叫数列的递推公式。
如a a d n n +=+1(d 为常数)a ba d n n +=+1(b b d ≠0,,为常数)等等,它又分为以下几种类型:
①形如a a d n n +=+1 已知a 1求通项公式。
∵a a d n n +-=1 d 为常数,由等差数列的通项公式(d 为数列的公差)
得到()a a n d n =+-11
②形如a q a n n +=1· (q 为常数且q ≠0)a 1也已知
解法为:∵a a q n n +=1 ∴{}a n 是以a 1为首项,q 为公比的等比数列
∴a a q n n =-11·
③形如a ca d n n +=+1 (c d ≠10、,也为常数)a 1已知
解法是:在等式两边 同时加d c -1得 a d c c a d c n n ++-=+-⎛⎝ ⎫⎭⎪111然后设辅助数列 {}b a d c b cb b b a d c n n n n n =+-==+-+11111则则是以
为首项,c 为公比的等比数列 b b c n n =-11 ∴a b d c a d c c n n n =--=+-⎛⎝ ⎫⎭⎪-1111为所求的通项公式
如①已知数列{}a n 中()a a a n N n n 1123==+∈+,求通项公式。
解法为:∵a a n n +=+13
∴a a n n +-=13
则{}a n 是以a 12=为首项,3为公差的等差数列。
∴()a n n n =+-=-21331为所求的通项公式。
②又如,已知{}a n 中a 13=-且a a n n =+-211求此数列的,通项公式。
解法为:两边同加()12111211-=+=+-则a a n n
设b a n n =+1 ∵即b b n n =-21
∴{}b n 是以b a 1112=+=-为首项,2为公比的等比数列
()∴为所求的通项公式a b n n n n =-=--=---1221211
4、待定系数法求通项公式
在 数列的综合题中题解的主要方法是求数列的通项公式但通项公式的模式题中已答只需求出相关的待定系数便可时,使用的就是待定系数法。
5、归纳、猜想、证明。
有的数列很难用以上各法,求出通项公式时,常先由递推公式算出前几项,发现规律、归纳、猜想出通项公式再加以证明。
如:已知数列{}a n 中()a a a a n N n n n 1111
==+∈+且求数列的通项公式。
解法是:由a a a n n n +=+11
算出前几项分别为: a a a 234121314
===,,…… 猜想:a n
n =1 再由数学归纳法进行证明:
①n a ==111时等式成立
②假设n k =时等式成立,即a k
k =1 那么n k a a a k k
k k k k =+==+=+++11
111111 即n k =+1时等式也成立
综合①②对任意n N ∈都有a n
n =1成立。
另外此例也可用设辅助数列方法来求a n ,具体解法如下: ∵a a a n n n ++=11
∴11111a a a a n n n n
+=+=+
{}()设则∴是以为首项,为公差的等差数列
则∴b a b b b b a b n n
a b n
n n
n n n n n n ==+===+-===+1
1
1
11111
1
111
这个解法比用猜测证明的前面解法简便。
综上,各种数列求通项公式的方法因题设条件而定,比较灵活。