2016中考复习数学分式练习题
- 格式:doc
- 大小:219.50 KB
- 文档页数:4
2016年全国中考数学试题汇编-----分式和分式方程(2016,成都)分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=3【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选B.(2016,成都)化简:(x﹣)÷.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=x+1.(2016,百色)A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣=C.﹣=D. +=30【考点】由实际问题抽象出分式方程.【分析】设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟列出方程即可.【解答】解:设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据题意得,﹣=.故选B.(2016,毕节)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间及原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A. B. C. D.【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据题意,可列方程: =,故选:A.(2016,毕节)若a2+5ab﹣b2=0,则的值为 5 .【考点】分式的化简求值.【分析】先根据题意得出b2﹣a2=5ab,再由分式的减法法则把原式进行化简,进而可得出结论.【解答】解:∵a2+5ab﹣b2=0,∴﹣===5.故答案为:5.(2016,黑龙江龙东地区).关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣3【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m的范围即可.【解答】解:分式方程去分母得:2x﹣m=3x+3,解得:x=﹣m﹣3,由分式方程的解为正数,得到﹣m﹣3>0,且﹣m﹣3≠﹣1,解得:m<﹣3,故选D(2016,荆门)要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1【考点】二次根式有意义的条件.【分析】直接利用二次根式有意义的条件进而得出x﹣1≥0,求出答案.【解答】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.(2016,荆门)化简的结果是()A. B. C.x+1 D.x﹣1【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故选A(2016,随州).先化简,再求值:(﹣x+1)÷,其中x=﹣2.【考点】分式的化简求值.【分析】首先将括号里面的通分相减,然后将除法转化为乘法,化简后代入x的值即可求解.【解答】解:原式=[﹣]•=•=,当x=﹣2时,原式===2.(2016,随州)某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.【考点】分式方程的应用.【分析】求速度,路程已知,根据时间来列等量关系.关键描述语为:“一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达”,根据等量关系列出方程.【解答】解:设骑车学生的速度为x千米/小时,汽车的速度为2x千米/小时,可得:,解得:x=15,经检验x=15是原方程的解,2x=2×15=30,答:骑车学生的速度和汽车的速度分别是每小时15km,30km.(2016,常德)先化简,再求值:(),其中x=2.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.(2016,常德)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,再根据等量关系:第二批进的件数=×第一批进的件数可得方程;(2)设第二批衬衫每件售价y元,由利润=售价﹣进价,根据这两批衬衫售完后的总利润不低于1950元,可列不等式求解.【解答】解:(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,根据题意可得:,解得:x=150,经检验x=150是原方程的解,答:第一批T恤衫每件进价是150元,第二批每件进价是140元,(件),(件),答:第一批T恤衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×+15(y﹣140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元.(2016,娄底)函数y=的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x≥0且x﹣2≠0,解得x≥0且x≠2.故选A.(2016,娄底)先化简,再求值:(1﹣)•,其中x是从1,2,3中选取的一个合适的数.【考点】分式的化简求值.【分析】先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.【解答】解:原式=•=.当x=2时,原式==﹣2.(2016,娄底)甲、乙两同学的家及学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【考点】一元一次方程的应用.【分析】(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意列方程即可得到结论;(2)300×2=600米即可得到结果.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.(2016,吉林)解方程: =.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣2=x+3,解得:x=5,经检验x=5是分式方程的解.(2016,泰州)函数中,自变量x的取值范围是.【考点】函数自变量的取值范围;分式有意义的条件.【分析】根据分式有意义的条件是分母不为0;令分母为0,可得到答案.【解答】解:根据题意得2x﹣3≠0,解可得x≠,故答案为x≠.(2016,泰州)(﹣)÷.【考点】分式的混合运算.【分析】先将括号内的分式通分,进行减法运算,再将除法转化为乘法,然后化简即可.【解答】解:(﹣)÷=(﹣)•=•=.(2016,无锡)分式方程=的解是x=4 .【考点】分式方程的解.【分析】首先把分式方程=的两边同时乘x(x﹣1),把化分式方程为整式方程;然后根据整式方程的求解方法,求出分式方程=的解是多少即可.【解答】解:分式方程的两边同时乘x(x﹣1),可得4(x﹣1)=3x解得x=4,经检验x=4是分式方程的解.故答案为:x=4.(2016,大连)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【考点】分式方程的应用.【专题】应用题.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.(2016,丹东)某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?【考点】分式方程的应用.【分析】设甲商品的单价为x元,乙商品的单价为2x元,根据购买240元甲商品的数量比购买300元乙商品的数量多15件列出方程,求出方程的解即可得到结果.【解答】解:设甲商品的单价为x元,乙商品的单价为2x元,根据题意,得﹣=15,解这个方程,得x=6,经检验,x=6是所列方程的根,∴2x=2×6=12(元),答:甲、乙两种商品的单价分别为6元、12元.(2016,内地新疆班)两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是()A.﹣=15 B.﹣=C.﹣=15 D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据第二组的速度可得出第一组的速度,依据“时间=路程÷速度”即可找出第一、二组分别到达的时间,再根据第一组比第二组早15分钟(小时)到达乙地即可列出分式方程,由此即可得出结论.【解答】解:设第二组的步行速度为x千米/小时,则第一组的步行速度为1.2x千米/小时,第一组到达乙地的时间为:7.5÷1.2x;第二组到达乙地的时间为:7.5÷x;∵第一组比第二组早15分钟(小时)到达乙地,∴列出方程为:﹣==.故答案为D.(2016,内地新疆班)计算(1﹣)(x+1)的结果是x .【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=•(x+1)=x,故答案为:x(2016,呼和浩特)先化简,再求值:﹣÷,其中x=﹣.【考点】分式的化简求值.【分析】先算除法,再算加减,最后把x的值代入进行计算即可.【解答】解:原式=﹣•=+==,当x=﹣时,原式==﹣(2016,呼和浩特)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?【考点】分式方程的应用.【分析】设甲队单独完成此项工程需要x天,乙队单独完成需要(x+ 5)天,然后依据6天可以完成,列出关于x的方程,从而可求得甲、乙两队单独完成需要的天数,然后设甲队每天的工程费为y元,则可表示出乙队每天的工程费,接下来,根据两队合作6天的工程费用为385200元列方程求解,于是可得到两队独做一天各自的工程费,然后可求得完成此项工程的工程费,从而可得出问题的答案.【解答】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程: +=,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队.(2016,西宁)化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.【考点】分式的化简求值;一元一次不等式的整数解.【分析】首先利用分式的混合运算法则将原式化简,然后解不等式,选择使得分式有意义的值代入求解即可求得答案.【解答】解:原式====∵不等式x≤2的非负整数解是0,1,2∵(x+1)(x﹣1)≠0,x+2≠0,∴x≠±1,x≠﹣2,∴把x=0代入.(2016,青岛)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1(2016,青岛)化简:﹣(2016,威海)函数y=的自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠0C.x≠0D.x>0且x≠﹣2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0,故选:B.(2016,威海)某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.【考点】分式方程的应用.【分析】设乙班的达标率是x,则甲班的达标率为(x+6%),根据“甲、乙两班的学生数相同”列出方程并解答.【解答】解:设乙班的达标率是x,则甲班的达标率为(x+6%),依题意得: =,解这个方程,得x=0.9,经检验,x=0.9是所列方程的根,并符合题意.答:乙班的达标率为90%.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】二次根式的性质及化简;实数及数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.(2016,潍坊)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣【考点】分式方程的解.【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解答】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x的方程+=3的解为正数,∴﹣2m+9>0,级的:m<,当x=3时,x==3,解得:m=,故m的取值范围是:m<且m≠.故选:B .(2016,烟台)先化简,再求值:(﹣x ﹣1)÷,其中x=,y=.【考点】分式的化简求值.【分析】首先将括号里面进行通分,进而将能分解因式的分解因式,再化简求出答案. 【解答】解:(﹣x ﹣1)÷,=(﹣﹣)×=×=﹣, 把x=,y=代入得: 原式=﹣=﹣1+(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间及乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( B )A .x x 80006005000=- B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 考点:分式方程的应用分析:设甲每小时搬运xkg 货物,则甲搬运5000kg 所用的时间是:x5000,根据题意乙每小时搬运的货物为x +600,乙搬运8000kg 所用的时间为6008000+x再根据甲搬运5000kg 所用的时间及乙搬运8000kg 所用的时间相等列方程解答:甲搬运5000kg 所用的时间及乙搬运8000kg 所用的时间相等,所以60080005000+=x x故选B .(2016·山西)先化简,在求值:112222+---x xx x x ,其中x =-2.考点:分式的化简求值分析:先把分子分母因式分解,化简后进行减法运算 解答:原式=1)1)(1()1(2+-+--x xx x x x ……………………………(2分) =112+-+x xx x ……………………………(3分) =1+x x……………………………(4分)当x =-2时,原式=21221=+--=+x x(2016,陕西)化简:(x ﹣5+)÷.【考点】分式的混合运算.【分析】根据分式的除法,可得答案. 【解答】解:原式=•=(x ﹣1)(x ﹣3)=x2﹣4x+3.(2016,广安)某市为治理污水,需要铺设一段全长600m的污水排放管道,铺设120m后,为加快施工进度,后来每天比原计划增加20m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设xm管道,那么根据题意,可列方程.【考点】由实际问题抽象出分式方程.【分析】根据题目中的数量关系,可以列出相应的方程,本题得以解决.【解答】解:由题意可得,,化简,得,故答案为:.(2016,广安)先化简,再求值:(﹣)÷,其中x 满足2x+4=0.【考点】分式的化简求值.【分析】原式括号中利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到x的值,代入计算即可求出值.【解答】解:原式=•=,由2x+4=0,得到x=﹣2,则原式=5.(2016,凉山州)关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选A(2016,凉山州)先化简,再求值:,其中实数x、y满足.【考点】分式的化简求值;二次根式有意义的条件.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,根据负数没有平方根求出x及y的值,代入计算即可求出值.【解答】解:原式=•=,∵y=﹣+1,∴x﹣2≥0,2﹣x≥0,即x﹣2=0,解得:x=2,y=1,则原式=2.(2016,昆明)计算:﹣= .【考点】分式的加减法.【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.【解答】解:﹣===.故答案为:.(2016,昆明)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.(2016,衢州)当x=6时,分式的值等于﹣1 .【考点】分式的值.【分析】直接将x的值代入原式求出答案.【解答】解:当x=6时, ==﹣1.故答案为:﹣1(2016,绍兴)解分式方程: +=4.【考点】解分式方程.【分析】观察可得方程最简公分母为(x﹣1),将方程去分母转化为整式方程即可求解.【解答】解:方程两边同乘(x﹣1),得:x﹣2=4(x﹣1),整理得:﹣3x=﹣2,解得:x=,经检验x=是原方程的解,故原方程的解为x=.(2016,台州)化简的结果是()A.﹣1 B.1 C.D.【考点】约分.【分析】根据完全平方公式把分子进行因式分解,再约分即可.【解答】解: ==;故选D.(2016,台州)解方程:﹣=2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1=2x﹣14,解得:x=15,经检验x=15是分式方程的解.(2016,温州)若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.2【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,∴x=2.故选:D.(2016,安徽)方程=3的解是()A.﹣B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x ﹣3, 解得:x=4,经检验x=4是分式方程的解, 故选D .(2016,北京)如果a +b =2,那么代数2()b aa a a b--的值是(A ) 2 (B )-2 (C ) 12 (D )−12答案:A考点:分式的运算,平方差公式。
一、选择题1. (2015浙江省丽水市,4,3分)分式11x--可变形为 ································ ( ) A .11x -- B .11x + C .11x-+ D .11x - 2. (2015浙江省金华市,2,3分)要使分式1x 2+有意义,则x 的取值应满足( ) A.x =-2 B.x≠2 C.x >-2 D.x≠-23. (2015浙江省杭州市,4,3分)下列各式的变形中,正确的是 ( )22.()()A x y x y x y ---+=- 11.xB x x x--=22C.43(2)1x x x -+=-+ 21.()1D x xx x÷+=+ 4. (2015山东济南,10,3分)化简 2933m m m --- 的结果是 ( ) A. 3m + B. 3m - C.33m m -+ D. 33m m +- 5. (2015湖南省益阳市,6,5分)下列等式成立的是A .123a b a b +=+B .212a b a b =++ C .2ab a ab b a b =-- D .a aa b a b =--++6.(2015义乌6,3分)化简2111x x x+--的结果是( ) A .x +1 B .11x + C . x -1 D . 1x x - 7. (2015浙江省绍兴市,6,4分)化简xx x -+-1112的结果是 A. 1+x B.11+x C. 1-x D. 1-x x 8. (2015江西省,第4题,3分)下列运算正确的是( ) A .236(2)6a a =B .2232533a b ab a b -∙=-C .1b aa b b a+=---D .21111a a a -∙=-+ 9.(2015年湖南衡阳,4,3分)若分式21x x -+的值为0,则x 的值为 A.2或-1 B.0 C.2 D.-1 二、填空题1. (2015湖南省长沙市,15,3分)+________(结果保留根号).2. (2015山东临沂,16,3分)计算=+-+aa a a 2422 。
第三章 分式第一节 分式运算 1.〔2016黄冈〕计算(a-)÷的结果是______________________.【考点】分式的混合运算.【分析】将原式中的括号内的两项通分,分子可化为完全平方式,再将后式的分子分母掉换位置相乘,再约分即可。
【解答】解:(a-)÷=÷=·=a-b.故答案为:a-b.2.〔2016咸宁〕a ,b 互为倒数,代数式÷〔+〕的值为_____________.【考点】倒数的性质,代数式求值,分式的化简.【分析】a 、b 互为倒数,则ab=1,或. 先将前式的分子化为完全平方式,然后将括号内的式子通分,再将分子分母颠倒位置转化为乘法运算,约分后根据倒数的性质即可得出答案. 【解答】解:÷〔+〕=÷=〔a+b 〕· =ab. 又∵a ,b 互为倒数,∴ab=1.aab b 22-a b a -a ab b 22-a b a -aab b a +--222a b a -ab a )(2-b a a -b a ab b a +++222a 1b 1ba ab b a+++222a 1b1ba b a ++)(2ab ba +b a qb+故答案为:1.【点评】此题考查了倒数的性质,代数式求值,分式的化简.要熟知倒数的性质:假设a、b互为倒数,则ab=1,或,反之也成立.3.〔2016泰州〕化简〔﹣〕÷.【考点】分式的混合运算.【分析】先将括号内的分式通分,进行减法运算,再将除法转化为乘法,然后化简即可.【解答】解:〔﹣〕÷=〔﹣〕•=•=.4.〔2016德州〕化简﹣等于〔〕A.B.C.﹣D.﹣【考点】分式的加减法.【专题】计算题;分式.【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解此题的关键.第二节分式的化简求值及证明1.〔2016十堰〕化简:.【考点】分式的加减法.【分析】首先把第一个分式的分子、分母分解因式后约分,再通分,然后根据分式的加减法法则分母不变,分子相加即可.【解答】解:=++2=++2=++==【点评】此题考查了分式的加减法法则、分式的通分、约分以及因式分解;熟练掌握分式的通分是解决问题的关键.2.〔2016随州〕先化简,再求值:〔﹣x+1〕÷,其中x=﹣2.【考点】分式的化简求值.【分析】首先将括号里面的通分相减,然后将除法转化为乘法,化简后代入x的值即可求解.【解答】解:原式=[﹣]•=•=,当x=﹣2时,原式===2.3.〔2016常德〕先化简,再求值:〔〕,其中x=2.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.4.〔2016娄底〕先化简,再求值:〔1﹣〕•,其中x是从1,2,3中选取的一个合适的数.【考点】分式的化简求值.【分析】先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.【解答】解:原式=•=.当x=2时,原式==﹣2.5.(2016永州〕化简:÷= .【考点】分式的乘除法.【分析】将分子、分母因式分解,除法转化为乘法,再约分即可.【解答】解:原式=•=,故答案为:.6.〔2016呼和浩特〕先化简,再求值:﹣÷,其中x=﹣.【考点】分式的化简求值.【分析】先算除法,再算加减,最后把x的值代入进行计算即可.【解答】原式=﹣•=+==,当x=﹣时,原式==﹣.7.〔2016宁夏〕化简求值:〔〕,其中a=2+.【考点】实数的运算.【专题】计算题;分式.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解此题的关键.8.〔2016滨州〕先化简,再求值:÷〔﹣〕,其中a=.【考点】分式的化简求值.【分析】先括号内通分化简,然后把乘除化为乘法,最后代入计算即可.【解答】解:原式=÷[﹣]=÷=•=〔a﹣2〕2,∵a=,∴原式=〔﹣2〕2=6﹣4【点评】此题考查分式的混合运算化简求值,熟练掌握分式的混合运算法则是解题的关键,通分时学会确定最简公分母,能先约分的先约分化简,属于中考常考题型.9.(2016聊城〕计算:〔﹣〕.【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解此题的关键.10.〔2016泰安〕化简:÷﹣的结果为〔〕A.B.C.D.a【分析】先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的加法即可.【解答】解:原式=×﹣=﹣=,故选:C.【点评】此题主要考查分式的混合运算,熟练掌握分式的混合运算顺序和运算法则是解题的关键.11.〔2016烟台)先化简,再求值:〔﹣x﹣1〕÷,其中x=,y=.【考点】分式的化简求值.【分析】首先将括号里面进行通分,进而将能分解因式的分解因式,再化简求出答案.【解答】解:〔﹣x﹣1〕÷,=〔﹣﹣〕×=×=﹣,把x=,y=代入得:原式=﹣=﹣1+.12.〔2016巴中〕先化简:÷〔﹣〕,然后再从﹣2<x≤2的范围内选取一个合适的x的整数值代入求值.【考点】分式的化简求值.【分析】先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x的取值范围得出合适的x的值,将其代入化简后的代数式中即可得出结论.【解答】解:÷〔﹣〕=÷=×=.其中,即x≠﹣1、0、1.又∵﹣2<x≤2且x为整数,∴x=2.将x=2代入中得: ==4.13.〔2016广安〕先化简,再求值:〔﹣〕÷,其中x满足2x+4=0.【考点】分式的化简求值.【分析】原式括号中利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到x的值,代入计算即可求出值.【解答】解:原式=•=,由2x+4=0,得到x=﹣2,则原式=5.14.〔2016凉州〕先化简,再求值:,其中实数x、y满足.【考点】分式的化简求值;二次根式有意义的条件.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,根据负数没有平方根求出x与y的值,代入计算即可求出值.【解答】解:原式=•=,∵y=﹣+1,∴x﹣2≥0,2﹣x≥0,即x﹣2=0,解得:x=2,y=1,则原式=2.15.〔2016资阳〕化简:〔1+〕÷.【考点】分式的混合运算.【分析】首先把括号内的式子通分相加,把除法转化为乘法,然后进行乘法运算即可.【解答】解:原式=÷=•=a ﹣1.4.〔2016福建竞赛〕已知312a -=,则3222621a a a a ++=-〔 〕 A .3- B .3 C .32-+ D .32+【答案】 A【解答】 由312a -=,知231a =-,213a +=,24413a a ++=,2212a a =-。
13讲分式方程应用题一、解答题(共26题;共130分)1.(2014•丹东)某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?2.(2017•大连)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?3.(2017•遵义)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.4.(2017•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.5.(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.6.(2016•曲靖)甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.7.(2017•通辽)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.8.(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?9.(2015•随州)端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?10.(2017•长春)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.11.(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?12.(2017•黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?13.(2017•宜宾)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.14.(2015•沈阳)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.15.(2015•贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?16.(2015•雅安)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?17.(2015•宜宾)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?18.(2015•大连)甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?19.(2016•呼和浩特)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?20.(2011•本溪)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?21.(2015•长春)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.22.(2011•葫芦岛)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.23.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?24.(2015•郴州)自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.25.(2014•朝阳)某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.26.(2014•辽阳)某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.答案解析部分一、解答题1.【答案】【解答】解:该服装厂原计划每天加工x件服装,则实际每天加工1.5x件服装,根据题意,得解这个方程得x=100经检验,x=100是所列方程的根.答:该服装厂原计划每天加工100件服装.【解析】【分析】设原计划每天加工x件衣服,则实际每天加工1.5x件服装,以时间做为等量关系可列方程求解.2.【答案】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:=,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件【解析】【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.3.【答案】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+ ×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15【解析】【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.4.【答案】解:设乙工程队单独完成这项工程需要x天,依题意有(+ )×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天【解析】【分析】先根据已知条件由等量关系列出方程,再解分式方程即可得到所求的结论.5.【答案】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【解析】【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.6.【答案】解:设货车速度是x千米/小时,根据题意得:﹣=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.【解析】【分析】设货车的速度是x千米/小时,根据一辆小轿车的速度是货车速度的2倍列出方程,求出方程的解即可得到结果.此题考查了分式方程的应用,找出题中的等量关系是解本题的关键.7.【答案】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:=1+ + ,解得:x=80,经检验得:x=80是原方程的根,答:汽车出发后第1小时内的行驶速度是80千米/小时【解析】【分析】根据题意结合行驶的时间的变化得出等式进而求出答案.8.【答案】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.【解析】【分析】设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解.9.【答案】解:设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据题意得:=,去分母得:30x=12x+21.6,解得:x=1.2,经检验x=1.2是分式方程的解,且符合题意,1.8+x=1.8+1.2=3(元),故咸鸭蛋的价格为1.2元,粽子的价格为3元.【解析】【分析】设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.10.【答案】解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:﹣=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.【解析】【分析】由"买跳绳的数量比购买排球的数量多30个“可构建方程,用跳绳的单价x表示两个数量,然后二者相减即可.11.【答案】解:(1)设签字笔的单价为x元,笔记本的单价为y元.则可列方程组,解得.答:签字笔的单价为1.5元,笔记本的单价为3.5元.(2)设学校获奖的同学有z人.则可列方程,解得z=48.经检验,z=48符合题意.答:学校获奖的同学有48人.【解析】【分析】(1)由题意可知此题存在两个等量关系,即买1支签字笔价钱+买2个笔记本的价钱=8.5元,买2支签字笔价钱+买3个笔记本的价钱=13.5元,根据这两个等量关系,可列出方程组,再求解;(2)设学校获奖的同学有z人,根据等量关系:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同,可列出方程,再求解.12.【答案】解:设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元.根据题意,得= .解得x= .经检验,x= 是原方程的解,且符合题意,则科普类图书平均每本的价格为+5= 元,答:文学类图书平均每本的价格为元,科普类图书平均每本的价格为元.【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元,根据题意可得等量关系:用12000元购进的科普类图书的本数=用5000元购买的文学类图书的本数,根据等量关系列出方程,再解即可.13.【答案】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:= ,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间= ,B型机器人所用时间= ,由所用时间相等,建立等量关系.14.【答案】解:设高速铁路列车的平均速度为xkm/h,根据题意,得:,去分母,得:690×3=690+4.6x,解这个方程,得:x=300,经检验,x=300是所列方程的解,因此高速铁路列车的平均速度为300km/h.【解析】【分析】设高速铁路列车的平均速度为xkm/h,根据高速铁路列车比普通铁路列车少运行了4.6h 列出分式方程,解分式方程即可,注意检验.15.【答案】【解答】解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+.根据题意得:,解得:m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m的值是25.【解析】【分析】今年一月份生产量为:120(1+m%);二月份生产量:120(1+m%)+50;根据“二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍”列出方程并解答.16.【答案】【解答】解:设该车间原计划每天生产的零件为x个,由题意得,﹣=5,解得x=15,经检验,x=15是原方程的解.答:该车间原计划每天生产的零件为15个.【解析】【分析】设该车间原计划每天生产的零件为x个,然后根据计划用的天数比实际用的天数多5列出方程,再求解即可.17.【答案】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得:,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.【解析】【分析】设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元列出方程,求出方程的解即可得到结果.18.【答案】【解答】解:设乙每小时做的零件数量为x个,甲每小时做的零件数量是x+3,由题意得=解得x=21,经检验x=21是原分式方程的解,则x+3=24.答:甲每小时做24个零件,乙每小时做21个零件.【解析】【分析】由题意可知:设乙每小时做的零件数量为x个,甲每小:时做的零件数量是x+3;根据甲做90个所用的时间=乙做60个所用的时间列出方程求解.19.【答案】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+ = ,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队【解析】【分析】设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天,然后依据6天可以完成,列出关于x的方程,从而可求得甲、乙两队单独完成需要的天数,然后设甲队每天的工程费为y元,则可表示出乙队每天的工程费,接下来,根据两队合作6天的工程费用为385200元列方程求解,于是可得到两队独做一天各自的工程费,然后可求得完成此项工程的工程费,从而可得出问题的答案.本题主要考查的是分式方程的应用、一元一次方程的应用,根据题意列出关于x的方程是解题的关键.20.【答案】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,=x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.21.【答案】解:设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,由题意得﹣=2解得:x=10经检验x=10是原方程的解答:原计划平均每月的绿化面积为10 km2.【解析】【分析】设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,根据结果提前2个月完成任务列出方程解答即可.22.【答案】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得+=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【解析】【分析】(1)假设甲队单独完成需x天,则乙队单独完成需1.5x天,根据总工作量为1得出等式方程求出即可;(2)分别表示出甲、乙两队单独施工所需费用,得出不等式,求出即可.23.【答案】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元【解析】【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.24.【答案】【解答】解:设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,由题意得+=30解得:x=200经检验x=200是原方程的解.则(1+50%)x=300=20(棵)答:樱花树的单价为200元,有20棵.【解析】【分析】设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,根据购买了桂花树和樱花树共30棵列方程解答即可.25.【答案】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.【解析】【分析】首先设甲队单独完成这项工程需x天,则乙队单独完成这项工程需2x天,根据题意可得等量关系:甲队6天的工作量+甲、乙合作16天的工作量=1,根据等量关系,列出方程,再解即可.初三复习13讲26.【答案】解:(1)设乙工程队单独完成此项工程需要x天,由题意得:+=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.【解析】【分析】(1)根据题意结合总工作量为1,进而表示出两队每天完成的工作情况,进而得出答案;(2)首先表示出甲、乙两工程队合作的天数,进而利用两队施工费用得出不等式求出即可.- 11 -。
中考专题复习《分式方程》巩固练习(真题)含答案一、单选题1、下面是分式方程的是()A、B、C、D、2、(2016•海南)解分式方程,正确的结果是()A、x=0B、x=1C、x=2D、无解3、若(x+y)(1﹣x﹣y)+6=0,则x+y的值是()A、2B、3C、﹣2或3D、2或﹣34、(2016•十堰)用换元法解方程﹣=3时,设=y,则原方程可化为()A、y= ﹣3=0B、y﹣﹣3=0C、y﹣+3=0D、y﹣+3=05、关于x的分式方程的解为正数,则字母a的取值范围为()A、a≥1且a≠2B、a>1且a≠2C、a≥1D、a>16、(2016•贺州)若关于x的分式方程的解为非负数,则a的取值范围是()A、a≥1B、a>1C、a≥1且a≠4D、a>1且a≠47、已知a,b为实数,(a2+b2)2﹣(a2+b2)﹣6=0,则代数式a2+b2的值为()A、2B、3C、﹣2D、3或﹣28、(2016•重庆)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A、﹣3B、﹣2C、﹣D、9、(2016•青海)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A、﹣=4B、=4C、=4D、=410、(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A、1-B、2-C、1+或1-D、1+或﹣111、(2016•梅州)对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3= .则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=712、(2016•重庆)如果关于x的分式方程﹣3= 有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是()A、﹣3B、0C、3D、913、下列说法:①解分式方程一定会产生增根;②方程=0的根为2;③方程的最简公分母为2x(2x﹣4);④x+=1+是分式方程.其中正确的个数是()A、1个B、2个C、3个D、4个14、小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是.( -+x)=1-,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。
一、目标要求:1.理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个),知道解分式方程的基本思想是把分式方程化为整式方程.2.了解解分式方程产生增根的原因,能解决有关字母系数的问题.3.会列分式方程解决实际问题.二、课前热身1.分式方程572x x=-的解为【答案】x=-5考点:解分式方程.2.分式方程的解为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:两边同乘x(x+2)得5x=3x+6,解得:x=3,经检验x=3是分式方程的解.故选C.首先去分母,两边同乘X(X+2)得到整式方程,求出解之后检验即可得到考点:分式方程3.分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=2【答案】C【解析】试题分析:方程的两边同乘(x﹣2),得2x﹣5=﹣3,解得x=1.检验:当x=1时,(x﹣2)=﹣1≠0.∴原方程的解为:x=1.故选C.考点:解分式方程4.分式方程81877xx x--=--的解为()A.x=7; B.x=8; C.x=15; D.无解.【答案】D.考点:解分式方程.5.分式方程错误!未找到引用源。
错误!未找到引用源。
的解是(). A.x=0 B.x=-1 C.x=±1 D.无解【答案】D.【解析】试题分析:方程两边都乘以(x2-1)得:x+1-2(x-1)=4解得:x=-1,经检验:x=-1是增根,所以原方程无解.故选D.三、【基础知识重温】1.分式方程:分母中含有字母的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以分母的最小公倍数,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答. 4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列方程的根;(2)检验所求的解是否符合题意.四、例题分析题型一分式方程的解法例1.(2015·湖北衡阳)方程132x x=-的解为.【答案】x=-1.【解析】试题分析:此题考查解分式方程,首先去分母将分式方程转化为整式方程:原方程两边同时乘以x(x-2),得x-2=3x,移项得,x-3x=2,合并同类项得,﹣2x=2,系数化为1,得x=﹣1,检验:当x=﹣1时,x(x-2)≠0,所以x=﹣1是原方程的根.注意解分式方程必须要检验根的合理性.【方法技巧规律】解分式方程时应注意以下两点:(1)去分母时,要将最简公分母乘以每一个式子,不要“漏乘”;(2)解分式方程时必须检验,检验时只要代入最简公分母看其是否为0即可.若能使最简公分母为0,则该解是原方程的增根.【趁热打铁】1. 解方程:2130x 1x 1-=--. 【答案】x 2=.【解析】方程两边同乘以2x 1-,得x 130+-=,解得x 2=.经检验,x 2=是原方程的根.∴原方程的解为x 2=.2.解方程:.【答案】x=23.解方程:2130x 1x 1-=--. 【答案】x 2=.【解析】方程两边同乘以2x 1-,得x 130+-=,解得x 2=.经检验,x 2=是原方程的根.∴原方程的解为x 2=.题型二 分式方程的增根例2.(2015·辽宁营口)若关于x 的分式方程2233x m x x++=--有增根,则m 的值是( ). A .1m =- B .0m = C .3m = D .0m =或=3m【答案】A.【方法技巧规律】利用增根求分式方程中字母的值:(1)确定增根;(2)将原分式方程化成整式方程;(3)增根代入变形后的整式方程,求出字母的值.【趁热打铁】1.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为【 】 A .x=1 B .x=-1 C .x=3 D .x=-3【答案】A 。
中考数学复习《分式》专题训练--附带有答案一、选择题 1.在a−b 2,x(x+3)x,5+x π,a+b a−b中,是分式的有 ( )A .1个B .2个C .3个D .4个2.分式1x 2y ,3y2x 3,2+x3xy 2的最简公分母是( ) A .3xyB .6x 3y 2C .6x 6y 6D .x 3y 33.如果把分式2xxy 中的x 和y 都扩大为原来的10倍,那么分式的值( ) A .不变B .扩大为原来的10倍C .缩小为原来的110倍 D .缩小为原来的11004.使分式 x 2−1x+1等于0的x 的值是( )A .1B .−1C .±1D .不存在5.已知实数a 、b 满足a+b =0,且ab ≠0,则ba +ab 的值为( ) A .﹣2B .﹣1C .1D .26.若关于x 的方程 m−1x−1−xx−1=0 有增根,则m 的值是( ) A .3B .2C .1D .任意值7.某煤厂原计划x 天生产120吨煤,由于采用新的技术,每天增加生产3吨,因此提前2天完成任务,列出方程为 ( ) A .120x−2=120x −3 B .120x=120x+2−3 C .120x+2=120x−3D .120x=120x−2−38.关于x 的方程 k2x−4=xx−2 的解为正数,则k 的取值范围是( ) A .k >0 B .k <0C .k >0且k ≠4D .k <0且k ≠﹣4二、填空题9.约分:3x 3y9x 2y 4= . 10.化简:a 2a−b+b 2b−a = . 11.若分式 2x+1 有意义,则 x 的取值范围是 .12.已知关于x的方程x−4x−3−k−4=k3−x无解,则k的值为.13.已知方程2−aa +2=3a,且关于x的不等式组{x≥ax≤b只有3个整数解,那么b的取值范围是.三、解答题14.解方程:(1)2xx+3+1=72x+6(2)1+xx+2=12+x+215.先化简,再求值:(x2x−1−x+1)÷4x2−4x+11−x,其中x=−4.16.已知A=(2x2+2xx2−1−x2−xx2−2x+1)÷xx+1.(1)先化简A,再从1,2,3中选取一个合适的数作为x的值代入求值;(2)判断A的值能不能是−1,并说明理由.17.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?18.暑假期间,部分家长组织学生到户外游学实践活动,一名家长带一名学生. 现有甲、乙两家游学机构,其报价相同,每位学生的报价比家长少20元. 按报价计算,家长的总费用为50000元,学生的总费用为48000元.(1)请利用分式方程求家长和学生报价分别是每位多少元?(2)经协商,甲机构的优惠条件:家长全价,学生都按七五折收费;乙机构的优惠条件:家长和学生均按m(m为整数)折收费,结果他们选择了总费用较少的乙机构,求m的最大值.1.B 2.B 3.C 4.A 5.A 6.B 7.D 8.C 9.x3y 3 10.a +b 11.x ≠112.k =−3 或 k =1 13.3≤b <414.(1)解:2xx+3+1=72x+6 4x +2x +6=7 6x =1 x =16经检验:x =16是原分式方程的解; (2)解:1+xx+2=12+x +2 1+x =1+4+2x x =−4经检验:x =−4是原分式方程的解; 15.解:原式=(x 2x−1−x 2−2x+1x−1)÷(2x−1)21−x=2x−1x−1×1−x(2x−1)2 =11−2x将x =−4代入11−2x ,得11−2×(−4)=19 16.(1)解:A =(2x 2+2x x 2−1−x 2−xx 2−2x+1)÷xx+1 =(2x(x+1)(x+1)(x−1)−x(x−1)(x−1)2)×x+1x=2(x+1)x−1−x+1x−1=x+1x−1当x=3时A=3+13−1=2;x-1≠0∴x≠1.∴当x=2时A=3;当x=3时A=2;(2)解:A的值不能是−1;理由:若A的值为−1,即x+1x−1=−1,解得x=0,代入A中检验,除数为0,无意义,∴A的值不能为−1.17.解:(1)解:设小明步行的速度是x米/分,由题意得:900x =9003x+10,解得:x=60,经检验:x=60是原分式方程的解答:小明步行的速度是60米/分;(2)解:小明家与图书馆之间的路程最多是y米根据题意可得:y60=900180×2,解得:y=600答:小明家与图书馆之间的路程最多是600米.18.(1)解:设家长的报价为x元,学生的报价为(x−20)元由题意得:50000x =48000x−20经检验,x=500是分式方程的解答:家长的报价为500元,学生的报价为480元;(2)解:由题意得:(50000+48000)×m10<50000+48000×0.75解得:m<83849∵m为正整数∴m的最大值为8.。
分式方程行程、工程类应用题一.选择题(共2小题)1.一项工程,甲单独做a h完成,乙单独做b h完成,甲、乙两人一起完成这项工程所需的时间为()A.h B.(a+b)h C.h D.h2.轮船顺流航行40千米由A地到达B地,然后又返回A地,已知水流速度为每小时2千米,设轮船在静水中的速度为每小时x千米,则轮船往返共用的时间为()A.小时B.小时C.小时D.小时二.解答题(共8小题)3.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.4.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?找家教,去师大中南湖大家教中心QQ 1357491979 15.某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完全任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?6.“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?7.一项工程,甲,乙两公司合作,6天可以完成,共需付工费51000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司施工费较少?8.某乡镇道路该修工程预算施工费为500万元,工程指挥部从甲、乙两个工程队的投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项所需天数的;甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.(1)若由甲队先做30天,剩下的工程由乙队做45天可完成,求甲、乙两队单独完成这项工程各需的天数;(2)为了缩短工期,工程指挥部决定由甲、乙两队合作完成此项工程,则预算的施工费用是否够用?若不够用,需增加预算多少万元.9.某公司在工程招标时,接到甲、乙两个工程队的投标书.每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工;(1)求甲、乙两队单独完成此项工程各需多少天?(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得哪一种施工方案划算,并说明理由.10.一工地计划租用甲、乙两辆车清理淤泥,需在规定日期内完成.从运输量来估算:如果单独租用甲车,恰好按期完成,若单独租用乙车完成任务则比单独租用甲车完成任务多用15天,结果同时租用甲、乙两辆车合作运了7天,余下部分由乙车完成,则超过了规定日期1天完成任务.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元,试问:租甲乙两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少且不耽误工期?请说明理由.分式方程行程、工程类应用题参考答案与试题解析一.选择题(共2小题)1.(2016春•东港市期末)一项工程,甲单独做a h完成,乙单独做b h完成,甲、乙两人一起完成这项工程所需的时间为()A.h B.(a+b)h C.h D.h【分析】本题先根据题意列出方程即,解出即可.【解答】解:设甲、乙两人一起完成这项工程所需的时间为xh,则有,解得x=,∴甲、乙两人一起完成这项工程所需的时间为h.【点评】本题主要考查一元一次方程的应用.解题的关键是由题意得出列出方程的等量关系即工作总量为1.2.(2010春•桃源县校级期末)轮船顺流航行40千米由A地到达B地,然后又返回A地,已知水流速度为每小时2千米,设轮船在静水中的速度为每小时x千米,则轮船往返共用的时间为()A.小时B.小时C.小时D.小时【分析】设轮船在静水中的速度为每小时x千米,根据轮船顺流航行40千米由A地到达B 地,然后又返回A地,已知水流速度为每小时2千米,可求出轮船往返共用的时间.【解答】解:设轮船在静水中的速度为每小时x千米,根据题意得:+=.故选D.【点评】本题考查分式方程的应用,这是个行程问题,关键知道时间=,从而可列式求解.二.解答题(共8小题)3.(2016•长春)A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.【分析】关键描述语为:“A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同”;等量关系为:400÷A型机器每小时加工零件的个数=300÷B型机器每小时加工零件的个数.【解答】解:设A型机器每小时加工零件x个,则B型机器每小时加工零件(x﹣20)个.根据题意列方程得:=,解得:x=80.经检验,x=80是原方程的解.答:A型机器每小时加工零件80个.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4.(2016•娄底)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【分析】(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意列方程即可得到结论;(2)300×2=600米即可得到结果.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.【点评】此题主要考查了一元一次方程的应用,分式方程的应用,根据题意得到乙的运动速度是解题关键.5.(2016•广东)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完全任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【分析】(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可;(2)由(1)的结论列出方程解答即可.【解答】解:(1)设原计划每天修建道路x米,可得:,解得:x=100,经检验x=100是原方程的解,答:原计划每天修建道路100米;(2)设际平均每天修建道路的工效比原计划增加y%,可得:,解得:y=20,经检验y=20是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.6.(2016•湖北襄阳)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?【分析】(1)直接利用队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,进而利用总工作量为1得出等式求出答案;(2)直接利用甲队参与该项工程施工的时间不超过36天,得出不等式求出答案.【解答】解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工90天完成该项工程,根据题意可得:+15(+)=1,解得:x=30,检验得:x=30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出等量关系是解题关键.7.(2016•宜春模拟)一项工程,甲,乙两公司合作,6天可以完成,共需付工费51000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司施工费较少?【分析】(1)设甲公司单独完成需x天,则乙单独完成需要1.5x天,接下来,依据甲,乙两公司合作,6天可以完成列方程求解即可;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,然后根据甲、乙两公司合作6天的施工费为51000元列出方程,从而可求得甲、乙两公司单独施工每天的施工费,然后再求得各自需要的总费用即可.【解答】解:(1)设甲公司单独完成需x天,则乙单独完成需要1.5x天.根据题意得:+=,解得:x=10经检验x=10是原方程的解∴甲需10天,乙公司需15天.(2)设甲公司每天的施工费为y元,可得方程:6y+6(y﹣1500)=51000解得y=5000.则y﹣1500=3500∴甲公司费用:5000×10=50000元乙公司费用:3500×15=52500元∴甲公司施工费较少.【点评】本题主要考查的是分式方程和一元一次方程的应用,找出题目的相等关系,并列出方程是解题的关键.8.(2016•福建模拟)某乡镇道路该修工程预算施工费为500万元,工程指挥部从甲、乙两个工程队的投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项所需天数的;甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.(1)若由甲队先做30天,剩下的工程由乙队做45天可完成,求甲、乙两队单独完成这项工程各需的天数;(2)为了缩短工期,工程指挥部决定由甲、乙两队合作完成此项工程,则预算的施工费用是否够用?若不够用,需增加预算多少万元.【分析】(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天,根据“由甲队先做30天,剩下的工程由乙队做45天可完成”列方程求解.(2)求出甲、乙两队施工天数得出需要施工费用,再与500万元进行比较,即可得出答案.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天,根据题意得:30×+45×=1解得:x=90,经检验x=90分式方程的解,则甲队单独完成这项工程需要的天数是:90×=60(天).答:甲需要60天,乙需要90天.(2)设甲、乙两队合作,完成这项工程需y天,则:y(+)=1,解得y=36,需要施工费用(8.4+5.6)×36=504(万元).∵504>500,∴工程预算的费用不够用,需增加预算4万元.【点评】此题主要考查了分式方程的应用,列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到等量关系,列出方程.9.(2016春•靖江市期末)某公司在工程招标时,接到甲、乙两个工程队的投标书.每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工;(1)求甲、乙两队单独完成此项工程各需多少天?(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得哪一种施工方案划算,并说明理由.【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.求得规定天数的等量关系为:甲乙合作4天的工作总量+乙做(规定天数﹣4)天的工作量=1,据此列出方程并解答;(2)根据(1)的结论可以得到三种施工方案,分别求得每一施工方案的费用,然后比较,取其费用最少的方案即可.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得:++=1,解得:x=20.经检验:x=20是原分式方程的解.∴(x+5)=25.答:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天;(2)由(1)得到:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天.这三种施工方案需要的工程款为:方案1:1.5×20=30(万元);方案2:1.1×(20+5)+5×0.3=29(万元);方案3:1.5×4+1.1×20=28(万元).∵3027.5>30>28,∴第三种施工方案最节省工程款.【点评】本题考查了列分式方程解实际问题的运用,列一元一次方程解实际问题的运用,有理数大小比较的运用,解答时求出工程的施工规定天数是关键.10.(2016春•长沙校级期中)一工地计划租用甲、乙两辆车清理淤泥,需在规定日期内完成.从运输量来估算:如果单独租用甲车,恰好按期完成,若单独租用乙车完成任务则比单独租用甲车完成任务多用15天,结果同时租用甲、乙两辆车合作运了7天,余下部分由乙车完成,则超过了规定日期1天完成任务.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元,试问:租甲乙两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少且不耽误工期?请说明理由.【分析】(1)设甲车单独完成任务需要x天,乙单独完成需要x+15天,根据题意所述等量关系可得出方程组,解出即可;(2)结合(1)的结论,分别计算出三种方案各自所需的费用,然后比较即可.【解答】解:(1)设甲车单独完成任务需要x天,乙单独完成需要x+15天,可得:,解得:x=15,经检验x=15是原方程的解,答:甲15天,乙30天;(2)设甲车每天租金为a元,乙车每天租金为b元,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:,解得:,①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少.【点评】此题考查了分式方程的应用,及二元一次方程组的知识,分别得出甲、乙单独需要的天数,及甲、乙车的租金是解答本题的关键.考点卡片1.二元一次方程组的应用(一)、列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.(二)、设元的方法:直接设元与间接设元.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.2.分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.3.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.第11页(共11页)。
2016年全国中考数学真题分类分式1.(2016浙江丽水,4,3分) +的运算结果正确的是( ) A . B . C . D .a+b【答案】C .2.(2016江苏连云港,5,3分)若分式的值为0,则( )A .x=﹣2B .x=0C .x=1D .x=1或﹣2【答案】C .3.(2016台州,6,4分)化简222()x y y x -- 的结果是( )A .-1B .1C .x y y x +-D .x yx y+- 【答案】D4.(2016山东滨州,4,3分)下列分式中,最简分式是( )A.2211x x -+B.211x x +-C.2222x xy y x xy -+-D.236212x x -+ 答案:A.5.(2016年湖北荆门,7,3分)化简221x x x ++÷(1-11x +)的结果是( )A .11x + B .1x x+ C .x +1 D .x -1 [答案]A6.(2016山东德州,7,3分)化简2222a b ab b ab ab a ----等于( ) A.baB.abC. -b aD. -b a答案:B.7.(2016山东泰安,4,3分)计算:2222444221(1)2a a aa a a a--+÷-+++-的结果是( )A.22aa+-B.42aa--C.2aa-D.a答案:C.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 二、填空题1.(2016山东临沂, 16,3分)计算:a 2a -1+11-a =___________.【答案】a +12.(2016,山东淄博,13,4分)计算12412+-a a 的结果是 .【答案】1﹣2a3.(2016江苏淮安,9,3分)若分式1x 5-在实数范围内有意义,则x 的取值范围是 . 【答案】5≠x4.(2016江苏扬州,11,3分)当a=2016时,分式242a a 的值是 。
第 3 讲分式分式的概念概念A形如B(A 、B 是整式, B 中含有① ________,且 B≠0) 的式子叫做分式 . 分式分母不为 0.有意义的条件值为零的条件分子为 0,且分母不为 0.分式的基本性质分式的基本性质约分通分A A×M A A÷M=,=(M 是不为零的整式).B B×M B B÷M把分式的分子和分母中的②________约去,叫做分式的约分.根据分式的③ ________,把异分母的分式化为④________的分式,这一过程叫做分式的通分 .分式的运算分式的乘除法分式的乘方分式的加减法分式的混合运算【易错提示】a c ac a c a d ad· =,÷=·=.b d bd b d bc bca n a n( b) =b n(n 为整数 ).a b a±b a c ad±bcc±c=c,b±d=bd.在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.遇到有括号,先算括号里面的.分式运算的结果一定要化成最简分式.1.乘方时一定要先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.2.在分式的加减运算中,如需要通分时,一定要先把分母可以分解因式的多项式分解因式后再找最简公分母,分式的乘除运算中,需要约分时,也要先把可以分解因式的多项式先分解因式再约分.命题点 1分式有意义、值为零的条件1(2014 ·乐山 ) 当分式x-2有意义时, x 的取值范围为 ________.当分式的分母为零时,分式无意义;当分式的分母不为零时,分式有意义;当分式的分子为零,且分式的分母不为零时,分式的值为零.11.当分式x+5有意义时, x 的取值范围为________.x2- 12.(2013 ·攀枝花 ) 若分式x+1的值为 0,则实数x 的值为 ________.| x| -33.(2014 ·凉山 ) 分式x+3的值为零,则x 的值为 ()A. 3 B.- 3C.± 3 D.任意实数命题点 2 分式的运算2x2 + 2x x2- x x(2015 ·广元 ) 先化简: ( x2 -1-x2-2x+1)÷x+1,然后解答下列问题:(1)当 x= 3 时,求原代数式的值;(2)原代数式的值能等于- 1 吗?为什么?【思路点拨】(1) 先进行括号内的异分母加减运算,再进行分式的除法运算;最后代数求值;(2) 先假设原代数式的值等于-1,即是原式化简后的值为1,求出未知数x 的值,再看x 的值能否使原代数式有意义,若有意义,则能;否则不能.【解答】分式运算的常见技巧有: (1) 式子中的某些分式的分子、分母能约分的可先约分,再按运算法则计算化简; (2) 当括号外的因式与括号内的分母能约分时,可依照分配律先去括号,再化简计算.对于分式化简求值题目,还必须注意一点:未知数的取值不仅要使得所有分式的分母不为零,而且还要使除式的分子不为零,如本例第(2) 小题.x2 11.(2015 ·绍兴 ) 化简x-1+1-x的结果是 ()1A. x+1 B.x+ 1xC. x-1 D.x- 12.(2015 a+ 21 a- 1·成都 ) 化简: ( ) ÷.a+2 a - 4 a+ 22aa 23.(2015 ·乐山 ) 化简求值: a 2- 4÷ ( a - 2- a) ,其中 a = 3-2.11.(2015 ·丽水 ) 分式- 1- x 可变形为 ()1 1 A .- x - 1 B.1+ x 1 1 C .- 1+ xD.x - 1x + 12.(2014 ·温州 ) 要使分式 x - 2有意义,则x 的取值应满足 ()A . x ≠2B . x ≠- 1C . x =2D . x =- 1x 2- 13.(2014 ·毕节 ) 若分式 x -1 的值为零,则 x 的值为 () A . 0 B . 1 C .- 1D .±1a 2+ 2ab + b 2b4.(2015 ·山西 ) 化简 a 2- b 2- a - b 的结果是 ()a bA.a -b B.a - bab C.a + bD.a + b2x有意义,那么 x 的取值范围是 ________. 5.(2015 ·上海 ) 如果分式x + 36.当 x= ________时,代数式1无意义.|x| -17.(2015 x2- 5x+ 60,则 x= ________.·绥化 ) 若代数式的值等于2x- 62x+68.(2015 ·无锡 ) 化简x2-9得 ________.a 49.(2015 ·临沂 ) 计算:a+2-a2+2a= ________.1 x- 210.(2014 ·广安 ) 化简 (1 -x-1) ÷x2-2x+1的结果是 ________.11.(2015 ·眉山 ) 计算:2 x2- 1 ÷ x2+x.x - 2x+ 1 x- 112.(2015 ·巴中 ) 化简:2a 2a- 4 a- 2- 2 ÷ 2 . a+1 a - 1 a - 2a+11 1 a2- a13.(2015 ·宜宾 ) 化简: ( a-1-a2-1) ÷a2-1.52a-414.(2015 ·南充 ) 计算: (a + 2-a-2) ·3-a .11x+ 215.(2015 ·资阳 ) 先化简,再求值:( x-1-x+1) ÷x2-1,其中 x 满足 2x-6= 0.16.(2014 ·泰州 ) 已知 a 2+ 3ab + b 2=0(a ≠0, b ≠0) ,则代数式 b +a的值等于 ________.a b 17.(2015 ·凉山 ) 先化简: ( x + 1 x 2+ x 2- 2x+1) ÷ 2 + 2,然后从- 2≤x ≤2 的范围内选取x - 1 x -2x + 1 x - 1 一个合适的整数作为 x 的值代入求值.18. (2 015·达州) 化简a ·a 2- 4a + 2 2a - 3a- 1 ,并求值,其中2- aa 与2、3构成△ ABC 的三边,且a 为整数.参考答案 考点解读 考点 1 ①字母 考点 2②公因式各个击破③基本性质④同分母例 1 x ≠2题组训练1.x ≠- 52.13.A2x (x + 1) x ( x -1) x + 1 例 2(1) 原式= [ ( x + 1)( x - 1) - ( x - 1) 2]· x= ( 2x - x ) · x + 1 x - 1 x - 1xx x + 1 = x - 1· xx + 1=.x - 13+ 1当 x = 3 时,原式= 3- 1=2.x + 1(2) 如果 - 1=- 1,那么 x + 1= 1-x ,解得 x = 0,x当 x = 0 时,除式x = 0,原式无意义,x + 1 故原代数式的值不能等于-1.题组训练 1.Aa 2- 2a1a +22. 原式= ( a 2- 4 +a 2- 4 ) · a -1(a - 1) 2 a +2 = ( a + 2)( a - 2)·a -1a - 1=.a - 22aa 2- a ( a - 2) 3. 原式=( a + 2)( a - 2) ÷ a -22a a -2= ( a + 2)( a - 2)·2a1 = a + 2.当 a = 3- 2 时,原式=133-2+ 2= .3整合集训 基础过关2a -2 1. D 2.A 3.C 4.A 5.x ≠- 3 6. ±1 7.2 8. x -3 9. a10. x -1( x + 1)( x - 1)x - 11 11. 原式= ( x - 1) 2· x ( x + 1) = x .2a 2( a - 2) ( a - 1) 212.原式=a + 1-( a + 1)( a - 1) · a - 22a2( a -1)= a + 1-( a + 1)2=.a + 1a + 11( a - 1)( a + 1)13.原式= [( a - 1)( a + 1) -( a - 1)( a + 1) ] ·a ( a -1)a ( a - 1)( a + 1)= ( a - 1)( a + 1)· a ( a - 1)1 = a - 1.( a + 2)( a - 2)- 5 · 2( a - 2)14. 原式= a - 23- a( a + 3)( a - 3) 2(a - 2)=·3- aa - 2=- 2(a + 3) =- 2a - 6.x + 1 x - 1 x + 215.原式= [( x - 1)( x + 1) - ( x - 1)( x + 1) ] ÷ x 2- 12( x - 1)( x + 1)=·( x - 1)( x + 1)x + 22=x + 2.∵ 2x -6= 0, ∴ x = 3.2 当 x =3 时,原式=.5能力提升 16.- 3x + 1 x - 1( x - 1) 22( 1- x )17.原式= (x - 1+ x - 1) · x ( x + 1)+ ( x + 1)( x - 1)2x( x - 1) 22=x - 1·x ( x +1) -x + 12( x -1) 2 =x + 1 - x + 12x - 4=.x + 1满足- 2≤x ≤2 的整数有:- 2、- 1、 0、 1、2,但是, x =- 1、0、 1 时,原式无意义, ∴ x =- 2 或 2.2×(- 2)- 4 - 8当 x =- 2 时,原式= - 2+ 1 =- 1=8; 2×2- 4 0当 x = 2 时,原式= 2+ 1 =3= 0.aa + 2 1 18.原式=( a + 2)( a - 2) · a ( a - 3) + a -211 =( a - 2)( a - 3)+a -21+ a - 3 =( a - 2)( a -3)a - 2=( a - 2)( a - 3)1=a - 3.∵ a 与 2、 3 构成△ ABC 的三边,且 a 为整数,∴ 1< a < 5,即 a = 2, 3,4.当 a = 2 或 a = 3 时,原式没有意义,则a = 4 时,原式= 1.。
2016年数学总复习分式及分式方程专项训练题
一、填空题
1.(1)当a 时,分式
321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式5
34-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式1
42+-x 的值为负. (7)分式36
122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ (8)若)0(54≠=y y x ,则2
2
2y y x -的值等于________; 2.①())0(,10 53≠=a axy xy a ②() 14
22=-+a a 。
③、=b a ab 2205_______④=+--9
6922x x x _______。
⑤、化简分式x x ---112的结果是________. ⑥.将分式的分子与分母中各项系数化为整数,则b a b a 2
13231++=__________. ⑦.不改变分式的值,使分式的首项分子与分式本身都不含“-”号:
2a b a b --
-=________;(2)2a b a b
----=___________. ⑧.不改变分式的值,把分式0.420.51
x x +- 中分子、分母各项系数化成整数为________. 3.分式2241b a 与c
ab x 36的最简公分母是__________. 4. 将b
a 1,1,31通分后,它们分别是_________, _________,________. 5. 分式ac
b b a
c c b a 107,23,5422的最简公分母是_________,通分时,这三个分式的分子分母依次乘以________, _______, ____________.
6.分式b a a 233-、222ab b -与3385bc
a c -的最简公分母是 。
7.分式2x y xy +,23y x ,26x y xy
-的最简公分母为 ; 8.1x 2x 11x 22
2++-和的公分母是 ;9.化简x x x x 2-+的结果为 ;
10.约分:22222b a b ab a -+-= 。
11.若分式4
4422++-m m m 的值为0,则=m 。
12.计算:(1)b a ÷22b a =_______;(2)3252a b c ·5
3410c a b
=________;(3)23x x ÷23x x =________;(4)x ÷1y ×1y
=________;(5)21a a -÷22a a a -=_______;(5)=÷-ab 3b a 212
3 ;(6)432a )a 21(÷= (7)÷m 2a =n m a +;(8)=-+-x
y y y x x ;(9)b 1b a ⋅÷= ; 13.(1)已知
115x y +=,则分式2322x xy y x xy y -+++的值为_______ ; (2)已知113x y -=,则分式2322x xy y x xy y
+---的值为 ; (3)已知b
ab 2a b ab 3a ,2b 1a 1+++-=+则=____________. (4)已知x-y=4xy ,则2322x xy y x xy y
+---的值为 14.(1)某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务。
设原计划每天固沙造林x 公顷,根据题意列出方程为 。
(2)从甲地到乙地全长S 千米,某人步行从甲地到乙地t 小时可以到达,现为了提前半小时到达,则每小时应多走 千米(结果化为最简形式)
(3)某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.
(4)一艘船顺流航行n 千米用了m 小时,如果逆流航速是顺流航速的q
p ,那么这艘船逆流航行t 小时走了__________千米.
(5)某项工作,甲单独做需a 天完成,在甲做了c 天(a c <)后,剩下的工作由乙单独完成还需b 天,若开始就由甲乙共同合做,则完成这项任务需_________天.
(6)A 地在河的上游,B 地在河的下游,若船从A 地开往B 地的速度为a 千米/时,从B 地返回A 地的速度为b 千米/时,则在A,B 两地间往返一次的平均速度为___________千米/时.(用
a ,
b 的式子表示)
(7)甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的_______倍.
(8)一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时。
(9)某工厂库存原材料x 吨,原计划每天用a 吨,若现在每天少用b 吨,则可以多用 天。
(10)甲、乙两人组成一队参加踢毽子比赛,甲踢m 次用时间1t (s ),乙在2t (s )内踢n 次,现在二人同时踢毽子,共N 次,所用的时间是T (s ),则T 是________
15.若
则x+x -1=__________.16.(1)已知31=+x x ,则_________122=+x
x (2)已知=+=+22a
1a ,3a 1a 则_________;(3)若=+=-22121x x x x 则 17.如果3-是分式方程
x
a a x a +=++32的增根,则a = . 18.当m=______时,方程233
x m x x =---会产生增根. 19.若分式方程03231=+-+x x x 无解,则x 的值一定为 。
20.若关于x 的分式方程3
232
-=--x m x x 无解,则m 的值为__________。
21.关于x 的方程
x
m x x --+-2322=3有增根,则m 的值为 . 22.若方程56x x a x x -=--有增根,则a 的值可能是 23.如果m 个人完成一项工作需d 天,则)(n m +个人完成这项工作需要的天数为
24. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时
25. x 克盐溶解在a 克水中,取这种盐水m 克,其中含盐( )克
26.大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖机的工作效率是小拖机的工作效率( )倍
27.一件工程甲单独做a 小时完成,乙单独做b 小时完成,甲、乙二人合作完成此项工作需要的小时数是( )
28.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( )
29.甲同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则列方程得 。
30.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )
二、计算 1.x x x x x x x --+⨯+÷+--36)3(446222 2 .x x x 11-+
3.)2
52(423--+÷--x x x x 4. )11111)(1(2-+---x x x
5.y
x x x y xy x 22+⋅+ 6.)11(2)2(y x y x xy y x y y x x +÷+⋅+++
三、解方程
12x +1 2x 2-7x +5 -31-x =4 2x -5 9
231312-=-++x x x
x x x x --=-+
222 11213122=-++++--x x x x x
四、(1)当m 为何值时,方程3x + 6x-1 - x+m x(x-1)
= 0有解
(2)10.当m 为何值时,方程3x + 6x-1 - x+m x(x-1) = 0有解。