高中数学:由已知条件求动点轨迹方程
- 格式:doc
- 大小:53.00 KB
- 文档页数:2
三、相关点法求轨迹方程(高中数学解题妙法)2.求出动点C和动点P之间的等量关系式;3.将等量关系式代入已知曲线方程,得到所求动点的轨迹方程。
本文介绍了相关点法求轨迹方程的基本步骤。
当题目中的条件同时具有以下特征时,一般可以用相关点法求其轨迹方程:某个动点P在已知方程的曲线上移动;另一个动点M随P的变化而变化;在变化过程中P和M满足一定的规律。
关键在于找到动点和其相关点坐标间的等量关系。
举例来说,对于点P(4.-2)与圆x^2+y^2=4上任一点连线的中点轨迹方程,我们可以设点P与圆上任一点N(x,y)连线的中点为M(x,y),然后求出x=2x-4,y=2y+2的关系式,代入圆的方程可得(x-2)^2+(y+1)^2=1,因此答案为A.(x-2)^2+(y+1)^2=1.另一个例题是:设F(1,0),M点在x轴上,P点在y轴上,且MN=2MP,PM⊥PF,当点P在y轴上运动时,求点N的轨迹方程。
我们可以设动点P的坐标为(x,y-yA),动点C为F(1,0),求出等量关系式后代入y^2=4x,得到点N的轨迹方程为y^2=4x。
综上所述,相关点法求轨迹方程的基本思路是设定两个动点,求出它们之间的等量关系式,再代入已知曲线方程得到所求动点的轨迹方程。
y0),B(x,y),P(x1,y1),则由题意得:点B在抛物线上,即y2=x+1,代入得y=x2+1;点P在线段AB上,且点M的坐标为(2,0),即线段AB的中点坐标为((x0+x)/2,(y0+x2+1)/2)。
根据上述条件,可以列出以下方程组:y=x2+1y-y0=(x-x0)/2y-(y0+x0^2+1)/2=2(x-2)/3解方程组得到:x1=3x0/2-x/2+2/3y1=3x0^2/4+y0/2+1/3代入抛物线方程y2=x+1得到点P的轨迹方程为:y1^2=(3x1/2-1)^2+1。
动点轨迹方程的常见求法湖南省临澧县第一中学 朱福文 胡鸥 415200一、待定系数法;它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。
其解题步骤为:先设出对应类型的轨迹方程;再求出所设方程中的待定系数。
例1、已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线和椭圆有公共焦点,且椭圆的半长轴比双曲线的半实轴大4,椭圆的离心率和双曲线的离心率之比为3 / 7。
求椭圆和双曲线的方程。
解:如果双曲线和椭圆的焦点在x 轴上,即椭圆的长轴、双曲线的实轴在x 轴上,那么可设椭圆方程为22a x +22b y = 1,双曲线的方程为22m x -22ny = 1。
2c = 213 , ∴c = 13 .a – m = 4 , m c : n c = 73 , ∴a = 7 , m = 3 . b 2 = a 2-c 2 = 36 , n 2 = c 2- m 2 =4 .∴椭圆方程为492x +362y = 1,双曲线的方程为92x -42y = 1 ; 如果双曲线和椭圆的焦点在y 轴上,同理可得:∴椭圆方程为492y +362x = 1,双曲线的方程为92y -42x = 1 。
二、直译解析法;该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。
它主要通过建系、设点、列式、化简、讨论等步骤得到所求的曲线轨迹方程。
例2、已知两定点A 、B ,AB = 3,求使∠PBA = 2∠PAB 成立的动点P 的轨迹方程。
解: 以点A 为坐标原点,射线AB 为x 轴的正半轴,建立直角坐标系如右图: 则B 点坐标为(3, 0),设P 点坐标为(x, y),∠PAB = α , 则∠PBA =2α 3-x y = K PB = tg(π-2α) = - tg2α=αα212tg tg -- = 2)(1)(2xy x y -- = 222y x xy -- ∴y = 0 (0<x<3) 或31-x = 222y x x --, 即y = 0 (0<x<3) 或(x -1)2-32y = 1 (x ≥2)。
求轨迹方程的思路,方法和对应的题型全文共四篇示例,供读者参考第一篇示例:求轨迹方程是高中数学中一个重要的话题,不仅是对数学知识综合运用的考验,也是培养学生逻辑思维和解决问题能力的一个重要环节。
在学习求轨迹方程的过程中,学生需要掌握一定的方法和技巧,同时要注意对不同类型的题目进行分类和分析,以便能够正确地找到轨迹方程。
一、思路和方法求轨迹方程的基本思路是根据给定的条件,建立方程,然后通过逻辑推理和代数计算,最终得到表达轨迹的方程。
在具体进行求解的过程中,我们可以采用以下几种方法:1. 笛卡尔坐标系法在求轨迹方程的过程中,我们常常需要用到二维平面坐标系。
通过设定坐标轴,建立直角坐标系,将问题中的各个点的坐标表示成(x,y),然后根据给定条件进行分析,建立方程,最终得到轨迹方程。
2. 参数法有时候通过引入参数,可以简化问题的解决过程。
我们可以设一个参数t,用其作为辅助变量,来表达轨迹上各点的位置关系。
通过对参数的变化范围和步骤进行分析,最终得到轨迹方程。
3. 抽象化方法对于一些复杂的问题,我们可以通过抽象化的方法来求解轨迹方程。
将问题转化成一个更加简单的形式,然后进行分析和计算,最终得到轨迹方程。
二、对应的题型在求轨迹方程的过程中,我们会遇到各种各样的题目,不同的题目需要采用不同的方法和技巧进行求解。
下面列举一些常见的求轨迹方程的题型:1. 直线的轨迹方程有时候给定直线上的一个点和直线的方向向量,我们需要求直线的轨迹方程。
这时可以通过点斜式或者两点式求解。
给定圆心和半径,求圆的轨迹方程。
可以通过圆的标准方程(x-a)²+(y-b)²=r²来求解。
有时候会给定一组参数方程,我们需要求这些参数方程表示的轨迹方程。
可以通过把参数方程组合起来,得到关于自变量的函数表达式,最终得到轨迹方程。
第二篇示例:求轨迹方程是一种常见的数学问题,涉及到解析几何和函数方程的知识。
在数学学习中,经常会遇到求轨迹方程的题目,需要运用相关的方法和思路来解决。
专题51曲线与方程-求轨迹方程【热点聚焦与扩展】纵观近几年的高考试题,高考对曲线与方程的考查,主要有以下两个方面:一是确定的轨迹的形式或特点;二是求动点的轨迹方程,同时考查到求轨迹方程的基本步骤和常用方法.一般地,命题作为解答题一问,小题则常常利用待定系数法求方程或利用方程判断曲线类别.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求点的轨迹方程问题的常见解法.1、求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘,x y 的关系,列出方程(4)化简:将方程进行变形化简,并求出,x y 的范围2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程.常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p .若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程.【经典例题】例1.(2020·四川内江·高三三模)已知点()2,0A -、()3,0B ,动点(),P x y 满足2PA PB x ⋅=,则点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线例2.(2020·广东深圳三模·)当点P 在圆221x y +=上变动时,它与定点()3,0Q -的连线PQ 的中点的轨迹方程是()A.()2234x y ++=B.()2231x y -+=C.()222341x y -+=D.()222341x y ++=例3.(2020·江西新余四中高三三模)如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是()A.B.C.D.例4.(2020·上海市嘉定区第一中学高三三模)如图所示,在正方体1111ABCD A B C D -中,点P 是平面11ADD A 上一点,且满足ADP △为正三角形.点M 为平面ABCD 内的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A.B.C.D.例5.(2020·辽宁高三三模)已知半径为r 的圆M 与x 轴交于,E F 两点,圆心M 到y 轴的距离为d .若d EF =,并规定当圆M 与x 轴相切时0EF =,则圆心M 的轨迹为()A.直线B.圆C.椭圆D.抛物线例6.(2020·安徽庐阳·合肥一中高三三模)已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为()A.104⎛⎫ ⎪⎝⎭,B.102⎛⎫ ⎪⎝⎭,C.14⎛⎫- ⎪⎝⎭0,D.102,⎛⎫- ⎪⎝⎭例7.(2020·东湖·江西师大附中高三三模)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = ,且1OQ AB ⋅= ,则点P的轨迹方程是()A.()223310,02x y x y +=>>B.()223310,02x y x y -=>>C.()223310,02x y x y -=>>D.()223310,02x y x y +=>>例8.(2016·山西运城·高三三模)已知为平面内两定点,过该平面内动点作直线的垂线,垂足为.若,其中为常数,则动点的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线【精选精练】1.(2020·广东普宁·高三三模)与圆及圆都外切的圆的圆心在()A.一个椭圆上B.双曲线的一支上C.一条抛物线D.一个圆上2.(2020·上海高三三模)在平面直角坐标系内,到点()1,2A 和直线l :30x y +-=距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线3.(2020·全国高考真题)在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆B.椭圆C.抛物线D.直线4.(2020·辽宁沈阳·高三三模)已知椭圆22184x y +=,点A ,B 分别是它的左,右顶点.一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,又当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,则直线AP 与直线BQ 的交点M 的轨迹方程是()A.22184y x -=B.22184x y -=C.22148y x -=D.22148x y -=5.如图,在平面直角坐标系中,()1,0A 、()1,1B 、()0,1C ,映射将平面上的点(),P x y 对应到另一个平面直角坐标系上的点()222,P xy x y '-,则当点沿着折线运动时,在映射的作用下,动点P '的轨迹是()A.B.C.D.6.(2020·四川成都七中高三三模)正方形1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为()A.圆弧B.线段C.椭圆的一部分D.抛物线的一部分7.(2020·天水市第一中学高三三模)动点A 在圆221x y +=上移动时,它与定点()3,0B 连线的中点的轨迹方程是()A.22320x y x +++=B.22320x y x +-+=C.22320x y y +++=D.22320x y y +-+=8.(2020·北京市陈经纶中学高三三模)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(0,1)λλ>≠的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足||2||MA MB =,则M 点的轨迹围成区域的面积为().A.πB.2πC.3πD.4π9.(2020·内蒙古包头·高三三模)已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是()A.圆,但要去掉两个点B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点D.抛物线,但要去掉两个点10.如图所示,已知12,F F 是椭圆()2222:10x y a b a b Γ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A.直线B.圆C.椭圆D.双曲线11.(2020·北京房山·高三三模)如图,在正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在平面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P 的轨迹为()A.两个点B.线段C.圆的一部分D.抛物线的一部分12.(2020·四川内江·高三三模)已知平面内的一个动点P 到直线l :x =433的距离与到定点F0)的距离之比为3,点11,2A ⎛⎫ ⎪⎝⎭,设动点P 的轨迹为曲线C ,过原点O 且斜率为k (k <0)的直线l 与曲线C 交于M 、N 两点,则△MAN 面积的最大值为()C.22D.1。
2023年4月上半月㊀学法指导㊀㊀㊀㊀求动点轨迹方程最简捷的四种方法◉安徽省全椒县城东中学㊀殷宏林㊀㊀摘要:求符合某种条件的动点轨迹方程,实际上就是利用已知的点的坐标之间的运动规律去寻找变量间的关系.求轨迹方程的常规思路,就是想方设法地把题目中的几何问题转化为代数方程问题来解决.关键词:参数法;复数法;交轨法;相关点法㊀㊀求动点的轨迹方程既是高中数学教学大纲要求掌握的主要内容,也是近年来高考考查的高频考点[1].这类题型由于涉及到的知识点多,综合性较强,考查的范围广,分值较高,因此学习和掌握求轨迹方程的方法与技巧,已成为考生在高考中夺取高分的必要条件.轨迹是指点的集合,而方程是实数对的集合.二者看似毫不相干,实则它们之间是可以沟通转化的,求轨迹方程运用的就是这种转化思想.由于动点运动规律所给出的条件不同,因此求动点轨迹方程的方法也就不同[2],但其中最简捷㊁最实用的有以下四种.1参数法当所求动点满足的几何条件不易得出,也看不出明显的相关性时,如果经过仔细观察,发现这个动点的运动常常会受到某个变量(时间㊁角度㊁斜率㊁比值等)的制约,那么我们就可以用这个变量作参数,建立轨迹的参数方程,这就是参数法.图1例1㊀动直线l 与单位圆交于不同的两点A ,B ,当l 总保持平行于直线y =2x 的条件下移动时,求弦A B 中点轨迹的方程.解:由l 平行于直线y =2x ,可设l 的方程为y =2x +b (b 为参数),将其代入单位圆的方程x 2+y 2=1中,整理得5x 2+4b x +b 2-1=0.如图1,因为l 与单位圆有两个交点,所以Δ=16b 2-20b 2+20=20-4b 2>0,则-5<b <5.设弦A B 的中点为P (x ,y ),根据韦达定理可知x =x 1+x 22=-25b ,代入l 的方程中,得y =b5.所以中点P 的轨迹方程为x =-25b ,y =b 5,ìîíïïïï其中-5<b <5.消去参数b ,得x +2y =0(-255<x <255),此即为弦A B 中点轨迹的普通方程,其轨迹为单位圆中的一条线段.思路与方法:从本题的解题思路可以看出以下几点.①利用几何直观即可判断出动点轨迹为过原点且垂直于y =2x 的含于单位圆中的线段;②当动点位置随着直线的平行移动而变化时,常选择截距作为参数较方便;③在求轨迹方程时,只要参数选择得当,常能使问题获得更简捷的解法.2复数法有些问题可以由复数的几何意义将动点和已知点表示成复数式,然后经过复数运算转化为动点的轨迹,这就是复数法.当涉及有向线段绕定点旋转,长度伸缩变化,或可用复数模的形式给出坐标间关系等问题时,运用复数法求解最简捷.图2例2㊀如图2,以抛物线y 2=4x 的焦半径F B 为对角线作正方形F A B C (顶点按逆时针方向顺序排列).求顶点C 的轨迹方程.解:因为抛物线y 2=4x 中焦参数p =2,所以焦点坐标为F (1,0).设动点C (x ,y ),其相关点B (x ᶄ,yᶄ).把x 轴看作实轴,y 轴为虚轴,则在复平面上,有z C =x +y i ,z B =x ᶄ+y ᶄi ,z F =1,所以z F Cң=(x -1)+y i ,z F Bң=(x ᶄ-1)+y ᶄi .由øB F C =π4,F B =2F C ,得z F B ң=z F C ңˑ2c o s (-π4)+i s i n (-π4)éëêêùûúú,即(x ᶄ-1)+y ᶄi=[(x -1)+y i ] 2(22-22i )=[(x -1)+y ]+[y -(x -1)]i .所以x ᶄ-1=x -1+y ,y ᶄ=y -x +1,{即x ᶄ=x +y ,yᶄ=y -x +1.{因为点B 在y 2=4x 上,所以(yᶄ)2=4x ᶄ.故(y -x +1)2=4(x +y ).整理即得动点C 的轨迹方程为14Copyright ©博看网. All Rights Reserved.学法指导2023年4月上半月㊀㊀㊀x 2+y 2-2x y -6x -2y =0.思路与方法:本题通过建立复平面,利用复数加法和乘法的几何意义,求出动点对应的复数表达式,然后通过比较实部㊁虚部求得动点的轨迹方程.3交轨法在求动点轨迹时,有时会遇到求两动曲线交点的轨迹问题.这类问题可以通过解方程组求出含参数的交点坐标,再消去参数得出所求轨迹的方程,这就是交轨法.图3例3㊀在直角坐标系中,矩形O A B C 的边O A =a ,O C =b ,点D 在A O 的延长线上,D O =a ,设M ,N 分别是O C ,B C 上的动点,使O M ʒM C =B N ʒN C ʂ0,求直线DM 和A N 的交点P 的轨迹方程.解:如图3,建立平面直角坐标系,则各点的坐标分别为A (a ,0),C (0,b ),D (-a ,0),B (a ,b ),设P (x ,y ).设O M ʒM C =B N ʒN C =λ(ʂ0).由定比分点公式,得M (0,λb 1+λ),N (a1+λ,b ).根据两点式,可得直线DM ,A N 的方程分别为㊀㊀㊀㊀y =λba (1+λ)(x +a ),①㊀㊀㊀㊀y =-b (1+λ)λa(x -a ).②①ˑ②,得y 2=-b 2a 2(x 2-a2),即x 2a 2+y 2b2=1(0<x <a ,0<y <b ).故点P 的轨迹方程为x 2a 2+y 2b2=1其中0<x <a ,0<b <y .思路与方法:本题中由于动点P 为动直线DM ,A N 的交点,两动直线均有一定点(D ,A )一动点(M ,N ),而两动点又满足O M ʒM C =B N ʒN C 这一比值条件,所以设此比值为参数较为方便.从本题的求解过程我们发现,运用交轨法求解时,可以不用求交点的坐标,只要能消掉参数,得出点P 的坐标间的关系即可.这也充分展示了运用交轨法求轨迹方程的便捷性与实用性.4相关点法在求动点轨迹方程的过程中,有时动点满足的条件不方便用等式列出,但动点是随着另外相关点而运动的.如果相关点所满足的条件能够看出,或可分析出,这时就可以用动点的坐标来表示相关点的坐标,根据相关点所满足的方程就能够求得动点的轨迹方程,这就是相关点法.图4例4㊀已知定点O (0,0)和A (6,0),M 为O A 的中点,以O A为一边作菱形O A B C ,M B 与A C 交于点P ,当菱形变动时,求点P 的轨迹方程.解:如图4,设动点P (x ,y ),其相关点B (x ᶄ,yᶄ).由A (6,0),得M (3,0).易知M P P B =12.所以由x =3+12x ᶄ1+12,y =0+12y ᶄ1+12,ìîíïïïïïïïïïï得x ᶄ=3x -6,y ᶄ=3y .{由A B =O A =6,可得(x ᶄ-6)2+(yᶄ-0)2=6.即(3x -6-6)2+(3y -0)2=6.整理,得(x -4)2+y 2=4.因为点P 不可能在x 轴上,所以点P 的轨迹方程为(x -4)2+y 2=4(y ʂ0).思路与方法:本题分析已知点与动点间的关系时,找出相关点是关键的一步.在图4中,若连接O B ,则可知P 为әA B O 的重心,所以选B 为相关点更方便;当然也可由A C 平分øO A B ,推知|B P ||PM |=2.事实上,求已知曲线关于某定点(或定直线)的中心对称(或轴对称)的曲线方程时,通常选择相关点法较简捷[3].5结论从上述典型实例可以看出,求动点轨迹方程的方法虽然很多,但上述四种方法最简捷,也非常实用,值得学生借鉴.当然,在求轨迹方程的过程中,要注意以上方法的灵活运用.对同一问题,若几种方法都可解决时,应择优选用;对较复杂的问题,有时需将两种或两种以上的方法结合起来使用.参考文献:[1]钟载硕.求动点轨迹方程八法[J ].理科考试研究:高中版,2004(3):10G14.[2]张黎青.求动点轨迹方程的常用方法介绍[J ].新高考(高二语数外),2010(2):33G35.[3]陆钧.浅谈求动点轨迹方程[J ].理科考试研究:高中版,2006(11):12G13.Z 24Copyright ©博看网. All Rights Reserved.。
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 定义法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发 ______ 动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x, y 与该参数t的函数关系x = f (t),y= g (t),进而通过消参化为轨迹的普通方程F (x, y)= 0。
4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x, y),用(x , y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC 的顶点A , B 的坐标分别为(-4 , 0), (4, 0), C 为 动点,且满足5sin B sin A sin C, 求点C 的轨迹。
4【变式】:已知圆(呂+知°4■护=2于的圆心为M ,圆価一4尸斗尸=1的圆心为M ,—动圆与 这两个圆外切,求动圆圆心 P 的轨迹方程。
的比等于2(即储2)'求动点P 的轨迹方程? 三:用参数法求轨迹方程 此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为 普通方程。
一、直接法求轨迹方程本内容主要研究直接法求轨迹方程.根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,将关系式坐标化,从而求得轨迹方程。
例:已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.求曲线C 的方程.归纳整理:当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.再看一个例题,加深印象例:在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F .设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、22N (x ,y ),其中m >0,0,021<>y y .设动点P 满足22PF PB 4-=,求点P 的轨迹.总结:1.用直接法求轨迹方程的步骤:建系,设点,列方程化简,其关键是根据条件建立x ,y 之间的关系F (x ,y )=0.2.求轨迹方程时,最后要注意它的完备性与纯粹性,多余的点要去掉,遗漏的点要补上.练习:1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程.2.已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2x =⋅,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线3.动点P (x ,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即|PA |2|PB |=),求动点P 的轨迹方程?4. 已知三点O (0,0),A (-2,1),B (2,1),曲线c 上任意一点M (x ,y )满足 ||()2MA MB OM OA OB +=⋅++ .(Ⅰ)求曲线C 的方程;(Ⅱ)点Q (x 0,y 0)(-2<x 0<2)是曲线C 上的动点,曲线C 在点Q 处的切线为l ,点P 的坐标是(0,-1),l 与P A ,PB 分别交于点D ,E ,求△QAB 与△PDE 的面积之比.5. 在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(Ⅰ)求曲线C 1的方程;(Ⅱ)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆(C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.答案:(3)3AM y k x x =≠- 由已知有4(3)339y y x x x ∙=≠±+- 化简,整理得点M 的轨迹方程为221(3)94x y x -=≠±此即点P 的轨迹方程,所以P 的轨迹为抛物线,选D.3.解 ∵|PA|= PB |=代入|PA |2|PB |=得222222224)3(4)3(2)3()3(y x y x y x y x +-=++⇒=+-++化简得22(x-5)y 16+=,轨迹是以(5,0)为圆心,4为半径的圆.。
高中数学:由已知条件求动点轨迹方程
一、普通法
例1、求与两定点距离的比为1:2的点的轨迹方程。
分析:设动点为P,由题意,则依照点P在运动中所遵循的条件,可列出等量关系式。
解:设是所求轨迹上一点,依题意得
由两点间距离公式得:
化简得:
二、定义法
例2、点M到点F(4,0)的距离比它到直线的距离小1,求点M的轨迹方程。
分析:点M到点F(4,0)的距离比它到直线的距离小1,意味着点M到点F(4,0)的距离与它到直线的距离相等。
由抛物线标准方程可写出点M的轨迹方程。
解:依题意,点M到点F(4,0)的距离与它到直线的距离相等。
则点M的轨迹是以F(4,0)为焦点、为准线的抛物线。
故所求轨迹方程为。
三、坐标代换法
例3、抛物线的通径(过焦点且垂直于对称轴的弦)与抛物线交于A、B两点,动点C在抛物线上,求△ABC重心P的轨迹方程。
分析:抛物线的焦点为。
设△ABC重心P的坐标为,点C的坐标为。
解:因点是重心,则由分点坐标公式得:
即
由点在抛物线上,得:
将代入并化简,得:
四、参数法
例4、当参数m随意变化时,求抛物线的顶点的轨迹方程。
分析:把所求轨迹上的动点坐标x,y分别用已有的参数m来表示,然后消去参数m,便可得到动点的轨迹方程。
解:抛物线方程可化为
它的顶点坐标为
消去参数m得:
故所求动点的轨迹方程为。