2011年全国各地100份中考数学试卷分类汇编第28章图形的相似与位似
- 格式:doc
- 大小:859.50 KB
- 文档页数:16
2011年全国各地100份中考数学试卷分类汇编第31章 平移、旋转与对称一、选择题1. (2011浙江省舟山,3,3分)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30°(B )45° (C )90° (D )135°【答案】C2. (2011广东广州市,4,3分)将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(0,1) B.(2,-1) C.(4,1) D.(2,3) 【答案】A[来源:]3. (2011广东广州市,8,3分)如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )A .B .C .D .【答案】D4. (2011江苏扬州,8,3分)如图,在Rt △ABC 中,∠ACB=90º,∠A=30º,BC =2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )CDB (A )ABABCD图1ABOCD(第3题)A. 30,2B.60,2C. 60,23D. 60,3 【答案】C 5. (2011山东菏泽,5,3分)如图所示,已知在三角形纸片ABC 中,BC =3, AB =6,∠BCA =90°,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为A .6B .3C . 23D .3【答案】C6. (2011山东泰安,3,3分)下列图形:其中是中心对称图形的个数为( )A.1B.2C.3D.4 【答案】B7. (2011浙江杭州,2,3)正方形纸片折一次,沿折痕剪开,能剪得的图形是( )A .锐角三角形B .钝角三角形C .梯形D .菱形 【答案】C8. (2011 浙江湖州,7,3)下列各图中,经过折叠不能..围成一个立方体的是【答案】D9. (2011 浙江湖州,8,3)如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕A B C D E点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是A.150°B.120°C.90°D.60°[来源:学§科§网]【答案】A10.(2011浙江省,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是()【答案】D11.(2011浙江义乌,6,3分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【答案】B12. (2011四川重庆,3,4分)下列图形中,是中心对称图形的是()A.B.C.D.【答案】B13. (2011浙江省嘉兴,3,4分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD 是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()(A)30°(B)45°(C)90°(D)135°【答案】C14. (2011台湾台北,21)21.坐标平面上有一个线对称图形,)25,3(-A、)211,3(-B两点在此图形上且互为对称点。
第16章 频数与频率1. (2011浙江金华,6,3分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( )A .0.1B .0.15C .0.25D .0.3【答案】D2. (2011四川南充市,4,3分)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( )(A )0.1 (B )0.17 (C )0.33 (D )0.4次数(次)人数(人)3530252015512103O【答案】D3. (2011浙江温州,7,4分)为了支援地震灾区同学,某校开展捐书活动,九 (1)班40名同学积极 参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5. 5~6.5组别的频率是( ) A .0.1 B .0.2 C .0.3 D .0.4组别其他舞蹈绘画书法人数1412108642812119【答案】B4. (2011浙江丽水,6,3分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( ) A .0.1 B .0.15 C .0.25 D .0.3【答案】D5. (2011四川内江,13,5分)“Welcome to Senior High School .”(欢迎进入高中),在这段句子的所有英文字母中,字母O 出现的频率是 . 【答案】156. (2011广东东莞,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每 组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比组别其他舞蹈绘画书法人数1412108642812119是多少?【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体. (2)补全图形,如图所示:(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50, 5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.7. (2011广东广州市,22,12分)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图(图6),根据图中信息回答下列问题: (1)求a 的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少1人的上网时间在8~10小时.图6 【答案】(1)a =50―6―25―3―2=14(2)设上网时间为6~8小时的三个学生为A 1,A 2,A 3,上网时间为8~10个小时的2名学频数 (学生人数)0 2 4 6 8 10 时间/小时6a 2532生为B1,B2,则共有A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2A3B1,A3B2B1B210种可能,其中至少1人上网时间在8~10小时的共有7种可能,故P(至少1人的上网时间在8~10小时)=0.78. (2011广东汕头,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体.(2)补全图形,如图所示:(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50,5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.9. (2011 浙江湖州,21,8) 班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1) .(1) 请根据图1,回答下列问题:①这个班共有名学生,发言次数是5次的男生有人、女生有人;②男、女生发言次数的中位数分别是次和次.(2) 通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数..的扇形统计图如图2所示.求第二天发言次数增加3次的学生人数和全班增加的发言总次数.【答案】解:(1)①40;2;5 ②4;5.(2)发言次数增加3次的学生人数为:40(120%30%40%)4()⨯---=人.全班增加的发言总次数为40%40130%4024316241252⨯⨯+⨯⨯+⨯=++=(次).10. (2011浙江义乌,20,8分)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :50分;B :49-45分;C :44-40分;D :39-30分;E :29-0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 ▲ ,b 的值为 ▲ ,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内? ▲ (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?【答案】解:(1) 60 , 0.15 (图略) (2) C(3)0.8×10440=8352(名)答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.11. (2011山东聊城,19,8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水分数段 人数(人) 频率A 48 0.2B a 0.25C 84 0.35D 36 bE 12 0.05 学业考试体育成绩(分数段)统计图12243648607284人数分数段A B CD E 0 学业考试体育成绩(分数段)统计表量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线图和频数、频率分布表如下:注:x 表示50户居民月总用水量(m 3)(1)表中的a =________;d =___________. (2)这50户居民每月总用水量超过550m3的月份占全年月份的百分率是多少(精确到1%)?(3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?【答案】(1)3,61;(2)这50户居民月总用水量超过550m 3的月份有5个,占全年月份的百分率为(5÷12)×100%=42%(3)(378+641+456+543+550+667+693+600+574+526+423)÷50÷12=109m 3 12. (2011广东省,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每 组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体. (2)补全图形,如图所示:组 别 频 数 频 率350<x≤400 1112 400<x≤450 1 112 450<x≤500 2 16500<x≤550 a b550<x≤600 c d 600<x≤650 1 112650<x≤700 2 16(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50,5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.13.(2011山东临沂,20,6分)某中学为了解学生的课外阅读情况.就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:类别频数(人数)频率文学m 0.42艺术22 0.11科普66 n其他28合计 1下面是自首届以来各届动漫产品成交金额统计图表(部分未完成):(1)表中m=_________,n=__________;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多? 最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人?【解】(1)84,0.33;…………………………………………………………………(2分)(2)喜爱阅读文学类的学生最多(84人),喜爱阅读艺术类的学生最少(22人);…………………………………………………………………(4分)(3)1200×0.33=396(人).………………………………………………………(6分)14. (2011浙江省,20,8分)据媒体报道:某市四月份空气质量优良,高举全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们高举国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1-4月份中30天空气综合污染指数,统计数据如下:表I:空气质量级别表空气污染指数0~50 51~100 101~150 151~200 201~250 251~300 大于300空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)空气综合污染指数30,32,40,42,45,45,77,83,85,87,90,113,127,153,16738,45,48,53,57,64,66,77,92,98,130,184,201,235,243请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1) 填写频率分布表中未完成的空格;分组频数统计频数频率0~50 0.3051~100 12 0.40101~150151~200 3 0.10201~250 3 0.10合计30 30 1.00(2) 写出统计数据中的中位数、众数;(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.【答案】(1)分组频数统计频数频率0~50 9 0.3051~100 12 0.40101~150 3 0.10151~200 3 0.10201~250 3 0.10合计30 30 1.00(2) 中位数是80 、众数是45 。
第28讲图形的相似与位似1.比例线段(1)比例线段:已知四条线段a,b,c,d,若ab=cd或a∶b=c∶d,那么a,b,c,d叫做成比例线段,a,d叫做比例外,b,c叫做比例内项;若有ab=bc,则b叫做a,c的比例中项.(2)比例的基本性质及定理①ab=cd⇒ad=bc;②ab=cd⇒a±bb=c±dd;③ab=cd=…=mn(b+d+…+n≠0)⇒a+c+…+mb+d+…+n=ab.4.相似三角形的性质及判定(1)相似三角形的性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.(2)相似三角形的判定①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似;②两角对应相等,两三角形相似;③两边对应成比例且夹角相等,两三角形相似;④三边对应成比例,两三角形相似;⑤两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似;⑥直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.5.射影定理如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,则有下列结论.(1)AC2=AD·AB;(2)BC2=BD·AB;(3)CD2=AD·BD;(4)AC2∶BC2=AD∶BD;(5)AB·CD=AC·BC.6.相似三角形的实际应用(1)运用三角形相似的判定条件和性质解决实际问题的方法步骤: ①将实际问题所求线段长放在三角形中; ②根据已知条件找出一对可能相似的三角形; ③证明所找两三角形相似;④根据相似三角形的性质,表示出相应的量;并求解.(2)运用相似三角形的有关概念和性质解决现实生活中的实际问题.如利用光的反射定律求物体的高度,利用影子计算建筑物的高度.同一时刻,物高与影长成正比,即身高影长=建筑物的高度建筑物的影长.7.相似多边形的性质(1)相似多边形对应角相等,对应边成比例.(2)相似多边形周长之比等于相似比,面积之比等于相似比的平方. 8.图形的位似(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.(3)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点的坐标比等于k 或-k.(4)利用位似变换将一个图形放大或缩小,其步骤为:①确定位似中心;②确定原图形中各顶点关于位似中心的对应点;③依次连接各对应点描出新图形考点1: 相似三角形的性质【例题1】(2019湖南常德3分)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( )A.20 B.22 C.24 D.26【答案】D利用△AFH∽△ADE得到,所以S△AFH=9x,S△ADE=16x,则16x﹣9x=7,解得x=1,从而得到S△ADE=16,然后计算两个三角形的面积差得到四边形DBCE的面积.【解答】解:如图,根据题意得△AFH∽△ADE,设S△AFH=9x,则S△ADE=16x,∴16x﹣9x=7,解得x=1,∴S△ADE=16,∴四边形DBCE的面积=42﹣16=26.故选:D.归纳:1.在三角形问题中计算线段的长度时,若题中已知两角对应相等或给出的边之间存在比例关系,则考虑证明三角形相似,通过相似三角形对应边成比例列关于所求边的比例式求解.2.判定三角形相似的五种基本思路:(1)若已知平行线,可采用相似三角形的基本定理;(2)若已知一对等角,可再找一对等角或再找该角的两边对应成比例;(3)若已知两边对应成比例,可找夹角相等;(4)若已知一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;(5)若已知等腰三角形,可找顶角相等,或找一对底角相等,或找底和腰对应成比例.考点2:相似三角形的判定【例题2】在正方形ABCD中,AB=4,点P,Q分别在直线CB与射线DC上(点P不与点C,点B重合),且保持∠APQ=90°,CQ=1,求线段BP的长.解:分三种情况:设BP=x.①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°.∴∠BAP+∠APB=90°.∵∠APQ=90°,∴∠APB+∠CPQ=90°.∴∠BAP=∠CPQ,∴△ABP∽△PCQ.∴ABBP=PCCQ,∴4x=4-x1,∴x1=x2=2.∴BP=2;②当P在CB的延长线上时,如图2,同理,得BP=22-2;③当P在BC的延长线上时,如图3,同理,得BP=2+2 2. 归纳:基本图形(1)斜边高图形有以下基本结论:①∠BAD=∠C,∠B=∠DAC;②△ADB∽△CDA∽△CAB.(2)一线三等角有以下基本结论:①∠B=∠C,∠BDE=∠DFC;②△BDE∽△CFD.特殊地:若点D为BC中点,则有△BDE∽△CFD∽△DFE.考点3:相似三角形的综合应用【例题3】(2017·河北模拟)修建某高速公路,需要通过一座山,指挥部决定从E,D两点开挖一个涵洞.工程师从地面选取三个点A,B,C,且A,B,D三点在一条直线上,A,C,E也在同一条直线上,若已知AB=27米,AD=500米,AC=15米,AE=900米,且测得BC=22.5米.(1)求DE的长;(2)现有甲、乙两个工程队都具备打通能力,且质量相当,指挥部派出相关人员分别到这两个工程队了解情况,获得如下信息:信息一:甲工程队打通这个涵洞比乙工程队打通这个涵洞多用25天;信息二:乙工程队每天开挖的米数是甲工程队每天开挖的米数的1.5倍;信息三:甲工程队每天需要收费3 500元,乙工程队每天需要收费4 000元.若仅从费用角度考虑问题,试判断选用甲、乙哪个工程队比较合算.【解析】:(1)连接DE.∵AB=27米,AD=500米,AC=15米,AE=900米,∴ABAE=ACAD=3100.又∵∠A=∠A,∴△ABC∽△AED.∴BCDE=22.5DE=3100,即DE=750米.(2)设甲工程队每天开挖涵洞x 米,则乙工程队每天开挖涵洞1.5x 米,依据题意,得 750x -7501.5x =25,解得x =10. 经检验,x =10是原方程的解. 则1.5x =15.∴甲工程队打通这个涵洞的时间为75010=75(天),甲工程队打通这个涵洞所需的费用为 75×3 500=262 500(元); 乙工程队打通这个涵洞的时间为 7501.5x =75015=50(天), 乙工程队打通这个涵洞所需的费用为 50×4 000=200 000. ∵200 000<262 500, ∴选用乙工程队较合算.一、选择题:1. (2018•玉林)两三角形的相似比是2:3,则其面积之比是( ) A .:B .2:3C .4:9D .8:27【答案】C【解答】解:∵两三角形的相似比是2:3, ∴其面积之比是4:9, 故选:C .2. (2018•临沂)如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,测得AB=1.6m .BC=12.4m .则建筑物CD 的高是( )A .9.3mB .10.5mC .12.4mD .14m【答案】B【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.3. (2019,四川巴中,4分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:9【答案】D【解答】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.4. (2019▪贵州毕节▪3分)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm2【答案】A【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴EFBC=AFAC=13,∴BC=6x,在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,解得,x=25,∴AC=65,BC=125,∴剩余部分的面积=×125×65﹣45×45=100(cm2),故选:A.5. (2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【答案】C【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.二、填空题:6.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B (1,0),则点C的坐标为.【答案】(1,-1)【解答】:连接BC,∵△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,且B(1,0),即OB=1,∴OD=2,即B为OD中点,∵OC=DC,∴CB⊥OD,在Rt△OCD中,CB为斜边上的中线,∴CB=OB=BD=1,则C坐标为(1,-1),故答案为:(1,-1)7. (2019•山东省滨州市•5分)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A的对应点C的坐标是(﹣1,2)或(1,﹣2).【答案】(﹣1,2)或(1,﹣2)【解答】解:以原点O为位似中心,把这个三角形缩小为原来的,点A的坐标为(﹣2,4),∴点C的坐标为(﹣2×,4×)或(2×,﹣4×),即(﹣1,2)或(1,﹣2),故答案为:(﹣1,2)或(1,﹣2).8. (2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,则AE的长为.【答案】4【解答】解:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD,∵BC=4,∴CD=4,∵AB∥CD,∴△ABE∽△CDE,∴=,∴=,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.9. (2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD 为直径的圆交AC于点E.若DE=3,则AD的长为.【答案】2,【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,三、解答题:10. (2018·江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.【解析】:∵BD为∠ABC的平分线,∴∠ABD=∠CBD.∵AB∥CD,∴∠D=∠ABD.∴∠D=∠CBD.∴BC=CD.∵BC=4,∴CD=4.∵AB∥CD,∴△ABE∽△CDE.∴ABCD=AECE.∴84=AECE.∴AE=2CE.∵AC=AE+CE=6,∴AE=4.11. (2019湖北荆门)(10分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【分析】设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,根据GF∥AC得到△MAC∽△MFG,利用相似三角形的对应边的比相等列式计算即可.【解答】解:设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,∵GF∥AC,∴△MAC∽△MFG,∴,,即:,∴,∴OE=32,答:楼的高度OE为32米.12. (2018·福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【解析】:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10.∴∠ABD=45°.∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF.∴∠BDF=∠ABD=45°.(2)由平移的性质,得AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°. ∵∠DAB=90°,∴∠ADE=90°.∵∠ACB=90°,∴∠ADE=∠ACB.∴△ADE∽△ACB.∴ADAC=AEAB.∵AC=8,AB=AD=10,∴AE=12.5,由平移的性质,得CG=AE=12.5.13.△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图1,当射线DN经过点A时,DM交边AC于点E,不添加辅助线,写出图中所有与△ADE相似的三角形;(2)如图2,将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于点E,F(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论;(3)在图2中,若AB=AC=10,BC=12,当S△DEF=14S△ABC时,求线段EF的长.【点拨】(1)由题意得AD⊥BD,DE⊥AC,可考虑从两角对应相等的两个三角形相似来探究;(2)依据三角形内角和定理及平角定义,结合等式的性质,得∠BFD=∠CDE,又由∠B=∠C,可得△BDF∽△CED;由相似三角形的性质得BDCE=DFED,进而有CDCE=DFED,从而△CED∽△DEF;(3)首先利用△DEF的面积等于△ABC 的面积的14,求出点D 到AB 的距离,进而利用S △DEF 的值求出EF 即可.【解答】解:(1)图1中与△ADE 相似的有△ABD ,△ACD ,△DCE. (2)△BDF ∽△CED ∽△DEF.证明:∵∠B +∠BDF +∠BFD =180°,∠EDF +∠BDF +∠CDE =180°, 又∵∠EDF =∠B ,∴∠BFD =∠CDE.由AB =AC ,得∠B =∠C ,∴△BDF ∽△CED.∴BD CE =DF ED .∵BD =CD ,∴CD CE =DFED.又∵∠C =∠EDF ,∴△BDF ∽△CED ∽△DEF.(3)连接AD ,过点D 作DG ⊥EF ,DH ⊥BF ,垂足分别为G ,H.∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,BD =12BC =6.在Rt △ABD 中,AD 2=AB 2-BD 2,∴AD =8. ∴S △ABC =12BC·AD =48.S △DEF =14S △ABC =12.又∵12AD·BD =12AB·DH ,∴DH =4.8.∵△BDF ∽△DEF ,∴∠DFB =∠EFD. ∵DG ⊥EF ,DH ⊥BF ,∴DH =DG =4.8. ∵S △DEF =12EF·DG =12,∴EF =5.14. (2019•湖南常德•10分)在等腰三角形△ABC 中,AB =AC ,作CM ⊥AB 交AB 于点M ,BN ⊥AC 交AC 于点N .(1)在图1中,求证:△BMC ≌△CNB ;(2)在图2中的线段CB 上取一动点P ,过P 作PE ∥AB 交CM 于点E ,作PF ∥AC 交BN 于点F ,求证:PE+PF =BM ;(3)在图3中动点P 在线段CB 的延长线上,类似(2)过P 作PE ∥AB 交CM 的延长线于点E ,作PF ∥AC 交NB 的延长线于点F ,求证:AM•PF+OM•BN =AM•PE .【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,利用AAS定理证明;(2)根据全等三角形的性质得到BM=NC,证明△CEP∽△CMB、△BFP∽△BNC,根据相似三角形的性质列出比例式,证明结论;(3)根据△BMC≌△CNB,得到MC=BN,证明△AMC∽△OMB,得到=,根据比例的性质证明即可.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵CM⊥AB,BN⊥AC,∴∠BMC=∠CNB=90°,在△BMC和△CNB中,,∴△BMC≌△CNB(AAS);(2)∵△BMC≌△CNB,∴BM=NC,∵PE∥AB,∴△CEP∽△CMB,∴,∵PF∥AC,∴△BFP∽△BNC,∴,∴,∴PE+PF=BM;(3)同(2)的方法得到,PE﹣PF=BM,∵△BMC≌△CNB,∴MC=BN,∵∠ANB=90°,∴∠MAC+∠ABN=90°,∵∠OMB=90°,∴∠MOB+∠ABN=90°,∴∠MAC=∠MOB,又∠AMC=∠OMB=90°,∴△AMC∽△OMB,∴∴AM•MB=OM•MC,∴AM×(PE﹣PF)=OM•BN,∴AM•PF+OM•BN=AM•PE.。
2011全国各省市中考数学真题分类汇编—猜想、规律与探索(附答案)一、选择题1.(2011赤峰市中考)8.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是( )(A )2n(B )4n(C )12n + (D )22n +2.(2011山东烟台市中考)8、如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是( )3.(2011舟山市中考)9.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ▲ ) (A )2010 (B )2011(C )2012(D )20134.(2011湖北武汉市中考) 9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边图1图2图3……(第3题)… …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫长为8的正方形内部的整点的个数为( ) A.64. B.49. C.36. D.25.5.(2011潜江市 天门市 仙桃市中考)9.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( )A .(0,64)B .(0,128)C .(0,256) D .(0,512)6.(2011江苏常州市中考)7.在平面直角坐标系中,正方形ABCD 的顶点分别为A ()1,1、B ()1,1-、C ()1,1--、D ()1,1-,y 轴上有一点P ()2,0。
2011全国各地中考数学100套真题分类汇编第19章图形的展开与叠折1. (2011山东德州16,4分)长为1,宽为a 的矩形纸片(121<<a ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为 正方形,则操作终止.当n =3时,a 的值为_____________.【答案】35或34[来源:21世纪教育网]2. (2011浙江绍兴,15,5分) 取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,那剪下的①这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为.【答案】3:2[来源:21世纪教育网]3. (2011甘肃兰州,20,4分)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
已知第一个矩形的面积为1,则第n 个矩形的面积为 。
【答案】114n -[来源:21世纪教育网]21世纪教育网4. (2011四川绵阳17,4)如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长……第一次操作第二次操作为_____cm.【答案】25图形变换(图形的平移、旋转与轴对称)一、选择题21世纪教育网1.(2011年江苏盐都中考模拟)图所示的汽车标志图案中,能用平移变换来分析形成过程的 图案是( )A .B .C .D .[来源:21世纪教育网] 答案 D2.(2011年北京四中中考模拟19)图3,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A ’D 重合,A ’E 与AE 重合,若∠A =300, 则∠1+∠2=( ) A 、500B 、600C 、450D 、以上都不对答案 B3.(2011年浙江省杭州市中考数学模拟22)如图是万花筒的一个图案,图中所有小三角形均是全等三角形,其中把菱形ABCD 以A 为中心旋转多少度后可得图中另一阴影的菱形( )A 、顺时针旋转60°B 、 顺时针旋转120°C 、逆时针旋转60°D 、 逆时针旋转120° 答案:D4. (2011年兴华公学九下第一次月考)如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ,则图中阴影部分的面积是(第3题)A .6πB .5πC .4πD .3π 答案:A21世纪教育网21世纪教育网5. (2011年黄冈市浠水县中考调研试题)下列图案由黑、白两种颜色的正方形组成,其中属于轴对称图形的是( )答案:B6.(2011年青岛二中)视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转C .对称D .位似答案:D7、(北京四中模拟)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A 、角 B 、平行四边形 C 、等边三角形 D 、矩形 答案:D8、(2011浙江杭州模拟14)如图折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处. 已知AB=38, ∠B=30°, 则DE 的长是( ).A. 6B. 4C. 34D. 23[来源:21世纪教育网]答案:B21世纪教育网9. (2011武汉调考模拟)下列图形中,绕着它的中心旋转60°后,能够与原图形完全重合.,则这个图形是( ) A .等边三角形 B .正方形 C .圆 D .菱形 答案:C10、(2011年浙江杭州二模)下列图形中,既是轴对称图形,又是中心对称图形的是( )21世纪教育网21世纪教育网标准对数视力表 0.1 4.0 0.124.10.15 4.2 (第6题图)yAC O xBMNPQ (第11题图)11 SR Q P ②①A. B. C. D.答案:C11、(2011年浙江杭州七模)如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -,(3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形是中心对称图形的个数有( )A .1个B .2个C .3个D .4个答案:CB 组1.(2011 天一实验学校 二模)下列交通标志中既是中心对称图形,又是轴对称图形的是 ( )答案:A2. (2011浙江慈吉 模拟) 如图所示网格中, 已知②号三角形是由①号三角形经旋转变化得到的, 其旋转中心是下列各点中的( )A. PB. QC. RD. S 答案:C[来源:21世纪教育网]3.(2011年重庆江津区七校联考一模)下列美丽的图案,既是轴对称图形又是中心对称图形的个数是.( )A .1个B .2个C .3个D .4个 答案:C4.(2011年安徽省巢湖市七中模拟)下列美丽图案,既是轴对称图形又是中心对称图形的个数是()A. B.C . D. 第2题图A.1个B.2个C.3个D.4个答案:C5.(2011北京四中二模)下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )(A)1个(B)2个(C)3个(D)4个答案:C6.(2011浙江杭州育才初中模拟)一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°)。
备战2015中考系列:数学2年中考1年模拟第五篇图形的变化专题29 相似与位似☞解读考点知识点名师点晴比和比例1.比例知道什么是比例式、第四比例项、比例中项。
2.黄金分割知道黄金分割的意义和生活中的应用。
3.比例的基本性质及定理能熟练运用比例的基本性质进行相关的计算。
4.平行线分线段成比例定理会直接运用定理进行计算和证明。
相似形 5.相似三角形知道什么是相似三角形。
6.相似三角形的判定和性质能运用相似三角形的性质和判定方法证明简单问题。
7.相似多边形的性质了解相似多边形的性质。
8.位似图形知道位似是相似的特殊情况。
能利用位似放大和缩小一个图形。
☞2年中考[2014年题组]1.(2014年初中毕业升学考试(福建南平卷))如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2 B.2:3 C.1:3 D.1:42.(2014年初中毕业升学考试(四川达州卷))如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA•OC=OB•OD;③OC•G=OD•F1;④F=F1.其中正确的说法有()A.1个 B.2个 C.3个 D.4个3.(2014年初中毕业升学考试(四川雅安卷))在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE 的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为()A.3:4 B.4:3 C.7:9 D.9:74.(2014年初中毕业升学考试(浙江宁波卷))如图,梯形ABCD中AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC 与△DCA 的面积比为( ) A. 2:3 B. 2:5 C. 4:9 D. 3:25.(2014年初中毕业升学考试(湖北宜昌卷))如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为12m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是( )A. AB=24mB. MN ∥ABC. △CMN ∽△CABD. CM :MA=1:26.(2014年初中毕业升学考试(广东深圳卷))如图,双曲线经过Rt △BOC 斜边上的点A ,且满足,与BC 交于点D ,S △BOD =21,求k= .7.(2014年初中毕业升学考试(浙江绍兴卷))把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是 .8.(2014年初中毕业升学考试(浙江湖州卷))如图,已知在Rt △OAC 中,O 为坐标原点,直角顶点C 在k y x=AO 2AB 3=22x 轴的正半轴上,反比例函数(k≠0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD .若△OCD ∽△ACO ,则直线OA 的解析式为 .9.(2014年初中毕业升学考试(黑龙江哈尔滨卷)如图,在△ABC 中,4AB=5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG=FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则的值为 .FGH D C AB E10.(2014年初中毕业升学考试(广东卷))如图,在△ABC 中,AB=AC ,AD ⊥AB 点D ,BC=10cm ,AD=8cm ,点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t 秒(t >0)。
2011 年全国各地 100 份中考数学试卷分类汇编第 21章三角形的边与角一、选择题1. (2011福建福州,10,4 分)如图3, 在长方形网格中, 每个小长方形的长为2,宽为1, A 、B 两点在网格格点上,若点则知足条件的点C 个数是(C 也在网格格点上), 以A、B、C 为极点的三角形面积为 2 ,A.2 B.3 C.4 D. 5BA图 3【答案】 C2. (2011山东滨州,5,3 分)若某三角形的两边长分别为 3 和4,则以下长度的线段能作为其第三边的是( )A. 1B. 5C. 7D.9【答案】 B3.( 2011 山东菏泽, 3,3 分)一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠等于A. 30°B.45°C. 60°D. 75°45°30°【答案】 D4. (2011山东济宁,形是()A.直角三角形C.钝角三角形3,3 分)若一个三角形三个内角度数的比为B.锐角三角形D.等边三角形2︰ 7︰ 4,那么这个三角【答案】 B5.(2011 浙江义乌, 2,3 分)如图, DE 是△ ABC 的中位线,若 BC 的长是 3cm,则 DE 的长是()AD EB CA. 2cm B. 1.5cm C. 1.2cm D.1cm【答案】 B6. ( 2011 台湾台北,23)如图 (八 ),三边均不等长的ABC ,若在此三角形内找一点O,使得OAB 、OBC 、OCA 的面积均相等。
判断以下作法何者正确?A.作中线AD ,再取AD 的中点OB.分别作中线AD 、BE ,再取此两中线的交点OC.分别作AB 、BC 的中垂线,再取此两中垂线的交点OD.分别作 A 、 B 的角均分线,再取此两角均分线的交点O【答案】 B7.( 2011 台湾全区, 20)图 (五 )为一张方格纸,纸上有一灰色三角形,其极点均位于某两网格线的交点上,若灰色三角形面积为21平方公分,则此方格纸的面积为多少平方公分?4A .11B. 12C. 13D. 14【答案】B8. (2011 江苏连云港,5,3 分)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,怎样求这个三角形的面积?小明提示说:“可经过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的选项是()【答案】 C9.( 2011 江苏苏州, 2,3 分)△ ABC的内角和为A.180 °B.360 °C.540 °D.720 °【答案】 A10.(2011 四川内江, 2,3 分)如图,把一块直角三角板的直角极点放在直尺的一边上,如果∠ 1=32°,那么∠ 2 的度数是A. 32°B. 58°C. 68°D. 60°21【答案】 C11.(2011 湖南怀化, 2, 3 分)如图 1 所示,∠ A、∠ 1、∠ 2 的大小关系是A. ∠ A>∠ 1>∠ 2 C. ∠ A>∠ 2>∠1B. ∠ 2>∠ 1>∠ A D. ∠ 2>∠A>∠ 1【答案】 B12.( 2011 江苏南通, 4, 3 分)以下长度的三条线段,不可以构成三角形的是A. 3,8,4B. 4, 9,6C. 15, 20, 8 D . 9, 15, 8【答案】 A13. (2011 四川绵阳5, 3)将一副惯例的三角尺按如图方式搁置,则图中∠AOB的度数为BOAA.75°B. 95°C. 105 °D. 120 °【答案】 C14.(2011 四川绵阳 6, 3)王师傅用 4 根木条钉成一个四边形木架,如图 .要使这个木架不变形,他起码要再钉上几根木条 ?A.0 根 B.1 根 C.2 根 D.3 根【答案】 B15.( 2011 广东茂名, 2, 3 分)如图,在△ ABC 中, D、E分别是 AB、 AC的中点,若 DE=5,则 BC=A.6 B. 8 C. 10 D. 12【答案】 C16. (2011山东东营,5,3分)一副三角板,以下图叠放在一同,则图中∠的度数是()A.75B.60C.65D.55【答案】 A17. (2011河北,10,3分)已知三角形三边长分别为2,x,13,若x 为正整数,则这样的三角形个数为()A. 2 B.3 C. 5 D. 13【答案】 B18.( 2010 湖北孝感, 8,3 分)如图,在△ ABC中, BD、 CE是△ ABC的中线, BD与 CE订交于点O,点F、G分别是BO、CO的中点,连接AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是( )A.14cmB.18cmC.24cmD.28cm【答案】 A19.20.21.22.23.24.25.二、填空题1.(2011浙江金华,12,4分)已知三角形的两边长为4,8,则第三边的长度能够是(写出一个即可) .【答案】答案不独一,如2. (2011浙江省舟山,5、6 等14, 4 分)如图,在△ABC 中, AB=AC, A 40 ,则△ ABC的外角∠ BCD=度.BA C D(第 14 题)【答案】 1103.(2011 湖北鄂州, 8, 3 分)如图,△ ABC 的外角∠ ACD 的均分线 CP 的内角∠ ABC 均分线BP 交于点 P,若∠ BPC=40°,则∠ CAP=_______________.A PB C D第 8 题图【答案】 50°4. (2011宁波市,17,3分)如图,在ABC 中, AB= AC, D、E 是分∠ BAC,∠ EBC=∠ E= 60°,若 BE= 6cm, DE= 2cm,则 BC=ABC 内两点,cmAD 平【答案】 85. (2011浙江丽水,12,4分)已知三角形的两边长为4,8,则第三边的长度能够是(写出一个即可 ).【答案】答案不唯一,在4<x<12 之间的数都可6.(2011 江西, 13,3 分)如图,在△ ABC中,点 P 是△ ABC的心里,则∠ PBC+∠ PCA+∠ PAB =度 .第 13题图【答案】 907.( 2011 福建泉州, 15,4 分)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是 AB, CD 的中点 AD BC,PEF 18 ,则PFE 的度数是.FDCPBA E(第 15 题)【答案】 188.( 2011 四川成都, 13,4 分)如图,在△ ABC中,D、E 分别是边 AC、BC 的中点,若 DE=4,则AB= .CD EA B【答案】 8.9.(2011 四川内江,加试 2,6 分)如图,在△ ABC中,点 D、 E 分别是边 AB、 AC的中点DF 过 EC的中点 G 并与 BC的延伸线交于点F,BE 与 DF 交于点 O。
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第二十八章 图形的相似与位似A28.1 图形的相似 (2012北京,15,5)已知023a b =≠,求代数式()225224a b a b a b-⋅--的值. 【解析】【答案】设a =2k ,b =3k ,原式=525210641(2)(2)(2)22682a b a b k k k a b a b a b a b k k k ----====+-++【点评】本题考查了见比设份的解题方法,以及分式中的因式分解,约分等。
28.2 线段的比、黄金分割与比例的性质(2011山东省潍坊市,题号8,分值3)已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( )A .215- B .215+ C . 3 D .2 考点:多边形的相似、一元二次方程的解法解答:根据已知得四边形ABEF 为正方形。
因为四边形EFDC 与矩形ABCD 相似 所以DF:EF=AB:BC 即 (AD-1):1=1:AD 整理得:012=--AD AD ,解得251±=AD 由于AD 为正,得到AD=215+,本题正确答案是B. 点评:本题综合考察了一元二次方程和多边形的相似,综合性强。
28.3 相似三角形的判定(2012山东省聊城,11,3分)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,下列结论不正确的是( )A.BC=2DEB. △ADE ∽△ABCC.ACABAE AD = D. ADE ABC S S ∆∆=3 解析:根据三角形中位线定义与性质可知,BC=2DE ;因DE//BC ,所以△ADE ∽△ABC ,AD :AB=AE :AC ,即AD :AE=AB :AC ,AD E ABC S S ∆∆=4.所以选项D 错误.答案:D 点评:三角形的中位线平行且等于第三边的一半.有三角形中位线,可以得出线段倍分关系、比例关系、三角形相似、三角形面积之间关系等.(2012四川省资阳市,10,3分)如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC=MABN 的面积是A.B..D.【解析】由MC =6,NC=∠C =90°得S △CMN=,再由翻折前后△CMN ≌△DMN 得对应高相等;由MN ∥AB 得△CMN ∽△CAB 且相似比为1:2,故两者的面积比为1:4,从而得S △CMN :S 四边形MABN =1:3,故选C. 【答案】C【点评】本题综合考查了直角三角形的面积算法、翻折的性质、由平行得相似的三角形相似的判定方法、相似图形的面积比等于相似比的平方等一些类知识点.知识点丰富;考查了学生综合运用知识来解决问题的能力.难度较大.(2012湖北随州,14,4分)如图,点D,E 分别在AB 、AC 上,且∠ABC=∠AED 。
全国2011年中考数学试题分类解析汇编专题位 似一、选择题1.(广西贵港3分)如图所示,在梯形ABCD 中,AB ∥CD ,E 是BC 的中点,EF ⊥AD 于点F ,AD =4,EF =5,则梯形ABCD 的面积是A .40B .30C .20D .10 【答案】C 。
【考点】位似变换和性质。
【分析】根据位似的概念,如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。
把一个图形变换成与之位似的图形是位似变换。
如图,作四边形ECDF 的位似图形EBGH ,位似中心为点E ,位似比为1:1。
这样梯形ABCD 的面积就等于梯形AFHG 的面 积,且HG =FD ,HG +FA =AD =4,HF =2 EF =10。
因此,它们的面积就等于1410=202⨯⨯。
故选C 。
2.(山东聊城3分)如图,矩形OABC 的顶点O 是坐标原点,边OA在x 轴上,边OC 在y 轴上.若矩形OA 1B 1C 1与矩形OABC 关于点O位似,且矩形OA 1B 1C 1的面积等于矩形OABC 面积的 1 4,则点B 1 的坐标是A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)【答案】D 。
【考点】位似的性质。
【分析】根据位似的性质,位似图形的面积比是对应边比的平方,而矩形OA 1B 1C 1的面积等于矩形OABC 面积的 1 4,故它们的边长比是 1:2。
根据位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比,故有两点满足题意,如图所示。
故选D 。
投影 3.(山东东营3分)如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(1 0-,).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A’B’C ,并把△ABC 的的边长放大到原来的2倍.设点B 的对应点B’的横坐标是a ,则点B 的横坐标是A .12a -B .()112a -+ C .()112a -- D .()132a -+ 【答案】D 。
第28讲图形的相似与位似1.比例线段(1)比例线段:已知四条线段a,b,c,d,若ab=cd或a∶b=c∶d,那么a,b,c,d叫做成比例线段,a,d叫做比例外,b,c叫做比例内项;若有ab=bc,则b叫做a,c的比例中项.(2)比例的基本性质及定理①ab=cd⇒ad=bc;②ab=cd⇒a±bb=c±dd;③ab=cd=…=mn(b+d+…+n≠0)⇒a+c+…+mb+d+…+n=ab.4.相似三角形的性质及判定(1)相似三角形的性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.(2)相似三角形的判定①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似;②两角对应相等,两三角形相似;③两边对应成比例且夹角相等,两三角形相似;④三边对应成比例,两三角形相似;⑤两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似;⑥直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.5.射影定理如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,则有下列结论.(1)AC2=AD·AB;(2)BC2=BD·AB;(3)CD2=AD·BD;(4)AC2∶BC2=AD∶BD;(5)AB·CD=AC·BC.6.相似三角形的实际应用(1)运用三角形相似的判定条件和性质解决实际问题的方法步骤: ①将实际问题所求线段长放在三角形中; ②根据已知条件找出一对可能相似的三角形; ③证明所找两三角形相似;④根据相似三角形的性质,表示出相应的量;并求解.(2)运用相似三角形的有关概念和性质解决现实生活中的实际问题.如利用光的反射定律求物体的高度,利用影子计算建筑物的高度.同一时刻,物高与影长成正比,即身高影长=建筑物的高度建筑物的影长.7.相似多边形的性质(1)相似多边形对应角相等,对应边成比例.(2)相似多边形周长之比等于相似比,面积之比等于相似比的平方. 8.图形的位似(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.(3)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点的坐标比等于k 或-k.(4)利用位似变换将一个图形放大或缩小,其步骤为:①确定位似中心;②确定原图形中各顶点关于位似中心的对应点;③依次连接各对应点描出新图形考点1: 相似三角形的性质【例题1】(2019湖南常德3分)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .26考点2:相似三角形的判定【例题2】在正方形ABCD中,AB=4,点P,Q分别在直线CB与射线DC上(点P不与点C,点B重合),且保持∠APQ=90°,CQ=1,求线段BP的长.考点3:相似三角形的综合应用【例题3】(2017·河北模拟)修建某高速公路,需要通过一座山,指挥部决定从E,D两点开挖一个涵洞.工程师从地面选取三个点A,B,C,且A,B,D三点在一条直线上,A,C,E也在同一条直线上,若已知AB=27米,AD=500米,AC=15米,AE=900米,且测得BC=22.5米.(1)求DE的长;(2)现有甲、乙两个工程队都具备打通能力,且质量相当,指挥部派出相关人员分别到这两个工程队了解情况,获得如下信息:信息一:甲工程队打通这个涵洞比乙工程队打通这个涵洞多用25天;信息二:乙工程队每天开挖的米数是甲工程队每天开挖的米数的1.5倍;信息三:甲工程队每天需要收费3 500元,乙工程队每天需要收费4 000元.若仅从费用角度考虑问题,试判断选用甲、乙哪个工程队比较合算.一、选择题:1. (2018•玉林)两三角形的相似比是2:3,则其面积之比是()A.:B.2:3 C.4:9 D.8:272. (2018•临沂)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m3. (2019,四川巴中,4分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:94. (2019▪贵州毕节▪3分)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm25. (2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二、填空题:6.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B (1,0),则点C的坐标为.7. (2019•山东省滨州市•5分)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A的对应点C的坐标是.8. (2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,则AE的长为.9. (2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD 为直径的圆交AC于点E.若DE=3,则AD的长为.三、解答题:10. (2018·江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.11. (2019湖北荆门)(10分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.12. (2018·福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.13.△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图1,当射线DN经过点A时,DM交边AC于点E,不添加辅助线,写出图中所有与△ADE相似的三角形;(2)如图2,将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于点E,F(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论;(3)在图2中,若AB=AC=10,BC=12,当S△DEF=14S△ABC时,求线段EF的长.14. (2019•湖南常德•10分)在等腰三角形△ABC中,AB=AC,作CM⊥AB交AB于点M,BN⊥AC交AC 于点N.(1)在图1中,求证:△BMC≌△CNB;(2)在图2中的线段CB上取一动点P,过P作PE∥AB交CM于点E,作PF∥AC交BN于点F,求证:PE+PF =BM;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作PE∥AB交CM的延长线于点E,作PF∥AC交NB的延长线于点F,求证:AM•PF+OM•BN=AM•PE.。
2011年全国各地100份中考数学试卷分类汇编第28章图形的相似与位似一、选择题1. (2011浙江金华,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600mB .500mC .400mD .300m北环城路曙 光 路西安路南京路书店八一街400m 400m 300m【答案】B 2.(2011安徽,9,4分)如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若P 到BD 的距离为 32,则点P 的个数为( )[来源:学§科§网] A .1B .2C .3D .4【答案】B3. (2011广东东莞,31,3分)将左下图中的箭头缩小到原来的12,得到的图形是( )【答案】A4. (2011浙江省,6,3分)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B 重合,折痕为DE ,则S △BCE :S △BDE 等于( )A . 2:5B .14:25C .16:25D . 4:21[来源:Z*xx*]【答案】B5. (2011浙江台州,5,4分)若两个相似三角形的面积之比为1:4,则它们的周长之比为( )A . 1:2B . 1:4C . 1:5D . 1:16【答案】A6. (2011浙江省嘉兴,7,4分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33 (C )34 (D )36【答案】B7. (2011浙江丽水,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( ) A .600m B .500m C .400m D .300m北环城路曙 光 路西安路南京路书店八一街400m 400m 300m【答案】B8. (2011台湾台北,26)图(十)为一ABC ∆,其中D 、E 两点分别在AB 、AC 上,且AD=31,DB =29,AE =30,EC =32。
若︒∠50=A ,则图中1∠、2∠、3∠、4∠的大小关系,下列何者正确?(第7题)AB CDEA .1∠>3∠B .2∠=4∠C .1∠>4∠D .2∠=3∠【答案】D9. (2011甘肃兰州,13,4分)现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形。
其中真命题的个数是 A .1 B .2 C .3 D .4 【答案】A10.(2011山东聊城,11,3分)如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)【答案】D11. (2011广东汕头,31,3分)将左下图中的箭头缩小到原来的12,得到的图形是( )【答案】A12. (2011四川广安,7,3分)下列命题中,正确的是( ) A .过一点作已知直线的平行线有一条且只有一条 B .对角线相等的四边形是矩形C .两条边及一个角对应相等的两个三角形全等D .位似图形一定是相似图形 【答案】D13. ( 2011重庆江津, 8,4分)已知如图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD 交于O 点,对于各图中的两个的两个三角形而言,下列说法正确的是( )A.都相似B.都不相似C.只有(1)相似D.只有(2)相似【答案】A ·14. (2011重庆綦江,4,4分)若相似△ABC 与△DEF 的相似比为1 :3,则△ABC 与△DEF 的面积比为( )A .1 :3B .1 :9C .3 :1D . 1 :3【答案】:B15. (2011山东泰安,15 ,3分)如图,点F 是□ABC D 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是A.ED EA =DF ABB.DE BC =EF FBC. BC DE =BF BED.BF BE =BC AE【答案】C16. (2011山东潍坊,3,3分)如图,△ABC 中,BC = 2,DE 是它的中位线,下面三个结论:⑴DE=1;⑵△ADE ∽△ABC ;⑶△ADE 的面积与△ABC 的面积之比为 1 : 4。
其中正确的有( )A . 0 个 B.1个 C . 2 个 D.3个35°75°75°70° (1)A BCDO4 368 (2)第8题图【答案】D17. (2011湖南怀化,6,3分)如图3所示:△ABC 中,DE ∥BC ,AD=5,BD=10,AE=3, 则CE 的值为A.9B.6C.3D.4【答案】B18. (2011江苏无锡,7,3分)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA ∶OC = OB ∶OD ,则下 列结论中一定正确的是 ( ) A .①和②相似 B .①和③相似 C .①和④相似 D .②和④相似【答案】B19. (2011广东肇庆,5,3分)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =A . 7B . 7.5C . 8D . 8.5[来源:学科网]【答案】B20.(2011湖南永州,12,3分)下列说法正确的是( )a b cA B C DE F m nA B CDO① ②③④(第7题)A .等腰梯形的对角线互相平分.B .一组对边平行,另一组对边相等的四边形是平行四边形.C .线段的垂直平分线上的点到线段两个端点的距离相等.D .两边对应成比例且有一个角对应相等的两个三角形相似. 【答案】C21. (2011山东东营,11,3分)如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+【答案】D22. (2011重庆市潼南,5,4分)若△ABC ~△DEF ,它们的面积比为4:1,则△ABC 与△DEF 的相似比为A .2:1B .1 :2C .4:1D .1:4【答案】A23. (2011广东中山,3,3分)将左下图中的箭头缩小到原来的12,得到的图形是( )【答案】A24. (2011湖北荆州,7,3分)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有 A .1对 B .2对 C .3对 D .4对G E ADBC PFB ′A ′第11题 -1 x1 O -11y BA C第7题图 【答案】C25. 26.二、填空题1. (2011广东广州市,14,3分)如图3,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA =10cm ,OA ′=20cm ,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .【答案】122. (2011四川重庆,12,4分)如图,△ABC 中,DE ∥BC ,DE 分别交边AB 、AC 于D 、E 两点,若AD :AB =1:3,则△ADE 与△ABC 的面积比为 .【答案】1:93. (2011江苏苏州,17,3分)如图,已知△ABC 的面积是3的等边三角形,△ABC ∽△ADE ,AB=2AD ,∠BAD=45°,AC 与DE 相交于点F ,则△AEF 的面积等于__________(结果保留根号).【答案】4334. 5.图3OA BC D EA ′B ′C ′D ′E ′6.三、解答题1. (2011江西,25,10分)某数学兴趣小组开展了一次活动,过程如下: 设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线AB ,AC 之间,并使小棒两端分别落在两射线上. 活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A1A2为第1根小棒. 数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1. ①θ= 度;②若记小棒A 2n-1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,),求此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).活动二: 如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2= AA 1.数学思考:(3)若已经向右摆放了3根小棒,则1θ= ,2θ= ,3θ= ;(用含θ的式子表示) (4)若只能..摆放4根小棒,求θ的范围.【答案】【答案】解:(1)能 (2)①22.5° ②方法一:∵AA 1=A 1A 2=A 2A 3=1, A 1A 2⊥A 2A 3,∴A 1A 3=2,AA 3=1+2.又∵A 2A 3⊥A 3A 4,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠A A 2A 1=∠AA 4A 3=∠AA 6A 5,∴AA 3=A 3A 4,AA 5=A 5A 6,∴a 2= A 3A 4=AA 3=1+2,a 3=AA 3+A 3A 5=a 2+A 3A 5.∵A 3A 5=2a 2, ∴a 3=A 5A 6=AA 5=a 2+2a 2=(2+1)2. 方法二:∵AA 1=A 1A 2=A 2A 3=1, A 1A 2⊥A 2A 3,∴A 1A 3=2,AA 3=1+2.[来源:学_科_网Z_X_X_K] 又∵A 2A 3⊥A 3A 4,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠A A 2A 1=∠AA 4A 3=∠AA 6A 5, ∴a 2=A 3A 4=AA 3=1+2,又∵∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6, ∴3221a a a =,∴a 3=122a =(2+1)2.a n =(2+1)n-1.(3)θθθθθθ432321===,,(4)由题意得{905906≤θθ,∴15°<θ≤18°.2. (2011江苏宿迁,28,12分)如图,在Rt △ABC 中,∠B =90°,AB =1,BC =21,以点C 为圆心,CB 为半径的弧交CA 于点D ;以点A 为圆心,AD 为半径的弧交AB 于点E . (1)求AE 的长度;(2)分别以点A 、E 为圆心,AB 长为半径画弧,两弧交于点F (F 与C 在AB 两侧),连接AF 、EF ,设EF 交弧DE 所在的圆于点G ,连接AG ,试猜想∠EAG 的大小,并说明理由.[来源:学_科_网Z_X_X_K]【答案】解:(1)在Rt △ABC 中,由AB =1,BC =21得 AC =22)21(1+=25∵BC =CD ,AE =ADGFE DCBA(第28题)∴AE =AC -AD =215-.(2)∠EAG =36°,理由如下: ∵FA =FE =AB =1,AE =215-∴FAAE =215-∴△FAE 是黄金三角形∴∠F =36°,∠AEF =72° ∵AE =AG ,FA =FE∴∠FAE =∠FEA =∠AGE∴△AEG ∽△FEA[来源:学科网ZXXK] ∴∠EAG =∠F =36°.3. (2011广东汕头,21,9分)如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =EF =9,∠BAC =∠DEF =90°,固定△ABC ,将△EFD 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE 、DF (或它们的延长线)分别交BC (或它的延长线)于G 、H 点,如图(2).[来源:学§科§网Z §X §X §K](1)问:始终与△AGC 相似的三角形有 及 ;[来源:学科网](2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据2的情况说明理由); (3)问:当x 为何值时,△AGH 是等腰三角形?【解】(1)△HGA 及△HAB ;(2)由(1)可知△AGC ∽△HAB∴C G A C A BB H=,即99x y=,所以,81y x =(3)当CG <12B C 时,∠GAC=∠H <∠HAC ,∴AC <CH∵AG <AC ,∴AG <GH 又AH >AG ,AH >GH此时,△AGH 不可能是等腰三角形; 当CG=12B C 时,G 为BC 的中点,H 与C 重合,△AGH 是等腰三角形;此时,GC=922,即x=922当CG >12B C 时,由(1)可知△AGC ∽△HGA[来源:学科网]所以,若△AGH 必是等腰三角形,只可能存在AG=AH 若AG=AH ,则AC=CG ,此时x=9 综上,当x=9或922时,△AGH 是等腰三角形.[来源:学,科,网Z,X,X,K]4. (2011湖南怀化,21,10分)如图8,△ABC,是一张锐角三角形的硬纸片,AD 是边BC 上的高,B C=40cm,AD=30cm,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G 、H 分别在AC ,AB 上,AD 与HG 的交点为M.(1) 求证:;A M H G A DB C=(2) 求这个矩形EFGH 的周长.【答案】(1) 解:∵四边形EFGH 为矩形 ∴EF ∥GH∴∠AHG=∠ABC 又∵∠HAG=∠BAC ∴ △AHG ∽△ABC ∴ ;A M H G A DB C=(2)由(1)得;A M H G A DB C=设HE=x ,则HG=2x ,AM=AD-DM=AD-HE=30-x可得4023030x x =-,解得,x=12 , 2x=24所以矩形EFGH 的周长为2×(12+24)=72cm.5. (2011上海,25,14分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,sin ∠EMP =1213.(1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;[来源:](3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1 图2 备用图【答案】(1)∵∠ACB =90°,∴AC =22AB BC -=225030-=40. ∵S =12A B C P ⋅⋅=12A CBC ⋅⋅,∴CP =A CBC A B⋅=403050⨯=24.在Rt △CPM 中,∵sin ∠EMP =1213,[来源:学。