航空电子系统的组成及特点
- 格式:docx
- 大小:17.77 KB
- 文档页数:2
航空电子系统的组成:1, 各种机载信息采集设备2,信息处理设备3,信息管理和显示控制设备4,相关的软件二航电系统的发展大致可以分为四个阶段1,分立式航空电子系统,代表机型为F-100 ,F-101,2,联合式航空电子系统,代表机型为F-16C/D3,综合航空电子系统,代表机型为F-22,F-35 综合航电系统的结构特点如下:系统按功能区划分采用高度模块化设计采用高速数据总线采用高度综合的座舱显示系统采用大规模软件技术采用先进的传感器并进行多传感器的信息融合实现了系统容错和重构功能4 先进综合航空电子系统三航空电子系统的发展方向1 智能化电子计算机已成为现代化机载电子设备的核心, 电子计算机的发展已经并将继续不断地改变着机载电子系统的面貌。
当前计算机的发展正面临着重大突破—人工智能计算机的出现。
目前人工智能研究主要集中在专家系统、模式识别系统、机器人等三方面2 综合化采用高级复杂软件增扩最佳控制技术以保证容错, 采用标准化部件, 以减少备件、简化维修、降低全寿命费用。
系统的综合能力依赖于先进的技术支援, 其中包括高速数据总线、超高速集成电路(VHSIC)和人工智能等。
3 全频谱化现代局部战争表明, 电子战已越演越烈,而电子战的实质就是对电磁频谱的激烈争夺。
由于无线电频段和微波频段已拥挤不堪因此航空电子设备的工作频率正逐渐向毫米波、红外、激光、可见光等领域扩展, 从而使航空电子系统趋于全频谱化。
4 隐蔽化在导航系统中采用惯导—全球定位系统组合,惯导—天文导航组合等方案构成载机不辐射电磁波的“ 隐蔽导航系统” 。
采取这种组合方式。
” 既能保持惯导的近距导航较高的精度又可校正远距飞行中惯导的累积定位误差。
当前正在研制的全地形航空电子系统(T2 A)就具有隐蔽导航功能,其核心部件为一个存贮地形三维数据的数据库, 数据库内存有航线中的所有地形的数据,如一些基本点的海拔高度参数、森林、河流、道路、障碍物的信息数据等。
飞机航电系统的构成和作用分析飞机航电系统是指用于飞机电气能源管理、通信导航、飞行控制和信息管理等各方面系统的总称。
由于航电系统是飞机中必不可少的一部分,因此了解其构成和作用是非常重要的。
一、航电系统的主要构成1. 电源系统:电源系统是整个航电系统的基础,它提供与飞机所有设备所需的能源。
电源系统包含电瓶、发电机和相应的电路元件。
电源系统的很多组成部分,如发电机、变频器、静变流器等,都是由飞机的发动机直接驱动的。
2. 飞行表现和导航系统:飞行表现和导航系统是航电系统的另一个重要组成部分,它涉及到飞机的飞行控制和导航,包括如下几个方面:航向计算器和飞行导航系统:这是飞机导航的基础。
航向计算器通过读取机头的当前方向来确定飞行方向,而飞行导航系统通过导航计算机的计算来指导飞行员驾驶飞机到达目标位置。
自动驾驶系统:自动驾驶系统能够自动控制飞机的方向、高度和速度等参数,从而减少飞行员的工作量,同时保证飞机飞行的安全性和稳定性。
3. 通信和信息系统:航电系统还包括了通信和信息系统,包括了飞机与地面通信、飞机与空中交通管制机构的通信、飞机与天气预报机构的通信以及飞机内部的通信。
现在的航空公司都使用无线电通信,这是航电系统的重要部分,能够保证飞机与地面保持通信,并确保一旦出现问题能够及时进行处理。
4. 地形警告系统:地形警告系统还是近年来飞机安全性的重要保障。
地形警告仪器安装在飞机上,它可以通过扫描固定的地面点来预测出飞机是否会遇到危险的地势。
二、航电系统所起的作用1. 提供飞行所需的电气能量:航电系统的首要任务就是提供飞机所需的电气能量和电流。
2. 控制飞行并保证安全:飞机的导航和控制都依赖于航电系统,包括了高度、速度、航向和导航的控制。
3. 提供适当的环境舒适度:航电系统还有助于保证适当的环境舒适度,包括了温度、湿度和氧气的控制。
4. 实现通信和信息管理:航电系统通过提供通信和数据传输,保证了飞机与地面交流的安全和有效性。
空运飞行员的航空器机械和电子系统航空业是一个高度复杂和精密的行业,航空器的机械和电子系统对于飞行员的安全和飞行任务的成功至关重要。
本文将介绍空运飞行员所需了解的航空器机械和电子系统,包括机械系统和电子系统的基本原理、常见问题和相关维修程序。
一、机械系统1. 涡轮发动机涡轮发动机是现代航空器的主要动力系统,它通过燃料的燃烧产生的高温高压气体驱动飞机前进。
飞行员需要了解涡轮发动机的基本工作原理、主要部件以及故障排除的基本方法。
在飞行过程中,飞行员应当监控涡轮发动机的性能,并且在必要时采取相应的措施来应对各种故障情况。
2. 起落架系统起落架系统是航空器的重要组成部分,它提供了飞机在地面和空中之间的平稳过渡。
飞行员需要了解起落架系统的结构和操作原理,以确保在起飞、降落以及地面操作过程中的安全。
此外,飞行员还应当熟悉起落架故障排除的基本程序,并能够在必要时采取正确的应对措施。
3. 操纵系统操纵系统是飞机的“大脑”,它负责控制飞机的姿态和飞行方向。
飞行员需要了解操纵系统的原理和组成部件,以便在飞行过程中灵活操作飞机。
同时,飞行员还应当熟悉操纵系统的常见故障,并能够迅速判断和纠正异常情况。
二、电子系统1. 通信和导航系统通信和导航系统是现代航空器的重要组成部分,它们负责飞机与地面和其他飞机的通信联系以及飞行导航。
飞行员需要了解通信和导航系统的基本原理和操作方法,以确保飞机在空中和地面上的正常通信与导航。
2. 飞行控制系统飞行控制系统是航空器的关键部件,它能够实时监测飞机的动态参数,并通过自动控制机构调整飞机的姿态和航向。
飞行员需要了解飞行控制系统的基本原理和工作方式,以及在自动驾驶模式下的应急操作方法。
3. 仪表和显示系统仪表和显示系统提供了飞行员在驾驶舱内观察和监测飞机状态的重要信息。
飞行员需要了解不同类型的仪表和显示系统的工作原理和读取方法,并能够快速准确地解读相关信息。
三、维护和故障排除飞行员虽然并不直接参与航空器的维护,但他们需要了解维修和故障排除的基本流程和程序,以便在必要时提供相关帮助和指导。
航空航天电子系统的研究与开发第一章:航空航天电子系统概述航空航天电子系统是指在飞机、航天器和导弹等空中飞行器中所使用的电子装备与设施。
这些电子系统一般包括了通信、导航、控制、雷达、武器系统等多个方面,其中每个方面都极其关键。
这些设备的可靠性、精度以及反应速度都对飞行器的安全和性能有着决定性的影响。
因此,航空航天电子系统的研究和开发显得尤为重要。
第二章:航空航天电子系统的研究现状当前,航空航天电子系统的研究主要有以下几个方向:1.微电子技术:随着微电子技术的突破,航空航天电子系统的精度和性能水平得到了大幅度提高。
特别是在集成电路、MEMS技术以及高速数字电路技术等领域取得了重要进展。
2.工作环境:在宇宙、高空等特殊的工作环境下,航空航天电子系统的稳定性和可靠性面临着诸多挑战。
因此,研究开发适用于这些特殊工作环境的电子系统成了当前的重点。
3.网络化技术:随着信息技术的普及,航空航天电子系统的网络化程度也在逐渐提高。
这在某些方面提高了系统的效率,但同时也增加了系统安全的风险。
第三章:航空航天电子系统的研发难点航空航天电子系统的研发难点主要包括以下几个方面:1.系统可靠性方面:由于航空航天电子系统的特殊性质,系统可靠性一直是研发人员关注的重点。
特别是在一些应用场景下,系统的可靠性对生命安全具有决定性的影响。
2.稳定性方面:由于航空航天电子系统在特殊环境中工作,如高空、高压、高温等环境中,各种环境因素都对系统的稳定性带来了巨大的挑战。
3.高效性方面:航空航天电子系统的效率对于飞行器的性能有着至关重要的影响。
因此,研发高效电子系统成了一个永恒的话题。
4.安全性方面:航空航天电子系统的安全性影响到飞行器及人员的安全,因此研发安全可靠的系统至关重要。
第四章:航空航天电子系统的未来展望未来,随着科学技术的不断进步,航空航天电子系统将会朝着以下方向发展:1.智能化:随着人工智能技术的应用,航空航天电子系统也将变得更加智能化。
航空电子系统的组成及特点
航空电子是指飞机上所有电子系统的总和。
一个最基本的航空电子系统由通信、导航和显示管理等多个系统构成。
航空电子设备种类众多,针对不同用途,这些设备从最简单的警用直升机上的探照灯到复杂如空中预警平台无所不包。
而航空电子系统也有着只属于自己的特点,这些特点更是随着航空电子的发展而不断变化。
一、航空电子系统的组成
通信系统通信系统是航电系统中最先出现的,飞机和地面的通信能力从一开始就是至关重要的。
远程通信爆发式的增长意味着飞机必须携带着一大堆的通信设备。
其中一小部分提供了关乎乘客安全的空地通信系统。
机载通信是由公共地址系统和飞机交互通信提供的。
导航系统从早期开始,为了飞行安全性,人们就开发出导航传感器来帮助飞行员。
除了通信设备,飞机上现在又安装了一大堆无线电导航设备。
显示系统显示系统负责检查关键的传感器数据,这些数据能让飞机在严苛的环境里安全的飞行。
显示软件是以飞行控制软件同样的要求开发出来的,他们对飞行员同等重要。
这些显示系统以多种方式确定高度和方位,并安全方便地将这些数据提供给机组人员。
飞行控制系统自动驾驶系统在大部分时间里减少了飞行员的工作负荷和可能出现的失误。
第一个简单的自动驾驶仪用于控制高度及方向,它可以有限地操控一些东西,如发动机推力和机翼舵面。
直到最近,这些老系统仍自然而然地利用电子机械。
防撞系统为了增强空中交通管制,大型运输机和略小些的使用空中防撞系统,它可以检测出附近的其他飞机,并提供防止空中相撞的指令。
为了防止和地面相撞,飞机上也会安装近地警告系统。
气象雷达气象系统如气象雷达和闪电探测器对于夜间飞行或者指令指挥飞行非常重要,因为此时飞行员无法看到前方的气象条件。
暴雨或闪电都意味着强烈的对流和湍流,而气象系统则可以使飞行员绕过这些区域。
光电系统光电系统覆盖的设备范围很广,其中包括前视红外系统和被动式红外设备。
这些设备都可以给机组提供红外图像。
这些图像可以获得更好的目标分辨率,从而用于一切搜救活动。
电子预警电子支援以及防御支援常用于搜集威胁物或潜在威胁物的信息。
它们最终用于发射武器直接攻击敌机,有时也用以确认威胁物的状态,甚至是辨识它们。
航空电子系统包括了飞机上所有的电子设备,以上列举的不过是一小部分而已。
其中还包括飞机管理系统、战术任务系统、军用通信系统、雷达、声纳、机载网络、空中救护等等。
二、航空电子系统的特点
1、功能区分在功能划分上,新一代系统已明显从纵向划分过渡到横向划分,提出了功能区分的概念。
功能区分是整个系统中功能特性相近、任务关联密切的部分,在同一功能区中可以实现资源共享,容易互为余度而实现动态的重构及容错。
2、深广发展新一代系统的第二个特点是综合化进一步向深、广方向发展。
3、LRM登场新一代系统的第三个特点是以外场可更换模块(LRM)代替了外场可更换单元(LRU)为基础构成综合航空电子系统。
LRM是形成新一代系统其它特点的基础,例如动态重构、二级维修概念都是在LRM基础上进行的。
LRM是系统安装结构上和功能上相对独立的单元,故障定位可以达到LRM一级,通过更换LRM而排除故障。
LRM、智能化的机内自检、二级维修体制是构成新一代系统维修概念的要素,使维修成本大大降低。
4、资源共享新一代系统的第四个特点是在LRM一级上实现硬件资源共享和硬件余度。
通
过动态的程序加载,根据任务需要动态地组织LRM硬件,出现故障后则可进行动态重构,使系统继续维持原有功能,即达到容错的目的。
这种动态的管理及调度原则和以前的系统大不相同,以前的系统基本上是“固定的”,而新一代系统则是“灵活的”,是根据实时的需要动态地完成配置或重构,这样的系统不仅实现了容错,推迟了必须进行修理的时间,而且达到资源共享,提高了资源利用率。
5、智能化新一代系统第五个特点是向智能化发展。
当代的航空电子系统只能将各种数据提供给驾驶员,或者经过处理后给出引导性的指示信号,有时变换成易理解的直观图示方式,但最终的判定、决断要驾驶员给出,美国正在研制的驾驶员助手系统(即专家系统)可以完成收集数据、推理和判断并做出决断,可以直接给出控制指令,也可以向驾驶员提出处理建议,由驾驶员决断及实施控制。
神经网络的研究也取得很大进展,应用到机载后可以使航空电子系统具有自学习和自适应能力。
智能化系统使驾驶员从过量的任务负担中解脱出来,集中精力于高层次的判断,并可避免人脑在某些方面的能力不足。
航空电子研究正以惊人的速度改变着航空航天技术。
起初,航空电子设备只是一架飞机的附属系统;而如今,许多飞机存在的唯一目的即为搭载这些设备,军用飞机正日益成为一种集成了各种强大而敏感的传感器的战斗平台。
而随着科学技术的发展,相信航空电子的明天也会更加灿烂辉煌。