信息论与编码2012
- 格式:ppt
- 大小:1.90 MB
- 文档页数:50
2012-2013 (2) 信息论与编码理论1 A 卷答案一、 单项选择题(每题3分,总计15分) 1.当底为e 时,平均互信息的单位为( C )。
A 奈特B 哈特C 奈特/符号D 哈特/符号 2.下列量当Y X ,交换位置时( C )没有对称性。
A );(Y X IB ),(Y X HC )|(Y X HD )|,(Z Y X I3.下列( A )陈述是错误的。
A 算术编码不需要知道信源的分布B LZ 编码不需要知道信源的分布C 游程编码不需要知道信源的分布D KY 编码不需要知道信源的分布 4.下列数组中( A )不满足两个字母上的Kraft 不等式。
A (1,2,1)B (2,2)C (1,2,3)D (3,3,3) 5.下列译码法则中( A )一定是错误概率最小的。
A 最大后验概率译码准则B 最大似然译码准则C 最小距离译码准则D 最大先验概率译码准则 二、填空题(每空2分,总计12分)1.若某离散信道转移概率矩阵为⎥⎦⎤⎢⎣⎡125.0125.05.025.0125.0125.025.05.0,则其信道容量为43log 352-比特/符号。
2.若一个信道的输入熵为8.1)(=X H 比特/符号,输出熵为2.2)(=Y H 比特/符号,6.0);(=Y X I 比特/符号,则=),(Y X H __3.4比特/符号__,疑义度为1.2比特/符号_。
3.平均互信息对信源概率分布是上凸函数,对信道的状态转移概率分布是下凸函数。
4.对信源U 任一个D 元唯一可译码的平均码长必大于等于DU H log )(。
三、计算题(73分)1)(15分)设随机变量Y X ,的联合概率分布如下:Y X Z ⊕=,⊕为模2加。
分别求);(),|(),(),(Z X I Y X H Y H X H 。
解: X 的分布率为则1)(=X H 比特/符号..3分Y 的分布率为则3log 432)(2-=Y H =0.811比特/符号. …………………………………………………..……..6分)0()0,0()0|0(======Y P Y X p Y X p =1,)1()1,0()1|0(======Y P Y X p Y X p =31)0()0,1()0|1(======Y P Y X p Y X p =0,)1()1,1()1|1(======Y P Y X p Y X p = 32)1|0(log )1,0()0|0(log )0,0()|(22p p p p Y X H --=)1|1(log )1,1()0|1(log )0,1(22p p p p --=32log 210log 031log 411log 412222----=213log 432-=0.688比特/符号. ……………..10分)0()0,0()0|0(======Z P Z X p Z X p =31,)1()1,0()1|0(======Z P Z X p Z X p =1 )0()0,1()0|1(======Z P Z X p Z X p =32,)1()1,1()1|1(======Z P Z X p Z X p =0则)1()1|1(log )1,1()1()0|1(log )0,1()0()1|0(log )1,0()0()0|0(log )0,0();(2222=+=+=+==X p p p X p p p X p p p X p p p Z X I =210log 02132log 41211log 412131log 412222+++=9log 4112-=0.2075比特/符号. …………………..15分2)(22分)若离散无记忆信源的概率分布为⎪⎪⎭⎫ ⎝⎛=3.01.04.005.005.01.0654321a a a a a a U① 分别构造二元,三元Huffman 编码(要求码长方差最小,但不需求出),Shannon 编码,Fano编码,Shannon-Fano-Elias 编码。
信息论与编码陈运第二版答案【篇一:信息论与编码第4章】s=txt>(2课时)主要内容:(1)平均失真和信息率失真函数(2)离散信源和连续信源的r(d)计算重点:失真函数、平均失真、信息率失真函数r(d)、信息率失真函数的计算。
难点:信息率失真函数r(d)、信息率失真函数的计算。
作业:4、1。
说明:本堂课推导内容较多,枯燥平淡,不易激发学生兴趣,要注意多讨论用途。
另外,注意,解题方法。
多加一些内容丰富知识和理解。
4-1 引言(一)引入限失真的必要性:失真在传输中是不可避免的;接收者(信宿)无论是人还是机器设备,都有一定的分辨能力与灵敏度,超过分辨能力与灵敏度的信息传送过程是毫无意义的;即使信宿能分辨、能判别,但对通信质量的影响不大,也可以称它为允许范围内的失真;我们的目的就是研究不同的类型的客观信源与信宿,在给定的qos要求下的最大允许(容忍)失真d,及其相应的信源最小信息率r(d)。
对限失真信源,应该传送的最小信息率是r(d),而不是无失真情况下的信源熵h(u). 显然h(u)≥r(d).当且仅当 d=0时,等号成立;为了定量度量d,必须建立信源的客观失真度量,并与d建立定量关系; r(d)函数是限失真信源信息处理的理论基础;(二) r(d)函数的定义?信源与信宿联合空间上失真测度的定义:d(uivj): u?v?r[0,?)其中: ui?u (单消息信源空间) vj?v (单消息信宿空间)则有d???uivjp(uivj)d(uivj)称d为统计平均失真,它在信号空间中可以看作一类“距离”,它有性质 1〉d(uivj)?0, 当ui?vj 2〉ui?u,vj?vmind(uvij)?0473〉0?d(uivj)??对离散信源:i=j=1,2……..n, d(uivj)?dij, 则有:?0,当i?j(无失真)dij??0,当i?j(有失真)?〉若取dij为汉明距离,则有: ?0,当i?j(无失真)dij???1,当i?j(有失真)对连续信源,失真可用二元函数d(u,v)表示。
莆田学院期末考试试卷(A)卷2011 — 2012 学年第一学期课程名称:信息论与编码适用年级/专业: 09/电信(通信)试卷类别开卷()闭卷(√)学历层次本科考试用时 120分钟《.考生注意:答案要全部抄到答题纸上,做在试卷上不给分.........................》.一、简答题(每小题8分,共32分)1.对于一个一般的通信系统,试给出其系统模型框图,并结合此图,解释数据处理定理。
2. 香农信息论研究了哪些内容?试讲述香农第二编码定理。
3. 什么是唯一可译码?什么是即时码(前缀码)?构造唯一可译码的充要条件?(10分)4. 什么是信源编码?什么是信道编码?为何要进行这两者编码?二、证明题(每小题6分,共6分)对于任意的事件X、Y,试证明下列不等式成立:H(X|Y)<=H(X),并说明等式成立的条件。
三、计算题(第1、5题各16分,第2题12分,第3题10分,第4题8分,共62分)1.(16分)一黑白气象传真图的消息只有黑色和白色两种,即信源X={黑,白}。
设黑色出现的概率为P(黑)=0.3,白色的出现概率P(白)=0.7。
求(1)假设图上黑白消息出现前后没有关联,求熵H(X);(2)假设消息前后有关联,其依赖关系为P(白/白)=0.9,P(黑/白)=0.1,P(白/黑)=0.2,P(黑/黑)=0.8,求此一阶马尔可夫信源的熵H2(X);(3)分别求上述两种信源的剩余度,比较和的大小,并说明其物理意义。
2.(12分)一信源产生概率为P(1)=0.005, P(0)=0.995的统计独立二进制数符。
这些数符组成长度为100的数符组。
我们为每一个少于3个“1”的源数符组提供一个二进制码字,所有码字的长度相等。
(1)求出为所规定的所有源符组都提供码字所需的最小码长。
(2)求信源发出一数符组,而编码器无相应码字的概率。
3.(10分)已知一个(6,3)线性分组码的全部码字为001011,110011,010110,101110,100101,111000,011101,000000。