【真卷】2015-2016年江苏省连云港市东海县八年级上学期数学期末试卷及答案
- 格式:doc
- 大小:448.02 KB
- 文档页数:28
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
江苏省连云港市东海县六校2015~2016学年度八年级上学期联考数学试卷(9月份)一、选择题(本大题8个小题,每小题4分,共32分)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.不能判断两个三个角形全等的条件是()A.有两角及一边对应相等 B.有两边及夹角对应相等C.有三条边对应相等 D.有两个角及夹边对应相等3.已知等腰三角形的一边等于4,一边等于7,那么它的周长等于()A.12 B.18 C.12或21 D.15或184.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN5.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接B E,则∠CBE等于()A.80°B.70°C.60°D.50°6.如图,AC=AD,BC=BD,则有()A.CD垂直平分AB B.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB7.如图,如果直线是多边形的对称轴,其中∠A=130°,∠B=110°,那么∠BCD的度数等于()A.60°B.50°C.40°D.70°8.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个二、填空题(本大题10个小题,每小题4分,共40分)9.写出一个你熟悉的轴对称图形的名称:.10.如果△ABC≌△DEC,∠B=60°,∠C=40°,那么∠E= °.11.如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .12.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)13.将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2= .14.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是.15.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于cm2.16.如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为.17.如图,在Rt△ABC中,∠C=90°,BD是三角形的角平分线,交AC于点D,AD=2.2cm,AC=3.7 cm,则点D到AB边的距离是cm.18.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.(1)若△AEF的周长为10cm,则BC的长为cm.(2)若∠EAF=100°,则∠BAC .三、解答题(本大题8个小题,共78分)19.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD .20.如图,△ABO与△CDO关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.21.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.22.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?23.尺规作图:(1)如图(1),已知:点A和直线l.求作:点A′,使点A′和点A关于直线l对称.(2)如图(2),已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.24.如图,已知直线l及其两侧两点A、B.(1)在直线l上求一点O,使到A、B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.25.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD.(1)图①中有对全等三角形,并把它们写出来.(2)求证:G是BD的中点.(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立?如果成立,请予证明.江苏省连云港市东海县六校2015~2016学年度八年级上学期联考数学试卷(9月份)参考答案与试题解析一、选择题(本大题8个小题,每小题4分,共32分)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.不能判断两个三个角形全等的条件是()A.有两角及一边对应相等 B.有两边及夹角对应相等C.有三条边对应相等 D.有两个角及夹边对应相等【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据以上内容判断即可.【解答】解:A、不符合全等三角形的判定定理,故本选项正确;B、符合全等三角形的判定定理SAS,故本选项错误;C、符合全等三角形的判定定理SSS,故本选项错误;D、符合全等三角形的判定定理ASA,故本选项错误;故选A.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.已知等腰三角形的一边等于4,一边等于7,那么它的周长等于()A.12 B.18 C.12或21 D.15或18【考点】等腰三角形的性质;三角形三边关系.【分析】根据等腰三角形的定义,可得第三边的长,根据三角形的周长,可得答案.【解答】解:腰长是4时,周长是4+4+7=15,腰长是7时,周长是7+7+4=18,综上所述:周长是15或18,故选;D.【点评】本题考查了等腰三角形的性质,利用了等腰三角形的性质.4.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【考点】全等三角形的判定.【专题】几何图形问题.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、A SA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.5.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接B E,则∠CBE等于()A.80°B.70°C.60°D.50°【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】计算题.【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【解答】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故选C.【点评】此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.6.如图,AC=AD,BC=BD,则有()A.CD垂直平分AB B.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB【考点】线段垂直平分线的性质.【分析】先根据题意得出AB是线段CD的垂直平分线,由线段垂直平分线的性质即可得出结论.【解答】解:∵AC=AD,BC=BD,∴AB是线段CD的垂直平分线.故选B.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.如图,如果直线是多边形的对称轴,其中∠A=130°,∠B=110°,那么∠BCD的度数等于()A.60°B.50°C.40°D.70°【考点】轴对称的性质.【分析】根据轴对称图形的特点,且直线m把多边形ABCDE分成二个四边形,再根据四边形的内角和是360°,通过计算便可解决问题.【解答】解:把AE与直线m的交点记作F,∵在四边形ABCF中,∠A=130°,∠B=110°,且直线m是多边形的对称轴;∴∠BCD=2∠BCF=2×(360°﹣130°﹣110°﹣90°)=60°.故选A【点评】此题考查了轴对称图形和四边形的内角和,关键是根据轴对称图形的特点解答.8.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个【考点】轴对称的性质.【专题】网格型.【分析】根据题意画出图形,找出对称轴及相应的三角形即可.【解答】解:如图:共3个,故选B.【点评】本题考查的是轴对称图形,根据题意作出图形是解答此题的关键.二、填空题(本大题10个小题,每小题4分,共40分)9.写出一个你熟悉的轴对称图形的名称:圆、矩形.【考点】轴对称图形.【专题】开放型.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:结合所学过的图形的性质,则有线段,等腰三角形,矩形,菱形,正方形,圆等.故答案为:圆、矩形等.【点评】考查了轴对称图形的概念,需能够正确分析所学过的图形的对称性.10.如果△ABC≌△DEC,∠B=60°,∠C=40°,那么∠E= 60 °.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠E=∠B,代入求出即可.【解答】解:∵△ABC≌△DEC,∠B=60°,∠C=40°,∴∠E=∠B=60°,故答案为:60.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.11.如图,△ABC≌△DEF,请根据图中提供的信息,写出x= 20 .【考点】全等三角形的性质.【专题】压轴题.【分析】先利用三角形的内角和定理求出∠A=70°,然后根据全等三角形对应边相等解答.【解答】解:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.故答案为:20.【点评】本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.12.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是AB=CD等(答案不唯一).(添一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】由已知二线平行,得到一对角对应相等,图形中又有公共边,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA 、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.13.将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2= 68°.【考点】翻折变换(折叠问题).【分析】根据∠1=56°和轴对称的性质,得∠ABC=2∠1,再根据平行线的性质即可求解.【解答】解:根据轴对称的性质,得∠ABC=2∠1=112°.∵AB∥CD,∴∠2=180°﹣112°=68°.【点评】此题主要是运用了轴对称的性质和平行线的性质.14.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是全等三角形,对应角相等.【考点】作图—基本作图;全等三角形的判定.【分析】首先连接CE、DE,然后证明△OCE≌△ODE,根据全等三角形的性质可得∠AOE=∠BO E.【解答】解:连接CE、DE,在△OCE和△ODE中,,∴△OCE≌△ODE(SSS),∴∠AOE=∠BOE.因此画∠AOB的平分线OE,其理论依据是:全等三角形,对应角相等.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握证明三角形全等的方法.15.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于12 cm2.【考点】角平分线的性质.【分析】过点P作PD⊥OA于点D,根据角平分线的性质求出PD的长,再由三角形的面积公式即可得出结论.【解答】解:过点P作PD⊥OA于点D,∵OP平分∠AOB,PB⊥OB,PB=3cm,∴PD=PB=3cm,∵OA=8cm,∴S△POA=OA•PD=×8×3=12cm2.故答案为:12.【点评】本题考查的是角平分线的性质,根据题意作出辅助线是解答此题的关键.16.如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为28cm .【考点】线段垂直平分线的性质.【分析】由DE是△ABC边AC的垂直平分线,根据线段垂直平分线的性质,可得AD=CD,继而可得△ABD的周长等于AB+BC.【解答】解:∵DE是△ABC边AC的垂直平分线,∴AD=CD,∵BC=18cm,AB=10cm,∴△ABD的周长为:AB+BD+AD=AB+BC+CD=AB+BC=28cm.故答案为:28cm.【点评】此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想的应用.17.如图,在Rt△ABC中,∠C=90°,BD是三角形的角平分线,交AC于点D,AD=2.2cm,AC=3.7 cm,则点D到AB边的距离是 1.5 cm.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD.【解答】解:如图,过点D作DE⊥AB于E,∵AD=2.2cm,AC=3.7cm,∴CD=1.5cm,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=1.5cm,即点D到直线AB的距离是1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.18.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.(1)若△AEF的周长为10cm,则BC的长为10 cm.(2)若∠EAF=100°,则∠BAC 1400.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)根据垂直平分线的性质以及△AEF的周长即可得出BC的长,(2)根据三角形内角和定理可求∠AEF+∠AFE=80°;根据垂直平分线性质,以及外角的性质即可得出∠BAC的度数.【解答】解:(1)∵ED、FG分别是AB、AC的垂直平分线,∴AE=BE,AF=CF,∵△AEF的周长为10cm,∴AC=10cm;(2)∵∠EAF=100°,∴∠AEF+∠AFE=80°,∵ED、FG分别是AB、AC的垂直平分线,∴EA=EB,FA=FC,∴∠AEF=2∠EAB,∠AFE=2∠CAF,∴∠BAC=∠EAF+∠EAB+∠FAC=100°+∠EAB+∠CAF=100°+(∠AEF+∠AFE)=140°.故答案为:10,140°.【点评】本题主要考查了线段的垂直平分线的性质等几何知识,线段的垂直平分线上的点到线段的两个端点的距离相等,以及外角的性质,难度适中.三、解答题(本大题8个小题,共78分)19.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD .【专题】证明题.【分析】根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.【解答】证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20.如图,△ABO与△CDO关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.【考点】全等三角形的判定与性质;中心对称.【专题】证明题;压轴题.【分析】根据中心对称得出OB=OD,OA=OC,求出OF=OE,根据SAS推出△DOF≌△BOE即可.【解答】证明:∵△ABO与△CDO关于O点中心对称,∴OB=OD,OA=OC,∵AF=CE,∴OF=OE,∵在△DOF和△BOE中∴△DOF≌△BOE(SAS),∴FD=BE.【点评】本题考查了全等三角形的性质和判定,中心对称的应用,主要考查学生的推理能力.21.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.【专题】常规题型.【分析】连接AD,易证△ACD≌△ABD,根据全等三角形对应角相等的性质可得∠EAD=∠FAD ,再根据∠AED=∠AFD,AD=AD,即可证明△ADE≌△ADF,根据全等三角形对应边相等的性质可得DE=DF.【解答】证明:连接AD,在△ACD和△ABD中,,∴ACD≌△ABD(SSS),∵DE⊥AE,DF⊥AF,∴∠AED=∠AFD=90°,∴在△ADE和△ADF中,,∴△ADE≌△ADF,∴DE=DF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质.22.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【考点】作图-轴对称变换;作图-平移变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.【解答】解:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【点评】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解题的关键.23.尺规作图:(1)如图(1),已知:点A和直线l.求作:点A′,使点A′和点A关于直线l对称.(2)如图(2),已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.【考点】作图-轴对称变换.【专题】作图题.【分析】(1)过点A作直线l的垂线,再截取AA′,使直线l平分AA′;(2)作∠B=∠α,然后取AB=a,以点A为圆心,以a为半径画弧,与∠B的另一边相交于点C,连接AC即可.【解答】解:(1)如图所示;(2)△ABC如图所示.【点评】本题考查了利用轴对称变换作图,作一个角等于已知角,都是基本作图,需熟记.24.如图,已知直线l及其两侧两点A、B.(1)在直线l上求一点O,使到A、B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.【考点】线段垂直平分线的性质;线段的性质:两点之间线段最短;角平分线的性质.【专题】作图题.【分析】(1)根据两点之间线段最短,连接AB,线段AB交直线l于点O,则O为所求点;(2)根据线段垂直平分线的性质连接AB,在作出线段AB的垂直平分线即可;(3)作B关于直线l的对称点B′,连接AB′交直线l与点Q,连接BQ,由三角形全等的判定定理求出△BDQ≌△B′DQ,再由全等三角形的性质可得出∠BQD=∠B′QD,即直线l平分∠AQB.【解答】解:(1)连接AB,线段AB交直线l于点O,∵点A、O、B在一条直线上,∴O点即为所求点;(2)连接AB,分别以A、B两点为圆心,以任意长为半径作圆,两圆相交于C、D两点,连接CD与直线l相交于P点,连接BD、AD、BP、AP、BC、AC,∵BD=AD=BC=AC,∴△BCD≌△ACD,∴∠BED=∠AED=90°,∴CD是线段AB的垂直平分线,∵P是CD上的点,∴PA=PB;(3)作B关于直线l的对称点B′,连接AB′交直线l与点Q,连接BQ,∵B与B′两点关于直线l对称,∴BD=B′D,DQ=DQ,∠BDQ=∠B′DQ,∴△BDQ≌△B′DQ,∴∠BQD=∠B′QD,即直线l平分∠AQB.【点评】本题考查的是两点之间线段最短、线段垂直平分线的性质及角平分线的性质,熟知各题的知识点是解答此题的关键.25.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD.(1)图①中有 3 对全等三角形,并把它们写出来.(2)求证:G是BD的中点.(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立?如果成立,请予证明.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理即可直接写出;(2)首先证明△ABF≌△CDE,得到BF=DG,然后证明△DEG≌△BFG即可证得;(3)与(2)证明方法相同.【解答】解:(1)图①中全等三角形有:△ABF≌△CDE,△ABG≌△CDG,△BFG≌△DEG.故答案是:3;(2)∵AE=CF,∴AF=CE,∴在直角△ABF和直角△CDE中,,∴△ABF≌△CDE,∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG,∴BG=DG,即G是BD的中点;(3)结论仍成立.理由是:)∵AE=CF,∴AF=CE,在直角△ABF和直角△CDE中,,∴△ABF≌△CDE,∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG,∴BG=DG,即G是BD的中点.【点评】本题考查了全等三角新的判定与性质,证明BF=DE是解决本题的关键.。
苏科版连云港市第一学期八年级数学期末试卷(含解析) 一、选择题1.正方形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .四个角都是直角 2.在平面直角坐标系中,下列各点在第二象限的是( ) A .(3,1) B .(3,-1)C .(-3,1)D .(-3,-1)3.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)4.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P 表示的数是( )A .132--B .132-+C .132-D .13- 5.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D .6.用科学记数法表示0.000031,结果是( )A .53.110-⨯B .63.110-⨯C .60.3110-⨯D .73110-⨯ 7.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h 8.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对9.如果0a b -<,且0ab <,那么点(),a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE的长为( )A .3xB .23xC .3xD .3x11.若2x -在实数范围内有意义,则x 的取值范围( )A .x≥2B .x≤2C .x >2D .x <2 12.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( ) A . B . C . D .13.如图,已知AB AD =,下列条件中,不能作为判定ABC ≌ADC 条件的是A .BC DC =B .BAC DAC ∠=∠ C .90BD ︒∠=∠= D .ACB ACD ∠=∠14.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL15.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC二、填空题16.在平面直角坐标系中,过点()5,6P 作PA x ⊥轴,垂足为点A ,则PA 的长为______________.17.点P (﹣5,12)到原点的距离是_____.18.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.19.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.20.如图,直线l 1:y =﹣12x +m 与x 轴交于点A ,直线l 2:y =2x +n 与y 轴交于点B ,与直线l 1交于点P (2,2),则△PAB 的面积为_____.21.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.22.如图,一艘轮船由海平面上的A地出发向南偏西45º的方向行驶50海里到达B地,再由B地向北偏西15º的方向行驶50海里到达C地,则A、C两地相距____海里.23.3的平方根是_________.24.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.25.如图,平面直角坐标系中,若点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,则k的值为_____.三、解答题26.已知BC=5,AB=1,AB⊥BC,射线CM⊥BC,动点P在线段BC上(不与点B,C重合),过点P作DP⊥AP交射线CM于点D,连接AD.(1)如图1,若BP=4,判断△ADP的形状,并加以证明.(2)如图2,若BP=1,作点C关于直线DP的对称点C′,连接AC′.①依题意补全图2;②请直接写出线段AC ′的长度.27.已如,在平面直角坐标系中,点A 的坐标为()6,0、点B 的坐标为(0,8),点C 在y 轴上,作直线AC .点B 关于直线AC 的对称点B ′刚好在x 轴上,连接CB '.(1)写出一点B ′的坐标,并求出直线AC 对应的函数表达式;(2)点D 在线段AC 上,连接DB 、DB '、BB ',当DBB ∆'是等腰直角三角形时,求点D 坐标;(3)如图②,在(2)的条件下,点P 从点B 出发以每秒2个单位长度的速度向原点O 运动,到达点O 时停止运动,连接PD ,过D 作DP 的垂线,交x 轴于点Q ,问点P 运动几秒时ADQ ∆是等腰三角形.28.已知:如图,,12AB DC =∠=∠,求证 :EBC ECB ∠=∠.29.涟水外卖市场竞争激烈,美团、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出750单,每单收入4元;超出750单的部分每单收入m 元.(1)若某“外卖小哥”某月送了500单,收入元;(2)若“外卖小哥”每月收入为y(元),每月送单量为x单,y与x之间的关系如图所示,求y与x之间的函数关系式;(3)若“外卖小哥”甲和乙在某个月内共送单1200单,且甲送单量低于乙送单量,共收入5000元,问:甲、乙送单量各是多少?30.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O﹣A﹣B﹣C﹣D(实线)表示甲,折线O﹣E﹣F﹣G(虚线)表示乙)(1)甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2)求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3)在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.31.如图,在△ABC中,AD平分∠BAC,点E在BA的延长线上,且EC∥AD.证明:△ACE 是等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.考点:(1)、正方形的性质;(2)、矩形的性质2.C解析:C【解析】【分析】由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.【详解】A. (3,1)位于第一象限;B. (3,-1)位于第四象限;C. (-3,1)位于第二象限;D. (-3,-1)位于第三象限;故选C.【点睛】此题主要考察直角坐标系的各象限坐标特点.3.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长将Rt ABC度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.4.A解析:A【解析】根据可知AP=AB ,在直角三角形ABC 中,由勾股定理可求AB 的长度,由点P 在0的左边,即可得到答案.【详解】解:如图所示,由图可知,AP=AB ,△ABC 是直角三角形,∵AC=2,BC=3,由勾股定理,得: 22222313AB AC BC -+=,∴13AP AB ==∴132PC =, ∵点P 在点C 的左边,点C 表示的数为0,∴点P 表示的数为:132)132-=;故选择:A.【点睛】本题考查了利用数轴表示无理数,解题的关键是掌握利用数轴表示有理数,依据掌握勾股定理计算长度.5.C解析:C【解析】【分析】对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误.故选:C .本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.6.A解析:A【解析】【分析】根据科学记数法的表示形式10(1||10)n a a ⨯≤<(n 为整数)即可求解【详解】0.000031-5=3.110⨯,故选:A .【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键.7.C解析:C【解析】甲的速度是:20÷4=5km/h ;乙的速度是:20÷1=20km/h ;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C .8.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y 随x 的增大而减小,∵1<2,∴a >b .故选A .9.B解析:B【解析】【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <,∴a 0,0b <>∴点(),a b 在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.D解析:D【解析】【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可.【详解】解:∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,AB=BC ,∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE , ∴∠E=∠CDE ,∵∠E+∠CDE=∠ACB ,∴∠E=30°=∠DBC ,∴BD=DE ,∵BD 是AC 中线,CD=x ,∴AD=DC=x ,∵△ABC 是等边三角形,∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==DE BD ∴==故选:D .【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.11.A解析:A【解析】【分析】二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.【详解】∴x−2≥0,解得x≥2.故答案选A.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 12.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.13.D解析:D【解析】【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【详解】解:A、AB=AD,BC=DC,再加上公共边AC=AC可利用SSS判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC可利用HL判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.15.C解析:C【解析】试题分析:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.考点:全等三角形的判定.二、填空题16.【解析】【分析】根据题意得出PA就是P到x轴的距离,即可得出结论.【详解】∵PA⊥x轴,∴PA=|6|=6.故答案为:6.【点睛】本题考查了点到x轴的距离.掌握点到坐标轴的距离是解解析:6【解析】【分析】根据题意得出PA就是P到x轴的距离,即可得出结论.【详解】∵PA⊥x轴,∴PA=|6|=6.故答案为:6.【点睛】本题考查了点到x轴的距离.掌握点到坐标轴的距离是解答本题的关键.17.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.19.x<1【解析】【分析】当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;解析:x<1【解析】【分析】当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;故答案为x<1.考点:一次函数与一元一次不等式.20.【解析】【分析】把点P(2,2)分别代入y=﹣x+m和y=2x+n,求得m=3,n=﹣2,解方程得到A(6,0),B(0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P(2,解析:【解析】【分析】把点P(2,2)分别代入y=﹣12x+m和y=2x+n,求得m=3,n=﹣2,解方程得到A(6,0),B(0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P(2,2)分别代入y=﹣12x+m和y=2x+n,得,m=3,n=﹣2,∴直线l1:y=﹣12x+3,直线l2:y=2x﹣2,对于y=﹣12x+3,令y=0,得,x=6,对于y=2x﹣2,令x=0,得,y=﹣2,∴A(6,0),B(0,﹣2),∵直线l1:y=﹣12x+3与y轴的交点为(0,3),∴△PAB的面积=12×5×6﹣12×5×2=10,故答案为:10.【点睛】本题考查了两直线相交与平行问题,三角形的面积的计算,正确的识别图形是解题的关键.21.8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长AB===10米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本解析:8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.22.50【解析】【分析】由已知可得△ABC是等边三角形,从而不难求得AC的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC是等边三角形,从而不难求得AC的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC是等边三角形是解题的关键.23.【解析】试题解析:∵()2=3,∴3的平方根是.故答案为.解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为24.15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,BD CDADB EDCAD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=12AD•AB=15.故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.25.k=±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当解析:k=±1.【解析】【分析】根据一次函数y =kx +4(k ≠0)图象一定过点(0,4),点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y =kx +4(k ≠0)与直线AB 平行时,②当直线y =kx +4(k ≠0)与直线AB 不平行时分别进行解答即可.【详解】一次函数y =kx +4(k ≠0)图象一定过(0,4)点,①当直线y =kx +4(k ≠0)与直线AB 平行时,如图1,设直线AB 的关系式为y =kx +b ,把A (3,0),B (4,1)代入得,3041k b k b +=⎧⎨+=⎩,解得,k =1,b =﹣3, ∴一次函数y =kx +4(k ≠0)中的k =1;②当直线y =kx +4(k ≠0)与直线AB 不平行时,如图2,根据题意,直线y =kx +4(k ≠0)垂直平分线段AB ,此时一定经过点C ,∴点C 的坐标为(4,0),代入得,4k +4=0,解得,k =﹣1,因此,k =1或k =﹣1.故答案为:k =±1.【点睛】本题考查了一次函数的图象和性质,掌握两条平行直线的k 值相等和一次函数的图象和性质是解决问题的关键.三、解答题26.(1)△ADP是等腰直角三角形.证明见解析;(2)①补图见解析;②10【解析】【分析】(1)先判断出PC=AB,再用同角的余角相等判断出∠APB=∠PDC,得出△ABP≌△PCD (AAS),即可得出结论;(2)①利用对称的性质画出图形;②过点C'作C'Q⊥BA交BA的延长线于Q,先求出CP=4,AB=AP,∠CPD=45°,进而得出C'P=CP=4,∠C'PD=∠CPD=45°,再判断出四边形BQC'P是矩形,进而求出AQ=BQ﹣AB=3,最后用勾股定理即可得出结论.【详解】(1)△ADP是等腰直角三角形.证明如下:∵BC=5,BP=4,∴PC=1.∵AB=1,∴PC=AB.∵AB⊥BC,CM⊥BC,DP⊥AP,∴∠B=∠C=90°,∠APB+∠DPC=90°,∠PDC+∠DPC=90°,∴∠APB=∠PDC.在△ABP和△PCD中,∵B CAPB PDCAB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△PCD(AAS),∴AP=PD.∵∠APD=90°,∴△ADP是等腰直角三角形.(2)①依题意补全图2;②过点C'作C'Q⊥BA交BA的延长线于Q.∵BP=1,AB=1,BC=5,∴CP=4,AB=AP.∵∠ABP=90°,∴∠APB=45°.∵∠APD=90°,∴∠CPD=45°,连接C'P.∵点C与C'关于DP对称,∴C'P=CP=4,∠C'PD=∠CPD=45°,∴∠CPC'=90°,∴∠BPC'=90°,∴∠Q=∠ABP=∠BPC'=90°,∴四边形BQC'P是矩形,∴C'Q=BP=1,BQ=C'P=4,∴AQ=BQ﹣AB=3.在Rt△AC'Q中,AC′10=.【点睛】本题考查了矩形的判定与性质以及全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,构造出直角三角形是解答本题的关键.27.(1)(4,0)B '-,132y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒或102秒或3.75秒. 【解析】【分析】(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:【详解】(1)(6,0),(0,8)A B ,6,8OA OB ∴==,90AOB ︒∠=,222OA OB AB ∴+=,22268AB ∴+=,10AB ∴=,点B ′、B 关于直线AC 的对称,AC ∴垂直平分BB ',,10CB CB AB AB ''∴===,(4,0)B '∴-,设点C 坐标为(0,)m ,则OC m =,8CB CB m '∴==-,在Rt COB ∆'中,COB ∠'=90°,222OC OB CB ''∴+=,2224(8),m m ∴+=-3m ∴=,∴点C 坐标为(0,3).设直线AC 对应的函数表达式为(0)y kx b k =+≠,把(6,0),(0,3)A C 代入,得603k b b +=⎧⎨=⎩,解得123kb⎧=-⎪⎨⎪=⎩,∴直线AC对应的函数关系是为132y x=-+,(2)AC垂直平分BB',DB DB='∴,BDB∆'∴是等腰直角三角形,90BDB∠'=∴°过点D作DE x⊥轴于点E,DF y⊥轴于点F.90DFO DFB DEB'︒∴∠=∠=∠=,360EDF DFB DEO EOF︒∠=-∠-∠-∠,90EOF︒∠=,90EDF︒∴∠=,EDF BDB'∴∠=∠,BDF EDB'∴∠=∠,FDB EDB∴∆∆'≌,DF DE∴=,∴设点D坐标为(,)a a,把点(,)D a a代入132y x=-+,得0.53a a=-+2a∴=,∴点D坐标为(2,2),(3)同(2)可得PDF QDE∠=∠又2,90DF DE PDF QDE︒==∠=∠=PDF QDE∴∆∆≌PF QE∴=①当DQ DA=时,DE x⊥∵轴,4QE AE==∴4PF QE ∴==642BP BF PF ∴=-=-=∴点P 运动时间为1秒.②当AQ AD =时,(6,0),(2,2)A D20,AD ∴=204AQ ∴=-,204PF QE ∴==-6(204)1020BP BF PF ∴=-=--=-∴点P 运动时间为10202-秒.③当QD QA =时,设QE n =,则4QD QA n ==-在Rt DEQ ∆中,90DEQ ∠=°,222DE EQ DQ ∴+=2222(4), 1.5n n n ∴+=-∴=1.5PF QE ∴==6 1.57.5BP BF PF ∴=+=+=∴点P 运动时间为3.75秒.综上所述,点P 运动时间为1秒或3.75秒. 【点睛】此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解.28.见解析【解析】【分析】利用“角角边”证明△ABE 和△DCE 全等,根据全等三角形对应边相等可得BE=CE ,然后利用等边对等角证明即可.【详解】证明:在△ABE 和△DCE 中, 12AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE=CE ,∴∠EBC=∠ECB .【点睛】本题考查了全等三角形的判定与性质,等边对等角的性质,熟练掌握三角形全等的判定方法是解题的关键.29.(1)2000;(2)y =5x ﹣750;(3)甲送250单,乙送950单【解析】【分析】(1)根据题意可以求得“外卖小哥”某月送了500单的收入情况;(2)分段函数,运用待定系数法解答即可;(3)根据题意,利用分类讨论的方法可以求得甲、乙送单量各是多少.【详解】解:(1)由题意可得,“外卖小哥”某月送了500单,收入为:4×500=2000元,故答案为:2000;(2)当0≤x <750时,y =4x当x≥750时,当x=4时,y=3000设y=kx+b,根据题意得3000750 55001250k bk b=+⎧⎨=+⎩,解得5750kb=⎧⎨=-⎩,∴y=5x﹣750;(3)设甲送a单,则a<600<750,则乙送(1200﹣a)单,若1200﹣a<750,则4a+4(1200﹣a)=4800≠5000,不合题意,∴1200﹣a>750,∴4a+5(1200﹣a)﹣750=5000,∴a=250,1200﹣a=950,故甲送250单,乙送950单.【点睛】本题考查的知识点是一次函数的应用以及二元一次方程组,从函数图象中找出有用的信息是解此题的关键.30.(1)1小时,30千米/时;(2)y=24x﹣24(1≤x≤3.5);(3)x=17 3 27【解析】【分析】(1)根据题意结合图象解答即可;(2)求出乙的速度,再利用待定系数法解答即可;(3)根据(2)的结论列方程解答即可.【详解】(1)由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6﹣4)=30(千米/时),故答案为:1;30.(2)甲从P地到Q地的速度为20(千米/时),所以乙的速度为:(6+1.5×20)÷1.5=24(千米/时),60÷24=2.5(小时),设乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x+b,则24+b=0,解得b=﹣24.∴乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x﹣24(1≤x≤3.5).(3)根据题意得,30(x﹣4)+(24x﹣24)=60﹣8,解得x=17327.答:乙两人相遇前,当时间x=17327时,甲,乙两骑手相距8千米.【点睛】此题考查了一次函数与一元一次方程的综合运用,熟练掌握,即可解题.31.见解析.【解析】【分析】利用角平分线的性质及平行线的性质可得∠E=∠ACE,根据等角对等边可得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵EC∥AD,∴∠BAD=∠E,∠CAD=∠ACE,∴∠E=∠ACE,∴△ACE是等腰三角形.【点睛】本题考查了等腰三角形的判定,即有两个角相等的三角形是等腰三角形,还涉及了两直线平行同位角相等,两直线平行内错角相等,灵活利用角平分线的性质及平行线的性质证明角相等是解题的关键.。
2015-2016学年江苏省连云港市海州区八年级(上)期末数学试卷一、选择题(每小题3分,满分24分)1.在平面直角坐标系中,在x轴上的点是( )A.(﹣1,2)B.(﹣2,﹣3)C.(0,3)D.(﹣3,0)2.下列是勾股数的一组是( )A.4,5,6 B.5,7,12 C.3,4,5 D.12,13,153.如图银行标志中,是轴对称图形的个数为( )A.4个B.3个C.2个D.1个4.在下列各数,3π,,6.1010010001…,中,无理数的个数是( )A.5 B.4 C.3 D.25.一次函数y=﹣x﹣1不经过的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是( )A.SAS B.ASA C.AAS D.SSS7.用图象法解方程组时,下图中正确的是( )A.B.C.D.8.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )A.B.C.D.二、填空题(每小题4分,满分40分)9.4的平方根是__________.10.取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈__________.11.点A(﹣5,3)关于y轴对称的点的坐标是__________.12.将点(4,﹣2)向右平移3个单位长度得到点的坐标是__________.13.若正比例函数的图象经过点(3,﹣6),则其函数关系式为__________.14.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为__________.15.已知点M(1,a)和点N(﹣2,b)是一次函数y=﹣3x+1图象上的两点,则a与b的大小关系是__________.16.如图,长方形OABC的边OA长为1,边AB长为,OC在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交数轴上原点左边于一点D,则点D表示的实数是__________.17.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式0<k2x <k1x+b的解集为__________.18.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为__________.三、解答题(共8大题,满分86分)19.(1)求式中的x的值:(x+2)3+4=﹣23(2)计算:++(﹣)﹣1.20.如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C的坐标分别为(﹣4,0)和(0,0)(1)写出A,D,E,F的坐标;(2)求正方形CDEF的面积.21.如图:AB=CD,AE=DF,CE=FB.求证:AE∥DF.22.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.(1)分别求总投资额y1(万元)和总利润y2(万元)关于新家电的总产量x(台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情况如何?(3)请你利用第(1)小题中y2与x的函数关系式,分析该公司的盈亏情况.(注:总投资=前期投资+后期其他投资,总利润=总产值﹣总投资)24.课堂上,某老师给出一道数学题:如图1所示,D点在AB上,E点在AC的延长线上,且BD=CE,连接DE交BC于F,若F点是DE的中点,证明:AB=AC.小明的思路是:过D作DG∥AE,交BC于点G,如图2;小丽的思路是过E作EH∥AB,交BC的延长线于点H,如图3.请根据小明或小丽的思路任选一种完成该题的证明过程.25.某汽车公司有豪华和普通两种客车在甲、乙两城市之间运营.已知每隔1小时有一辆豪华客车从甲城开往乙城,如图所示,OA是第一辆豪华客车离开甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象,BC是一辆从乙城开往甲城的普通客车距甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象.请根据图中提供的信息,解答下列问题:(1)点B的横坐标0.5的意义是普通客车发车时间比第一辆豪华客车发车时间__________小时,点B的纵坐标480的意义是__________.(2)请你在原图中直接画出第二辆豪华客车离开甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象.(3)若普通客车的速度为80千米/时.①求BC的函数表达式,并写出自变量t的取值范围;②求第二辆豪华客车出发后多长时间与普通客车相遇;③直接写出这辆普通客车在行驶途中与迎面而来的相邻两辆豪华客车相遇的间隔时间.26.(14分)如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.2015-2016学年江苏省连云港市海州区八年级(上)期末数学试卷一、选择题(每小题3分,满分24分)1.在平面直角坐标系中,在x轴上的点是( )A.(﹣1,2)B.(﹣2,﹣3)C.(0,3)D.(﹣3,0)【考点】点的坐标.【分析】根据x轴上点的纵坐标等于零,可得答案.【解答】解:A、(﹣1,2)在第二象限,故A错误;B、(﹣2,﹣3)在第三象限,故B错误;C、(0,3)在y轴上,故C错误;D、(﹣3,0)在x轴上,故D正确;故选:D.【点评】本题考查了点的坐标,x轴上点的纵坐标等于零,y轴上点的横坐标等于零.2.下列是勾股数的一组是( )A.4,5,6 B.5,7,12 C.3,4,5 D.12,13,15【考点】勾股数.【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、∵42+52=41≠62,∴此选项不符合题意;B、∵52+72=74≠122,∴此选项不符合题意;C、∵32+42=52,且3,4,5都是正整数,∴此选项符合题意;D、∵122+132≠152,∴此选项不符合题意.故选:C.【点评】本题考查了勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数.一组勾股数必须同时满足两个条件:①三个数都是正整数,②两个较小正整数的平方和等于最大的正整数的平方,这两个条件同时成立,缺一不可.3.如图银行标志中,是轴对称图形的个数为( )A.4个B.3个C.2个D.1个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第1,2,4个图形是轴对称图形,共3个.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.在下列各数,3π,,6.1010010001…,中,无理数的个数是( )A.5 B.4 C.3 D.2【考点】无理数.【分析】无理数就是无限不循环小数.有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,3π,6.1010010001…,是无理数,无理数的个数是4个;故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.一次函数y=﹣x﹣1不经过的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【专题】压轴题.【分析】由于k=1>0,b=﹣1,由此可以确定函数的图象经过的象限.【解答】解:∵y=﹣x﹣1,∴k=﹣1<0,b=﹣1<0,∴它的图象选B经过的象限是第二、三、四象限,不经过第一象限.故选A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.6.如图,用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的判定;作图—基本作图.【分析】利用三角形全等的判定证明.【解答】解:从角平分线的作法得出,△AFD与△AED的三边全部相等,则△AFD≌△AED.故选D.【点评】考查了全等三角形的判定,关键是根据三边对应相等的两个三角形全等(SSS)这一判定定理.7.用图象法解方程组时,下图中正确的是( )A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【解答】解:解方程组的两个方程可以转化为:y=x﹣2和y=﹣2x+4;只有C符合这两个函数的图象.故选C.【点评】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.8.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )A.B.C.D.【考点】动点问题的函数图象.【专题】数形结合.【分析】求出CE的长,然后分①点P在AD上时,利用三角形的面积公式列式得到y与x的函数关系;②﹣S△ADP﹣S△CEP列式整理得到y与x的关系式;③点P在CE上时,点P在CD上时,根据S△APE=S梯形AECD利用三角形的面积公式列式得到y与x的关系式,然后选择答案即可.【解答】解:∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵点E是BC边上靠近点B的三等分点,∴CE=×3=2,①点P在AD上时,△APE的面积y=x•2=x(0≤x≤3),②点P在CD上时,S△APE=S﹣S△ADP﹣S△CEP,梯形AECD=(2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+﹣5+x,=﹣x+,∴y=﹣x+(3<x≤5),③点P在CE上时,S△APE=×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故选:A.【点评】本题考查了动点问题函数图象,读懂题目信息,根据点P的位置的不同分三段列式求出y与x的关系式是解题的关键.二、填空题(每小题4分,满分40分)9.4的平方根是±2.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈3.142.【考点】近似数和有效数字.【分析】把圆周率π=3.1415926…的万分位上的数字进行四舍五入即可.【解答】解:圆周率π=3.1415926…≈3.142(精确到0.001).故答案为:3.142.【点评】本题考查了近似数和有效数字,精确度的意义,近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.近似数精确到哪一位,应当看末位数字实际在哪一位.11.点A(﹣5,3)关于y轴对称的点的坐标是(5,3).【考点】关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【解答】解:∵平面直角坐标系中关于y轴对称的点的坐标特点:横坐标相反数,纵坐标不变,可得:点A(﹣5,3)关于y轴的对称点的坐标是(5,3).故答案为(5,3).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.将点(4,﹣2)向右平移3个单位长度得到点的坐标是(7,﹣2).【考点】坐标与图形变化-平移.【分析】把点(4,﹣2)的横坐标加3,纵坐标不变即可得到对应点的坐标.【解答】解:∵将点(4,﹣2)向右平移3个单位长度,∴得到的点的坐标是(4+3,﹣2),即:(7,﹣2),故答案为(7,﹣2).【点评】本题主要考查了坐标系中点的平移规律,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.若正比例函数的图象经过点(3,﹣6),则其函数关系式为y=﹣2x.【考点】待定系数法求正比例函数解析式.【分析】设正比例函数的解析式是y=kx,把点(3,﹣6)代入即可求得k的值,从而求解.【解答】解:设正比例函数的解析式是y=kx(k≠0),把(3,﹣6)代入得:3k=6,解得:k=﹣2.则函数的解析式是:y=﹣2x.故答案是:y=﹣2x.【点评】本题考查了待定系数法求函数的解析式,待定系数法是求函数的解析式的基本方法.14.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8.【考点】线段垂直平分线的性质.【专题】压轴题.【分析】由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.【解答】解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.【点评】本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相应线段相等并进行等量代换.15.已知点M(1,a)和点N(﹣2,b)是一次函数y=﹣3x+1图象上的两点,则a与b的大小关系是a<b.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的增减性,k<0,y随x的增大而减小解答.【解答】解:∵k=﹣3<0,∴y随x的增大而减小,∵1>﹣2,∴a<b.故答案是:a<b.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.16.如图,长方形OABC的边OA长为1,边AB长为,OC在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交数轴上原点左边于一点D,则点D表示的实数是﹣2.【考点】实数与数轴;勾股定理.【专题】计算题.【分析】根据勾股定理计算出OB长度,根据弧的性质知OB=OD.进而求出答案.【解答】解:∵长方形OABC的边OA长为1,边AB长为,∴OB==2,∵OB=OD,∴OD=2,∵O为原点,点D在原点左侧,∴点D表示的实数是﹣2.故答案为:﹣2.【点评】题目考查了实数与数轴,通过勾股定理为桥梁,计算数轴上点所表示的数.题目整体较为简单,适合随堂训练.17.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式0<k2x <k1x+b的解集为﹣1<x<0.【考点】一次函数与一元一次不等式.【分析】根据函数与不等式的关系:l2在l1下方且在x轴上方部分,可得答案.【解答】解:由图象,得关于x的不等式0<k2x<k1x+b的解集为﹣1<x<0,故答案为:﹣1<x<0.【点评】本题考查了一次函数与一元一次不等式,l2在l1下方且在x轴上方部分是不等式组的解集.18.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为1或3.【考点】一次函数综合题.【分析】分两种情况:①当点F在DC之间时,作出辅助线,求出点F的坐标即可求出k的值;②当点F与点C重合时求出点F的坐标即可求出k的值.【解答】解:①如图,作AG⊥EF交EF于点G,连接AE,∵AF平分∠DFE,∴DF=AG=2,在RT△ADF和RT△AGF中,,∴RT△ADF≌RT△AGF(HL),∴DF=FG,∵点E是BC边的中点,∴BE=CE=1,∴AE==,∴GE==1,∴在RT△FCE中,EF2=FC2+CE2,即(DF+1)2=(2﹣DF)2+1,解得DF=,∴点F(,2),把点F的坐标代入y=kx得:2=k,解得k=3;②当点F与点C重合时,∵四边形ABCD是正方形,∴AF平分∠DFE,∴F(2,2),把点F的坐标代入y=kx得:2=2k,解得k=1.故答案为:1或3.【点评】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质理,及勾股定解题的关键是分两种情况求出k.三、解答题(共8大题,满分86分)19.(1)求式中的x的值:(x+2)3+4=﹣23(2)计算:++(﹣)﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题;实数.【分析】(1)方程整理后,利用立方根定义计算即可求出解;(2)原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:(1)方程整理得:(x+2)3=﹣27,开立方得:x+2=﹣3,解得:x=﹣5;(2)原式=5﹣2﹣6=﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C的坐标分别为(﹣4,0)和(0,0)(1)写出A,D,E,F的坐标;(2)求正方形CDEF的面积.【考点】坐标与图形性质.【分析】(1)先利用点B和点C的坐标画出直角坐标系,然后根据点的坐标的意义即可得到点A、D、E、F 的坐标;(2)利用正方形的面积公式和勾股定理解答即可.【解答】解:(1)如图:A(﹣6,3),D(2,1),E(1,3),F(﹣1,2);(2)因为CD=,所以正方形CDEF的面积=5.【点评】本题考查了坐标与图形性质:利用点的坐标求相应的线段长和判断线段与坐标轴的位置关系;记住坐标系中各特殊点的坐标特征.21.如图:AB=CD,AE=DF,CE=FB.求证:AE∥DF.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】如图,首先证明CF=BE,此为解题的关键性结论;证明△ABE≌△DCF,得到∠AEF=∠DFE,即可解决问题.【解答】证明:如图,∵CE=BF,∴CF=BE;在△ABE与△DCF中,,∴△ABE≌△DCF(SSS),∴∠AEF=∠DFE,∴AE∥DF.【点评】该题主要考查了全等三角形的判定、平行线的判定等几何知识点及其应用问题;解题的方法是深入观察图形,准确找出图形中隐含的等量关系;解题的关键是灵活运用全等三角形的判定等几何知识点来分析、判断、推理或解答.22.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【考点】勾股定理的应用.【分析】根据小球滚动的速度与机器人行走的速度相等,运动时间相等得出BC=CA.设AC为x,则OC=9﹣x,根据勾股定理即可得出结论.【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.23.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.(1)分别求总投资额y1(万元)和总利润y2(万元)关于新家电的总产量x(台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情况如何?(3)请你利用第(1)小题中y2与x的函数关系式,分析该公司的盈亏情况.(注:总投资=前期投资+后期其他投资,总利润=总产值﹣总投资)【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接列出两个函数解析式;(2)再把x=900代入y2中可求出盈利额,负则说明亏损,正则说明盈利;(3)利用y2的解析式,让y2>0则可算出生产多少会盈利,y2=0不亏损也不盈利,y2<0则会亏损.【解答】解:(1)根据题意,y1=0.3x+200,y2=0.5x﹣(0.3x+200)=0.2x﹣200;(2)把x=900代入y2中,可得y2=0.2×900﹣200=﹣20<0,∴当总产量为900台时,公司会亏损,亏损额为20万元;(3)根据题意,当0.2x﹣200<0时,解得x<1000,说明总产量小于1000台时,公司会亏损;当0.2x﹣200>0时,解得x>1000,说明总产量大于1000台时,公司会盈利;当0.2x﹣200=0时,解得x=1000,说明总产量等于1000台时,公司不会亏损也不会盈利.【点评】本题利用了总投资=前期投资+后期其他投资,总利润=总产值﹣总投资.以及解不等式的有关知识.(大于0、等于0、小于0的含义要弄清楚).24.课堂上,某老师给出一道数学题:如图1所示,D点在AB上,E点在AC的延长线上,且BD=CE,连接DE交BC于F,若F点是DE的中点,证明:AB=AC.小明的思路是:过D作DG∥AE,交BC于点G,如图2;小丽的思路是过E作EH∥AB,交BC的延长线于点H,如图3.请根据小明或小丽的思路任选一种完成该题的证明过程.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】图2,根据平行线求出∠DGF=∠ECF,∠GDF=∠E,根据AAS推出△DFG≌△EFC,根据全等三角形的性质得出DG=CE,求出BD=DG,求出∠B=∠ACB即可;图3,根据平行线的性质得出∠B=∠H,根据AAS推出△BDF≌△HEF,根据全等三角形的性质得出EH=BD,求出∠B=∠ACB即可.【解答】证明:图2,∵DG∥AE,∴∠DGF=∠ECF,∠GDF=∠E,∵F点是DE的中点,∴DF=EF,∵在△DFG和△EFC中∴△DFG≌△EFC(AAS),∴DG=CE,∵BD=CE,∴BD=DG,∴∠B=∠DGB,∵DG∥AE,∴∠DGB=∠ACB,∴∠B=∠ACB,∴AB=AC;图3,∵EH∥AB,∴∠B=∠H,在△BDF和△HEF中∴△BDF≌△HEF(AAS),∴EH=BD,∵BD=CE,∴CE=EH,∴∠H=∠HCE,∵∠H=∠B,∠HCE=∠ACB,∴∠B=∠ACB,∴AB=AC.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等.25.某汽车公司有豪华和普通两种客车在甲、乙两城市之间运营.已知每隔1小时有一辆豪华客车从甲城开往乙城,如图所示,OA是第一辆豪华客车离开甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象,BC是一辆从乙城开往甲城的普通客车距甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象.请根据图中提供的信息,解答下列问题:(1)点B的横坐标0.5的意义是普通客车发车时间比第一辆豪华客车发车时间晚0.5小时,点B的纵坐标480的意义是甲、乙两城相距480km.(2)请你在原图中直接画出第二辆豪华客车离开甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象.(3)若普通客车的速度为80千米/时.①求BC的函数表达式,并写出自变量t的取值范围;②求第二辆豪华客车出发后多长时间与普通客车相遇;③直接写出这辆普通客车在行驶途中与迎面而来的相邻两辆豪华客车相遇的间隔时间.【考点】一次函数的应用.【专题】应用题.【分析】(1)利用两点法代入BC点坐标即可求出解析式;(2)写出第二辆豪华客车的函数解析式,与普通客车联立解方程组;(3)求出与普通客车相遇的时间在上一问的基础上求差就可以.【解答】解:(1)晚0.5,甲、乙两城相距480km.(2)(3)①设直线BC的解析式为s=kt+b,∵B(0.5,480),C(6.5,0),∴,解得:,∴s=﹣80t+520,自变量t的取值范围是0.5≤t≤6.5.②设直线MN的解析式为s=kt+b,∵M(1,0),N(5,480),∴,解得,∴s=120t﹣120.由①可知直线BC解析式为s=﹣80t+520,∴120t﹣120=﹣80t+520,解得t=3.2,∴3.2﹣1=2.2.答:第二辆豪华客车出发2.2h后与普通客车相遇.③根据题意,普通客车的解析式为y=120t,∴120t=520﹣80t,解得t=2.6h,3.2﹣2.6=0.6小时(或36分钟).故答案为:晚0.6h;甲、乙两城相距300km.【点评】本题考查了一次函数的应用,信息量比较大考查点也比较多,有待定系数法求一次函数解析式,还有一次函数与二元一次方程组的应用,因此熟练掌握教材基础知识和基本技能对学习好数学非常重要.26.(14分)如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.【解答】解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).【点评】本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.。
2015-2016学年江苏省连云港市东海县八年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列图形中,有且只有三条对称轴的是( )A.B.C.D.2.一个数的平方根等于这个数的立方根,则这个数是( )A.1 B.±1 C.0,1 D.03.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b24.如图,AC=AD,BC=BD,则有( )A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB5.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )A.20 B.12 C.14 D.136.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A.3个B.2个C.1个D.0个7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( )A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF8.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A.B.C.D.二、填空题(共10小题,每小题4分,满分40分)9.﹣8的立方根是__________.10.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是__________.11.已知等腰三角形的一边等于3,周长等于12,则它的底边长等于__________.12.如图,已知AB=AC,请你添加一个条件:__________,使△ABD≌△ACD.13.如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C=__________度.14.如图,已知∠1=∠2=90°,AD=AE,那么图中有__________对全等三角形.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=__________度.16.甲,乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,两船相距__________海里.17.已知一个三角形的周长为10cm,且它的三条角平分线的交点到这个三角形一边的距离是2cm,则这个三角形的面积是__________.18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为__________.三、解答题(共9小题,满分86分)19.计算与求值:(1)计算:;(2)若2(x+2)2=18,求x的值.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为__________.21.画图与说理:如图,在△ABC中.(1)按要求分步骤画图:①用尺规作出∠BAC的角平分线AD;②过点C画AB的平分线,交AD的延长线于点E;(不写作法,保留作图痕迹)(2)在(1)的作图结果上,指出图中存在的等腰三角形,并说明理由.22.已知:如图,△ABC中,AB=AC,CD⊥AB于点D.求证:∠BAC=2∠DCB.(温馨提示:要用到三线合一的性质哟!聪明的你想到了吗?)23.如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.24.如图,在四边形ABCD中,AD∥BC,AD=BC,∠ABC=90°,点E在BC的延长线上,连接AE,点F为AE的中点.求证:DF=FC.25.如图,长2.5m的梯子靠在墙上,梯子的底都离墙的底端1.5m.(1)求梯子的顶端与地面的距离h;(2)若如图2,梯子的底部向墙的底端前移0.8米,那么梯子的顶端是否也上移了0.8米?若是,说明理由;若不是,求出上移了多少米?26.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=__________+__________;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:__________;(3)结合勾股定理有关知识,说明你的结论的正确性.27.(14分)如图1,△ABC和△ADE为等边三角形,D,E分别在AC,AB上,M,N分别为EB,CD的中点,易证:CD=BE.△AMN是等边三角形.请回答下列问题.(1)如图2,当把△ADE绕点A旋转到点E恰好落在AC上时.①CD与BE还相等吗?若相等,请证明;若不等,请说明理由;②△AMN还是等边三角形吗?若是,请证明;若不是,请说明理由.(2)如图3,当把△ADE绕点A旋转到点E恰好落在C、D的连线段上时.①求证:AD∥BE;②若此时AD⊥AC,且△ADE的面积为3,则四边形ABCD的面积为__________.2015-2016学年江苏省连云港市东海县八年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列图形中,有且只有三条对称轴的是( )A.B.C.D.【考点】轴对称图形.【分析】首先确定轴对称图形,再根据对称轴的概念,确定对称轴的条数.【解答】解:A、不是轴对称图形;B、有2条对称轴;C、有3条对称轴;D、有4条对称轴.故选C.【点评】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.能够熟练说出轴对称图形的对称轴条数.2.一个数的平方根等于这个数的立方根,则这个数是( )A.1 B.±1 C.0,1 D.0【考点】平方根;立方根.【分析】根据平方根与立方根的定义求解.【解答】解:0的平方根等于0的立方根,故选:D.【点评】本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作.也考查了平方根.3.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2【考点】勾股定理.【专题】计算题.【分析】由已知两角之和为90度,利用三角形内角和定理得到三角形为直角三角形,利用勾股定理即可得到结果.【解答】解:∵在△ABC中,∠A+∠C=90°,∴∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:a2+c2=b2.故选C【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.4.如图,AC=AD,BC=BD,则有( )A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB【考点】线段垂直平分线的性质.【专题】压轴题.【分析】由已知条件AC=AD,利用线段的垂直平分线的性质的逆用可得点A在CD的垂直平分线上,同理,点B也在CD的垂直平分线上,于是A是符合题意的,是正确的,答案可得.【解答】解:∵AC=AD,BC=BD,∴点A,B在线段CD的垂直平分线上.∴AB垂直平分CD.故选A.【点评】本题考查的知识点为:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;两点确定一条直线.分别应用垂直平分线性质定理的逆定理是解答本题的关键.5.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )A.20 B.12 C.14 D.13【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.6.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A.3个B.2个C.1个D.0个【考点】全等图形.【专题】常规题型.【分析】根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.【解答】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.【点评】本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( )A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【考点】勾股定理;勾股定理的逆定理.【专题】网格型.【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.8.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形,得到结论.故选A.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(共10小题,每小题4分,满分40分)9.﹣8的立方根是﹣2.【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9.【考点】平方根.【分析】首先根据整数有两个平方根,它们互为相反数可得2a﹣1﹣a+2=0,解方程可得a,然后再求出这个正数即可.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.【点评】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.11.已知等腰三角形的一边等于3,周长等于12,则它的底边长等于3.【考点】等腰三角形的性质;三角形三边关系.【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是3时,则另两边是3,6,而3+3=6,不满足三边关系定理,因而应舍去.当底边是3时,另两边长是4.5,4.5,则该等腰三角形的底边为3,故答案为:3.【点评】本题考查了等腰三角形性质和三角形的三边关系定理的应用,从边的方面考查三角形,涉及分类讨论的思想方法.12.如图,已知AB=AC,请你添加一个条件:BD=CD,使△ABD≌△ACD.【考点】全等三角形的判定.【分析】根据题意可得:AD=AD,再有条件∠BAD=∠CAD,可添加BD=CD,根据SAS可判断△ADB≌△ACD.【解答】解:添加的条件是:BD=CD,理由:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:BD=CD,(或∠BAC=∠CAD)【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C=30度.【考点】全等三角形的性质.【分析】因为三个三角形为全等三角形,则对应边相等,从而得到∠C=∠CBD=∠DBA,再利用这三角之和为90°,求得∠C的度数.【解答】解:∵△ADB≌△EDB≌△EDC,∴∠ADB=∠EDB=∠EDC,∠DEC=∠DEB∠=A,又∵∠ADB+∠EDB+∠EDC=180°,∠DEB+∠DEC=180°∴∠EDC=60°,∠DEC=90°,在△DEC中,∠EDC=60°,∠DEC=90°∴∠C=30°.故答案为:30.【点评】主要考查“全等三角形对应角相等”,发现并利用∠DEC=∠DEB∠=90°是正确解决本题的关键.14.如图,已知∠1=∠2=90°,AD=AE,那么图中有3对全等三角形.【考点】全等三角形的判定.【专题】压轴题.【分析】根据题意,结合图形,可得知△AEB≌△ADC,△BED≌△CDE,△BOD≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【解答】解:①△AEB≌△ADC;∵AE=AD,∠1=∠2=90°,∠A=∠A,∴△AEC≌△ADC;∴AB=AC,∴BD=CE;②△BED≌△CDE;∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠CDE=∠BED,∴△BED≌△CDE.③∵BD=CE,∠DBO=∠ECO,∠BOD=∠COE,∴△BOD≌△COE.故答案为3.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30度.【考点】线段垂直平分线的性质.【分析】由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.【点评】本题主要考查等腰三角形的性质,线段垂直平分线的性质,角的计算,关键在于根据相关的性质定理推出∠ABC和∠ABD的度数.16.甲,乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,两船相距30海里.【考点】勾股定理的应用;方向角.【专题】应用题.【分析】首先根据题意知:两条船的航向构成了直角.再根据路程=速度×时间,求得两条直角边的长分别是24,18.再根据勾股定理求得:两条船相距=30【解答】解:如图所示,∠1=75°,∠2=15°,故∠AOB=90°,即△AOB是直角三角形,OA=16×1.5=24海里,OB=12×1.5=18海里,由勾股定理得,AB===30海里.【点评】首先根据题意抽象出几何模型,再根据勾股定理进行计算.17.已知一个三角形的周长为10cm,且它的三条角平分线的交点到这个三角形一边的距离是2cm,则这个三角形的面积是10cm2.【考点】角平分线的性质.【分析】根据角平分线的性质得到OD=OE=OF=2cm,根据三角形面积公式得到答案.【解答】解:如图,∵点O是角平分线的交点,OD⊥AB,OF⊥AC,OE⊥BC,∴OD=OE=OF=2cm,△ABC的面积为:×AB×OD+×AC×OF+×BC×OE=×10cm×2cm=10cm2,故答案为:10cm2.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.三、解答题(共9小题,满分86分)19.计算与求值:(1)计算:;(2)若2(x+2)2=18,求x的值.【考点】实数的运算;平方根.【专题】计算题;实数.【分析】(1)原式利用平方根及立方根定义计算即可得到结果;(2)方程变形后,利用平方根定义开方即可求出x的值.【解答】解:(1)原式=4+4+3=11;(2)方程整理得:(x+2)2=9,开方得:x+2=3或x+2=﹣3,解得:x=1或x=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为14.【考点】作图-轴对称变换.【分析】(1)先作出各点关于直线MN的对称点,再顺次连接即可;(2)利用矩形的面积减去三角形的面积即可.【解答】解:(1)如图所示;(2)S六边形AA′B′C′CB=3×6﹣×2×1﹣×2×1﹣×2×1﹣×2×1=18﹣1﹣1﹣1﹣1=14.故答案为:14.【点评】本题考查的是作图﹣轴对称变换,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.21.画图与说理:如图,在△ABC中.(1)按要求分步骤画图:①用尺规作出∠BAC的角平分线AD;②过点C画AB的平分线,交AD的延长线于点E;(不写作法,保留作图痕迹)(2)在(1)的作图结果上,指出图中存在的等腰三角形,并说明理由.【考点】作图—复杂作图;等腰三角形的判定.【专题】作图题.【分析】(1)利用基本作图(作已知角的平分线)作AD平分∠BAC,然后作∠ECB=∠B 交AD于E,则CE为所作;(2)根据等腰三角形的判定定理,证明∠CAE=∠CEA可判断△ACE是等腰三角形.【解答】解:(1)如图,AD、CE为所作;(2)△ACE是等腰三角形.理由如下:∵AD平分∠BAC,∴∠BAE=∠CAE,∵CE∥AB,∴∠CEA=∠BAE,∴∠CAE=∠CEA,∴△ACE是等腰三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定.22.已知:如图,△ABC中,AB=AC,CD⊥AB于点D.求证:∠BAC=2∠DCB.(温馨提示:要用到三线合一的性质哟!聪明的你想到了吗?)【考点】等腰三角形的性质.【分析】过A作AE⊥BC于E,得到∠AEB=90°,由三角形的内角和得到∠BAE+∠B=90°,∠DCB+∠B=90°,等量代换∠DCB=∠BAE,根据等腰三角形的性质即可得到结论.【解答】解:过A作AE⊥BC于E,∴∠AEB=90°,∴∠BAE+∠B=90°,∵CD⊥AB,∴∠DCB+∠B=90°,∴∠DCB=∠BAE,∵AB=AC,∴∠BAE=∠BAC,∴∠BAC=2∠DCB.【点评】本题考查了等腰三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.23.如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】作图题.【分析】根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【点评】本题利用了等边三角形的性质和三角形的一个外角等于与它不相邻的两个内角的和求解.24.如图,在四边形ABCD中,AD∥BC,AD=BC,∠ABC=90°,点E在BC的延长线上,连接AE,点F为AE的中点.求证:DF=FC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】连接BF,根据直角三角形性质求出AF=EF=BF,求出∠FBE=∠E,根据平行线性质得出∠DAF=∠E,求出∠DAF=∠FBE,根据SAS推出△ADF≌△BCF,根据全等三角形的性质得出即可.【解答】证明:连接BF,∵∠ABC=90°,∴△ABE为直角三角形,∵点F为AE的中点,∴AF=EF=BF,∴∠FBE=∠E,又∵AD∥BC,∴∠DAF=∠E,∴∠DAF=∠FBE,在△ADF和△BCF中,,∴△ADF≌△BCF,∴DF=FC.【点评】此题主要考查了全等三角形的判定和性质定理,平行线的性质,直角三角形的性质的应用,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.25.如图,长2.5m的梯子靠在墙上,梯子的底都离墙的底端1.5m.(1)求梯子的顶端与地面的距离h;(2)若如图2,梯子的底部向墙的底端前移0.8米,那么梯子的顶端是否也上移了0.8米?若是,说明理由;若不是,求出上移了多少米?【考点】勾股定理的应用.【分析】(1)直接利用勾股定理求出h的值即可;(2)首先得出DC的长,再利用勾股定理得出EC的长,进而得出答案.【解答】解:(1)如图1,∵∠ACB=90°,∴AC2+BC2=A B2,∴h2=2.52﹣1.52=4.∴h=±2,因为h>0,所以h=2.所以梯子的顶端与地面的距离h等于2m.(2)不是.如图2,由题意可知:CD=1.5﹣0.8=0.7.在Rt△DEC中,CE2=DE2﹣CD2=2.52﹣0.72=5.76.解得:CE=2.4,则AE=2.4﹣2=0.4(m).故不是上移了0.8米,而是上移了0.4米.【点评】此题主要考查了勾股定理的应用,根据题意熟练应用勾股定理是解题关键.26.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=60+61;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:(2n+1)2=()+();(3)结合勾股定理有关知识,说明你的结论的正确性.【考点】勾股数.【分析】认真观察三个数之间的关系可得出规律:第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:(1)112=b+c,这是第5个式子,故112=+=60+61;故答案为:60,61;(2)(2n+1)2=()+();故答案为:(2n+1)2=()+();(3)由已知各式中的勾股数特征,[]2﹣[]2=[+][﹣]=(2n+1)2×1=(2n+1)2.所以得证.【点评】本题考查了勾股定理的知识及数字的规律变化,解答本题的关键是仔细观察所给式子,要求同学们能有一般得出特殊规律.27.(14分)如图1,△ABC和△ADE为等边三角形,D,E分别在AC,AB上,M,N分别为EB,CD的中点,易证:CD=BE.△AMN是等边三角形.请回答下列问题.(1)如图2,当把△ADE绕点A旋转到点E恰好落在AC上时.①CD与BE还相等吗?若相等,请证明;若不等,请说明理由;②△AMN还是等边三角形吗?若是,请证明;若不是,请说明理由.(2)如图3,当把△ADE绕点A旋转到点E恰好落在C、D的连线段上时.①求证:AD∥BE;②若此时AD⊥AC,且△ADE的面积为3,则四边形ABCD的面积为15.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)①可以利用SAS判定△ABE≌△ACD,由于全等三角形的对应边相等,所以CD=BE.②利用SAS判定△ABM≌△ACN,根据全等三角形的对应边相等,可以证明△AMN是等边三角形.(2)①利用SAS判定△ABE≌△ACD,全等三角形的对应角相等即可证明;②根据三角形的面积进行解答即可.【解答】解:(1)①CD=BE.理由如下:∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=60°,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴CD=BE;②△AMN是等边三角形.理由如下:∵△ABE≌△ACD,∴∠ABE=∠ACD,∵M、N分别是BE、CD的中点,∴BM=CN,在△ABM和△ACN中,,∴△ABM≌△ACN(SAS),∴AM=AN,∠MAB=∠NAC,∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,∴△AMN是等边三角形;(2)①∵∠BAE=∠BAC+∠CAE,∠DAC=∠DAE+∠CAE,∴∠BAE=∠DAC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠D=∠BEA,∵在等边△DAE中,∠D=∠DAE,∴∠BAE=∠DAE,∴AD∥BE;②∵AD⊥AC,且△ADE的面积为3,∴四边形ABCD的面积为15.故答案为:15.【点评】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.关键是根据等边三角形的判定:有一个角是60°的等腰三角形是等边三角形解答.。
一、选择题(每题3分,共30分)1. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b < 0C. a - b < 0D. a + b > 02. 下列各数中,有理数是()A. √2B. πC. 1/3D. 无理数3. 下列函数中,y是x的一次函数的是()A. y = 2x^2 + 3B. y = 3x - 5C. y = 4x + 5 + √xD. y = 5x^3 - 2x^2 + 14. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)5. 下列方程中,解为整数的是()A. x^2 - 5x + 6 = 0B. x^2 - 4x + 3 = 0C. x^2 - 6x + 9 = 0D. x^2 - 8x + 15 = 06. 一个长方体的长、宽、高分别为4cm、3cm、2cm,那么它的体积是()A. 24cm^3B. 48cm^3C. 60cm^3D. 72cm^37. 若a、b、c是等差数列,且a + b + c = 12,那么abc的值是()A. 18B. 24C. 30D. 368. 下列命题中,正确的是()A. 所有的平行四边形都是矩形B. 所有的等腰三角形都是等边三角形C. 所有的等边三角形都是等腰三角形D. 所有的矩形都是平行四边形9. 下列函数中,定义域为实数集R的是()A. y = √xB. y = 1/xC. y = x^2D. y = |x|10. 下列数列中,是等比数列的是()A. 1, 2, 4, 8, 16, ...B. 1, 3, 6, 10, 15, ...C. 1, 3, 9, 27, 81, ...D. 1, 2, 3, 4, 5, ...二、填空题(每题5分,共25分)11. 若a = 3,b = -2,则a^2 + b^2 = _______。
2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
江苏省连云港市东海县八年级上学期期末模拟数学试题一、选择题1.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .9 2.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x >3.下列调查中适合采用普查的是( )A .了解“中国达人秀第六季”节目的收视率B .调查某学校某班学生喜欢上数学课的情况C .调查我市市民知晓“礼让行人”交通新规的情况D .调查我国目前“垃圾分类”推广情况4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1) 5.在3π-3127-7,227-,中,无理数的个数是( ) A .1个B .2个C .3个D .4个 6. 4的平方根是( )A .2B .±2C .16D .±167.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 8.点M (3,-4)关于y 轴的对称点的坐标是( )A .(3,4)B .(-3,4)C .(-3,-4)D .(-4,3) 9.下列计算正确的是( ) A .5151+22=5B .512﹣512=2C .515122+-⨯=1D .515122--⨯=3﹣25 10.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL二、填空题11.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 12.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.13.已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.14.如图,直线l 1:y =﹣12x +m 与x 轴交于点A ,直线l 2:y =2x +n 与y 轴交于点B ,与直线l 1交于点P (2,2),则△PAB 的面积为_____.15.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.16.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B地向北偏西15º的方向行驶50海里到达C地,则A、C两地相距____海里.17.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a、b且a<b)拼成的边长为c的大正方形,如果每个直角三角形的面积都是3,大正方形的边长是13,那么b-a=____.18.如图,在ABC中,∠A=60°,D是BC边上的中点,DE⊥BC,∠ABC的平分线BF交DE于ABC内一点P,连接PC,若∠ACP=m°,∠ABP=n°,则m、n之间的关系为______.19.如图,已知直线l1:y=kx+4交x轴、y轴分别于点A(4,0)、点B(0,4),点C为x轴负半轴上一点,过点C的直线l2:12y x n=+经过AB的中点P,点Q(t,0)是x轴上一动点,过点Q作QM⊥x轴,分别交l1、l2于点M、N,当MN=2MQ时,t的值为_____.20.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.三、解答题21.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?22.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米;(2)求快车和慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.23.用函数方法研究动点到定点的距离问题.在研究一个动点P(x,0)到定点A(1,0)的距离S时,小明发现:S与x的函数关系为S=1,1,10,1,1,1,x xx xx x-<⎧⎪-==⎨⎪->⎩并画出图像如图:借助小明的研究经验,解决下列问题:(1)写出动点P(x,0)到定点B(-2,0)的距离S的函数表达式,并求当x取何值时,S取最小值?(2)设动点P(x,0)到两个定点M(1,0)、N(5,0)的距离和为y.①随着x增大,y怎样变化?②当x取何值时,y取最小值,y的最小值是多少?③当x<1时,证明y随着x增大而变化的规律.24.(131232)36+(2)因式分解:3312x x-(3)计算:2(1)(2)(3)x x x x-+-+(4)计算:2(21)2(1)(1)x x x+-+-25.某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价/(元/盏)售价/(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?四、压轴题26.在ABC中,AB AC=,D是直线BC上一点(不与点B、C重合),以AD为一边在AD的右侧作ADE,AD AE=,DAE BAC∠=∠,连接CE.(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCE S 最大值.27.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以 1/cm s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t (s ).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB”为改“∠CAB =∠DBA =60°”,其他条件不变.设点 Q 的运动速度为x /cm s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.28.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.29.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).30.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:意,得+2∴0<m<1,∴|m-1|+(m+6)=1-m+m+6=7,故选C.【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m的值,确定m的范围.2.A解析:A【解析】【分析】由图知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大,由此得出当x>0时,y>2,进而可得解.【详解】根据图示知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大;即当x>0时函数值y的范围是y>2;因而当不等式kx+b-2>0时,x的取值范围是x>0.故选:A.【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.3.B解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A 、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B 、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C 、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D 、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;故选:B .【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.C解析:C【解析】【分析】根据函数图象的性质判断系数k >0,则该函数图象经过第一、三象限,由函数图象与y 轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx ﹣1的图象的y 的值随x 值的增大而增大,∴k >0,A 、把点(﹣5,3)代入y=kx ﹣1得到:k=﹣45<0,不符合题意; B 、把点(1,﹣3)代入y=kx ﹣1得到:k=﹣2<0,不符合题意;C 、把点(2,2)代入y=kx ﹣1得到:k=32>0,符合题意; D 、把点(5,﹣1)代入y=kx ﹣1得到:k=0,不符合题意,故选C .【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键.5.B解析:B【解析】【分析】根据无理数的定义判断即可.【详解】解:3π-1-3 ,227-可以化成分数,不是无理数. 故选 B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.6.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即4=2±±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根.7.D解析:D【解析】=,错误.画函数的图象,选项A,点(1,0)代入函数,01由图可知,B,C错误,D,正确. 选D.8.C解析:C【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y 轴的对称点P′的坐标是(−x,y).【详解】∵点M(3,−4),∴关于y轴的对称点的坐标是(−3,−4).故选:C.【点睛】此题主要考查了关于x 轴、y 轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.9.C解析:C【解析】【分析】利用二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;利用完全平方公式对D 进行判断.【详解】解:A ==A 选项错误;B 212==,所以B 选项错误; C 1515114--==,所以C 选项正确;D 、151-=,所以D 选项错误. 故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM =ON ,CM =CN ,OC =OC ,∴△COM ≌△CON (SSS ),∴∠COM =∠CON ,故选:A .【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.二、填空题11..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x2.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.12.4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△解析:4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△ABC=12×6×3+12AC×3=15,解得AC=4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.13.【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P点的坐标代入解析式,变形即可解决.【详解】解:将代入函数解析式得:b=2a+1,将此式变形即可得到:解析:2-【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:2-.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.14.【解析】【分析】把点P (2,2)分别代入y =﹣x+m 和y =2x+n ,求得m =3,n =﹣2,解方程得到A (6,0),B (0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P (2,解析:【解析】【分析】把点P (2,2)分别代入y =﹣12x+m 和y =2x+n ,求得m =3,n =﹣2,解方程得到A (6,0),B (0,﹣2),根据三角形的面积公式即可得到结论.【详解】 解:把点P (2,2)分别代入y =﹣12x+m 和y =2x+n , 得,m =3,n =﹣2,∴直线l 1:y =﹣12x+3,直线l 2:y =2x ﹣2, 对于y =﹣12x+3,令y =0,得,x =6, 对于y =2x ﹣2,令x =0,得,y =﹣2,∴A (6,0),B (0,﹣2),∵直线l 1:y =﹣12x+3与y 轴的交点为(0,3),∴△PAB的面积=12×5×6﹣12×5×2=10,故答案为:10.【点睛】本题考查了两直线相交与平行问题,三角形的面积的计算,正确的识别图形是解题的关键.15.8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长AB===10米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本解析:8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.16.50【解析】【分析】由已知可得△ABC是等边三角形,从而不难求得AC的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC 是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC 是等边三角形是解题的关键.17.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知c =,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解】解:根据题意,可知,∵c =,132ab =, ∴221()42b a ab c -+⨯=,213c =, ∴2()13431b a -=-⨯=,∴1b a -=±;∵a b <,即0b a ->,∴1b a -=;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.18.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【解析:m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,A ABC ACB∠+∠+∠=︒180,∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.19.10或【解析】【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M、N的坐标,由两点间的距离公式求得MN,MQ的代数式,由已知条件,列出方程,借助于方程求得t的值即可;解析:10或227【解析】【分析】 先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112y x =+, ∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭,∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --, 解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.20.【解析】【分析】由直线与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 解析:443k ≤≤ 【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3, 解得:443k ≤≤. 故答案为:443k ≤≤. 【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k的一元一次不等式是解题的关键.三、解答题21.小明和小红不能买到相同数量的笔【解析】【分析】首先设每支水笔x元,则每支圆珠笔(x+2)元,根据题意可得等量关系:30元买水笔的数量=用45元买圆珠笔的数量,求出每支水笔的价钱,再算出购买的水笔的数量,数量是整数就可以,不是整数就不合题意.【详解】设每支水笔x元,则每支圆珠笔(2)x+元.假设能买到相同数量的笔,则30452 x x=+.解这个方程,得4x=.经检验,4x=是原方程的解.但是,3047.5÷=,7.5不是整数,不符合题意,答:小明和小红不能买到相同数量的笔.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.22.(1)560;(2)快车的速度是80km/h,慢车的速度是60km/h.(3)y=-60x+540(8≤x≤9).【解析】【分析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D,E点坐标,进而得出函数解析式.【详解】(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20,∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km ,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km , ∴D (8,60),∵慢车往返各需4小时,∴E (9,0),设DE 的解析式为:y=kx+b ,∴90860k b k b +⎧⎨+⎩==, 解得:60540k b -⎧⎨⎩==. ∴线段DE 所表示的y 与x 之间的函数关系式为:y=-60x+540(8≤x≤9).【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D ,E 点坐标是解题关键.23.(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩,当x =-2时,S 的最小值为0;(2)①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大,②当1≤x ≤5时,y 取最小值,y 的最小值是4,③当x <1时,y 随x 增大而减小.【解析】【分析】(1)根据x 轴上两点之间的距离等于它们差的绝对值,以及绝对值的意义可直接写出结论; (2)根据x 轴上两点之间的距离等于它们差的绝对值,得出PM 和PN 的距离,它们之和即为y.①分情况讨论,根据一次函数的性质可得y 的变化情况;②根据y 的变化情况可求;③当x <1时,62y x =-,根据函数的增减性可得.【详解】(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩;∵当x <2时y 随x 增大而减小,当x >2时y 随x 的增大而增大,∴当x =-2时,S 的最小值为0.(2)由题意得y =|1|x -+|5|x -,根据绝对值的意义,可转化为y =62,14,1526,5x x x x x -<⎧⎪⎨⎪->⎩①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大.②当1≤x ≤5时,y 取最小值,y 的最小值是4.③当x <1时,62y x =-,∵-2<0∴当x <1时,y 随x 增大而减小.【点睛】本题考查一次函数的应用,一次函数的性质,化简绝对值.掌握x 轴上两点之间的距离公式,能分段讨论化简绝对值是解决此题的关键.24.(1)6;(2)()()322x x x +-;(3)236x x --;(4)2243x x ++【解析】【分析】(1)根据二次根式乘法法则运算;(2)先提公因式,再套用公式;(3)根据整式乘法法则运算;(4)运用乘法公式运算.【详解】解:(1+=+=6-=6(2)()()()3231234322x x x x x x x -=-=+- (3)2(1)(2)(3)x x x x -+-+=22226x x x x -++-=236x x --(4)2(21)2(1)(1)x x x +-+-=224412(1)x x x ++--=2244122x x x ++-+=2243x x ++【点睛】考核知识点:因式分解,整式乘法.掌握相应法则是关键.25.(1)75盏;25盏 (2)购进A 型台灯20盏,B 型台灯80盏;1900元【解析】【分析】(1)设商场应购进A 型台灯x 盏,表示出B 型台灯为(100﹣x )盏,然后根据进货款=A 型台灯的进货款+B 型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y 元,根据获利等于两种台灯的获利总和列式整理,再求出x 的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设购进A 型台灯x 盏,则购进B 型台灯(100﹣x )盏,由题意可得:30x +50(100﹣x )=3500∴x =75∴100﹣x =25答:购进A 型台灯75盏,购进B 型台灯25盏;(2)设商场销售完这批台灯可获利y 元,y =15x +20(100﹣x )=﹣5x +2000又∵100﹣x ≤4x ,∴x ≥20∵k =﹣5<0,∴y 随x 的增大而减小∴当x =20时,y 取得最大值,最大值是1900.答:购进A 型台灯20盏,购进B 型台灯80盏时获利最多,此时利润为1900元.【点睛】本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x 的取值范围是解题的关键.四、压轴题26.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS ≅△△,根据全等三角形的性质得到BD CE =;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+,即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形,当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==, 422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.27.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.28.(1)203;(2)①t=83;②a=185;(3)t=6.4或t=103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12。
2014-2015学年江苏省连云港市东海中学八年级(上)期中数学试卷一.选择题(每小题2分,共20分)1.(2分)下列长度的三条线段,能组成三角形的是()A.2cm,3cm,6cm B.10cm,10cm,20cmC.5cm,20cm,10cm D.5cm,6cm,10cm2.(2分)若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.(2分)已知三角形一个角的外角是120°,则这个三角形余下两角之和是()A.60°B.120°C.150° D.90°4.(2分)已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105° D.30°或75°5.(2分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去6.(2分)为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处7.(2分)下列交通标识中,是轴对称图形的是()A.B.C.D.8.(2分)如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ 的度数是()A.20°B.40°C.50°D.60°9.(2分)如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:①BD平分∠ABC;②AD=BD=BC;③△BDC的周长等于AB+BC;④D是AC中点.其中正确的命题序号是()A.①②③B.①②④C.②③④D.①③④10.(2分)如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于E、F两点,∠BAC、∠BFD的平分线交于点I,AI 交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个二.填空题(每小题3分,共24分)11.(3分)内角和等于外角和2倍的多边形是边形.12.(3分)要使六边形木架不变形,至少要钉上根木条.13.(3分)如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC 的中点,则图中共有全等三角形对.14.(3分)如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C′,且BC′与AD交于E点,若∠ABE=40°,则∠ADB=.15.(3分)如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是.16.(3分)如图,在△ABC中,已知点E,F分别是AD,CE的中点,且S△ABC=24cm2,=cm2.则S△BEF17.(3分)某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P 的距离BP=海里.18.(3分)在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B=.三.解答题(共56分)19.(6分)在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各顶点坐标:A2;B2;C2.20.(6分)如图,∠A=55°,∠B=30°,∠C=35°,求∠BDC的度数.21.(6分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.22.(6分)如图△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE.23.(7分)在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB 上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=60°,求∠ACF的度数.24.(7分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE=DF,并说明理由.解:需添加条件是.25.(9分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.26.(9分)等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;(1)如图(1),若A(0,1),B(2,0),求C点的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC 的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由.2014-2015学年江苏省连云港市东海中学八年级(上)期中数学试卷参考答案与试题解析一.选择题(每小题2分,共20分)1.(2分)下列长度的三条线段,能组成三角形的是()A.2cm,3cm,6cm B.10cm,10cm,20cmC.5cm,20cm,10cm D.5cm,6cm,10cm【解答】解:根据三角形任意两边的和大于第三边,得A中,3+2=5<6,不能组成三角形;B中,10+10=20,不能组成三角形;C中,5+10<20,不能够组成三角形;D中,5+6=11>10,能组成三角形.故选:D.2.(2分)若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【解答】解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选:B.3.(2分)已知三角形一个角的外角是120°,则这个三角形余下两角之和是()A.60°B.120°C.150° D.90°【解答】解:∵三角形一个角的外角是120°,∴这个三角形余下两角之和等于这个角的外角,是120°.故选:B.4.(2分)已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105° D.30°或75°【解答】解:当75°角为底角时,顶角为180°﹣75°×2=30°;75°角为顶角时,其底角==52.5°,所以其顶角为30°或75°.故选:D.5.(2分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.6.(2分)为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处【解答】解:满足条件的点有一个,三角形内部:三个内角平分线交点一个.三角形外部,外角的角平分线三个(不合题意).故选:A.7.(2分)下列交通标识中,是轴对称图形的是()A.B.C.D.【解答】解:由轴对称的概念可得,只有B选项符合轴对称的定义.故选:B.8.(2分)如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ 的度数是()A.20°B.40°C.50°D.60°【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,又MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:B.9.(2分)如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:①BD平分∠ABC;②AD=BD=BC;③△BDC的周长等于AB+BC;④D是AC中点.其中正确的命题序号是()A.①②③B.①②④C.②③④D.①③④【解答】解:∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵AB=AC,∴∠ABC=∠C=72°,∴∠CBD=∠ABD=36°,即BD平分∠ABC;故①正确;∴∠BDC=∠C=72°,∴BC=BD,∴BC=BD=AD,故②正确;∴△BDC的周长为:BC+CD+BD=BC+C+AD=AC+BC=AB+BC;故③正确;∵CD<BD,∴CD<AD,∴D不是AC中点.故④错误.故选:A.10.(2分)如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于E、F两点,∠BAC、∠BFD的平分线交于点I,AI 交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵∠ACB=90°,∴∠DBF+∠BAC=90°,∵FD⊥AB,∴∠BDF=90°,∴∠DBF+∠BFD=90°,∴∠BAC=∠BFD,故①正确;∵∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,∴∠EFN=∠EAM,∵∠FEN=∠AEM,∴∠ENI=∠EMI,故②正确;∵由①知∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,∴∠MAD=∠MFI,∵∠AMD=∠FMI,∴∠AIF=∠ADM=90°,即AI⊥FI,故③正确;∵BI不是∠B的平分线,∴∠ABI≠∠FBI,故④错误.故选:C.二.填空题(每小题3分,共24分)11.(3分)内角和等于外角和2倍的多边形是六边形.【解答】解:设多边形有n条边,由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:六.12.(3分)要使六边形木架不变形,至少要钉上3根木条.【解答】解:如图所示,至少要钉上3根木条.故答案为:3.13.(3分)如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC 的中点,则图中共有全等三角形4对.【解答】解:∵AD⊥BC,AB=AC∴D是BC中点∴BD=DC,∵AD=AD,∴△ABD≌△ACD(SSS);E、F分别是DB、DC的中点∴BE=ED=DF=FC∵AD⊥BC,AD=AD,ED=DF∴△ADF≌△ADE(HL);∵∠B=∠C,BE=FC,AB=AC∴△ABE≌△ACF(SAS)∵EC=BF,AB=AC,AE=AF∴△ABF≌△ACE(SSS).∴全等三角形共4对,分别是:△ABD≌△ACD(HL),△ABE≌△ACF(SAS),△ADF≌△ADE(SSS),△ABF≌△ACE(SAS).故答案为4.14.(3分)如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C′,且BC′与AD交于E点,若∠ABE=40°,则∠ADB=25°.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∵∠ABE=40°,∴∠EBC=90°﹣40°=50°,根据折叠可得∠EBD=∠CBD,∴∠CBD=25°,∵AD∥BC,∴∠ADB=∠DBC=25°,故答案为:25°.15.(3分)如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是AC=AE.【解答】解:补充的条件是:AC=AE.理由如下:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE.∵在△ABC与△ADE中,,∴△ABC≌△ADE(SAS).故答案是:AC=AE.16.(3分)如图,在△ABC中,已知点E,F分别是AD,CE的中点,且S△ABC=24cm2,=6cm2.则S△BEF【解答】解:∵点E是AD的中点,=S△ABD,S△CDE=S△ACD,∴S△BDE=S△BDE+S△CDE=S△ABD+S△ACD=(S△ABD+S△ACD)=S△ABC,∴S△BCE∵F是CE的中点,=S△BEC=×S△BEC=××24=6cm2.∴S△BEF故答案为:6.17.(3分)某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P 的距离BP=7海里.【解答】解:过P作PD⊥AB于点D.∵∠PBD=90°﹣60°=30°且∠PBD=∠PAB+∠APB,∠PAB=90﹣75=15°∴∠PAB=∠APB∴BP=AB=7(海里)故答案是:7.18.(3分)在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B=65°或25°.【解答】解:(1)当AB的中垂线MN与AC相交时,∵∠AMD=90°,∴∠A=90°﹣40°=50°,∵AB=AC,∴∠B=∠C=(180°﹣∠A)=65°;(2)当AB的中垂线MN与CA的延长线相交时,∴∠DAB=90°﹣40°=50°,∵AB=AC,∴∠B=∠C=∠DAB=25°.故答案为65°或25°.三.解答题(共56分)19.(6分)在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各顶点坐标:A2(1,﹣2);B2(3,﹣1);C2(﹣2,1).【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;A2(1,﹣2);B2(3,﹣1);C2(﹣2,1).故答案为:(1,﹣2),(3,﹣1),(﹣2,1).20.(6分)如图,∠A=55°,∠B=30°,∠C=35°,求∠BDC的度数.【解答】解:延长BD到点E,∵∠A=55°,∠B=30°,∴∠BEC=∠A+∠B=85°,∴∠BDC=∠BEC+∠C=120°.21.(6分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.【解答】解:OE垂直且平分AB.证明:在△BAC和△ABD中,,∴△BAC≌△ABD(SAS).∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.又点E是AB的中点,∴OE垂直且平分AB.22.(6分)如图△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE.【解答】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).23.(7分)在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB 上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=60°,求∠ACF的度数.【解答】(1)证明:在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL);(2)如图,∵在△ABC中,AB=CB,∠ABC=90°,∴∠ACB=∠CAB=45°,∴∠BAE=∠CAE﹣∠CAB=15°.又由(1)知,Rt△ABE≌Rt△CBF,∴∠BAE=∠BCF=15°,∴∠ACF=∠ACB﹣∠BCF=30°.即∠ACF的度数是30°.24.(7分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE=DF,并说明理由.解:需添加条件是BD=CD,或BE=CF.【解答】解:需添加的条件是:BD=CD,或BE=CF.添加BD=CD的理由:如图,∵AB=AC,∴∠B=∠C.又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∴△BDE≌△CDF(AAS).∴DE=DF.添加BE=CF的理由:如图,∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD.又∵BE=CF,∴△BDE≌△CDF(ASA).∴DE=DF.25.(9分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.【解答】证明:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△CEF中,,∴△ADF≌△CEF(SAS);(2)由(1)可知△ADF≌△CEF,∴DF=FE,∴△DFE是等腰三角形,又∵∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC,∴∠AFC=∠DFE,∵∠AFC=90°,∴∠DFE=90°,∴△DFE是等腰直角三角形.26.(9分)等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;(1)如图(1),若A(0,1),B(2,0),求C点的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC 的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由.【解答】(1)解:过点C作CF⊥y轴于点F,∴∠AFC=90°,∴∠CAF+∠ACF=90°.∵△ABC是等腰直角三角形,∠BAC=90°,∴AC=AB,∠CAF+∠BAO=90°,∠AFC=∠BAC,∴∠ACF=∠BAO.在△ACF和△ABO中,,∴△ACF≌△ABO(AAS)∴CF=OA=1,AF=OB=2∴OF=1∴C(﹣1,﹣1);(2)证明:过点C作CG⊥AC交y轴于点G,∴∠ACG=∠BAC=90°,∴∠AGC+∠GAC=90°.∵∠CAG+∠BAO=90°,∴∠AGC=∠BAO.∵∠ADO+∠DAO=90°,∠DAO+∠BAO=90°,∴∠ADO=∠BAO,∴∠AGC=∠ADO.在△ACG和△ABD中∴△ACG≌△ABD(AAS),∴CG=AD=CD.∵∠ACB=∠ABC=45°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE;(3)解:在OB上截取OH=OD,连接AH由对称性得AD=AH,∠ADH=∠AHD.∵∠ADH=∠BAO.∴∠BAO=∠AHD.∵BD是∠ABC的平分线,∴∠ABO=∠EBO,∵∠AOB=∠EOB=90°.在△AOB和△EOB中,,∴△AOB≌△EOB(ASA),∴AB=EB,AO=EO,∴∠BAO=∠BEO,∴∠AHD=∠ADH=∠BAO=∠BEO.∴∠AEC=∠BHA.在△AEC和△BHA中,,∴△ACE≌△BAH(AAS)∴AE=BH=2OA∵DH=2OD∴BD=2(OA+OD).或(1+)OA=BD一OD也是正确的.。
2015-2016学年第一学期初二数学期末考试试卷一、选择题:(本大题共10小题,每小题3分,共30分)1. 未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为…………………………………………………………………( )A .40.84510⨯亿元;B .38.4510⨯亿元;C .48.4510⨯亿元;D .284.510⨯亿元; 2. 在平面直角坐标系中,位于第四象限的点是………………………………………( )A .(﹣2,3)B .(4,﹣5)C .(1,0)D .(﹣8,﹣1)3.(2015•贵港)在平面直角坐标系中,若点P (m ,m-n )与点Q (-2,3)关于原点对称,则点M (m ,n )在………………………………………………………………………………( )A .第一象限 ;B .第二象限;C .第三象限;D .第四象限;4. 下列说法正确的是……………………………………………………………( )A .9的立方根是3;B .算术平方根等于它本身的数一定是1;C .﹣2是4的平方根; D的算术平方根是4;5. 如果()2213m y m x -=-+是一次函数,那么m 的值是………………………………( ) A .1;B .﹣1; C .±1; D.6.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是……( )A .a >b ;B .a=b ;C .a <b ;D .以上都不对;7. 如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=5,AE=8,则BE 的长度是……( )A .5;B .5.5;C .6;D .6.5;8.已知正比例函数y=kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y=kx+k 的图象经过的象限为……………………………………………………………………………( )A .二、三、四;B .一、二、四;C .一、三、四;D .一、二、三;9. 同一平面直角坐标系中,一次函数1y k x b =+的图象与一次函数2y k x =的图象如图所示,则关于x 的方程1k x b +=2k x 的解为…………………………………………………( )A .x=0B .x=﹣1C .x=﹣2D .x=110. 如图为正三角形ABC 与正方形DEFG 的重叠情形,其中D 、E 两点分别在AB 、BC 上,且BD=BE .若AC=18,GF=6,则F 点到AC 的距离为……………………………………………( )第7题图第9题图第10题图 第13题图A .2;B .3; C.12-D.6;二、填空题:(本大题共8小题,每小题3分,共24分)11. (2015•恩施州)4的平方根是 .12. 已知等腰三角形的一个内角等于20°,则它的一个底角是 .13.(2015•青海)如图,点B ,F ,C ,E 在同一直线上,BF=CE ,AB ∥DE ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 (只需写一个,不添加辅助线).14. 已知:m 、n为两个连续的整数,且m n <<,则m n += .15. 如图,在△ABC 中,AB=AC ,BC=6,△DEF 的周长是7,AF ⊥BC 于F ,BE ⊥AC 于E ,且点D 是AB 的中点,则AF= .16.(2015•聊城)如图,在△ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线.若AB=6,则点D 到AB 的距离是 .17. 如图,△ABC 中,AB=17,BC=10,CA=21,AM 平分∠BAC ,点D 、E 分别为AM 、AB 上的动点,则BD+DE 的最小值是 .18. 已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE=AC+AD.其中结论正确的个数是 .三、解答题:(本题满分76分)19. (本题满分10分)计算:(1)()()120160113π-⎛⎫-+-+ ⎪⎝⎭(221+;20. (本题满分6分)(2015•重庆)如图,在△ABD 和△FEC 中,点B ,C ,D ,E 在同一直线上,且AB=FE ,BC=DE ,∠B=∠E .求证:∠ADB=∠FCE .21. (本题满分6分)第18题图 第17题图 第16题图 第15题图在平面直角坐标系中,已知点A (-2,0)、B (0,3),O 为原点.(1)求三角形AOB 的面积;(2)若点C 在坐标轴上,且三角形ABC 的面积为6,求点C 的坐标.22. (本题满分6分) 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.23. (本题满分6分)已知等腰三角形的周长为20cm ,试求出底边长y (cm )表示成腰长x (cm )的函数关系式,并求其自变量x 的取值范围.24. (本题满分6分)如图,四边形OABC 是矩形,点D 在OC 边上,以AD 为折痕,将△OAD 向上翻折,点O 恰好落在BC 边上的点E 处,若△ECD 的周长为4,△EBA 的周长为12.(1)矩形OABC 的周长为 .(2)若A 点坐标为(5,0),求线段AE 所在直线的解析式.25. (本题满分8分)(2015•益阳)如图,直线l 上有一点1P (2,1),将点1P 先向右平移1个单位,再向上平移2个单位得到像点2P ,点2P 恰好在直线l 上.(1)写出点2P 的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点2P 先向右平移3个单位,再向上平移6个单位得到像点3P .请判断点3P 是否在直线l 上,并说明理由.26. (本题满分9分)(2015•潜江)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式:设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为A y ,B y .(1)如图是B y 与x 之间函数关系的图象,请根据图象填空:m= ;n= .(2)写出A y 与x 之间的函数关系式.(3)选择哪种方式上网学习合算,为什么?27.(本题满分10分)如图,已知直线y=-2x+8和x 轴、y 轴分别交于B 和A ,直线l 经过点C (2,-4)和D (0,-3),向下平移1个单位后与x轴、y轴分别交于点E、F,直线AB和EF相交于点P.(1)直线l的解析式为,线段BC的长为;(2)求证:△AOB≌△EOF;(3)判断△APE的形状,并说明理由;(4)求△APE的面积.28.(本题满分9分)(1)如图1,E、F是正方形ABCD的边AB及DC延长线上的点,且BE=CF,则BG与BC的数量关系是.(2)如图2,D、E是等腰△ABC的边AB及AC延长线上的点,且BD=CE,连接DE交BC于点F,DG⊥BC交BC于点G,试判断GF与BC的数量关系,并说明理由;(3)如图3,已知矩形ABCD的一条边AD=4,将矩形ABCD沿过A的直线折叠,使得顶点B 落在CD边上的P点处.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥PB于点E,且EF=结论求出矩形ABCD的面积.2015-2016学年第一学期初二数学期末考试试卷答案一、选择题:1.B ;2.B ;3.A ;4.C ;5.B ;6.A ;7.C ;8.A ;9.B ;10.D ;填空题:11.±2;12.20°或80°;13.AD=DE ;14.7;15.;16.;17.8;18.①②③;三、解答题:19.(1)1;(2;20.(略)21.(1)3;(2)C 点坐标为(0,-3),(0,9).22. 解:(1)三边分别为:3、4、5 (如图1);(2、2);(33).23. 解:∵2x+y=20,∴y=20-2x ,即x <10,∵两边之和大于第三边,∴x >5, 综上可得5<x <1024. 解:(1)16.(2)∵矩形OABC 的周长为16,∴2OA+2OC=16,∵A 点坐标为(5,0),∴OA=5,∴OC=3,∵在Rt △ABE 中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4,∴CE=5-4=1,∴E 的坐标是(1,3).设直线AE 的解析式为y=kx+b (k ≠0),∵A (5,0),E (1,3),∴503x b k b +=⎧⎨+=⎩,解得34154k b ⎧=-⎪⎪⎨⎪=⎪⎩. ∴线段AE 所在直线的解析式为:3154y x =-+. 25.(1)2P (3,3);(2)23y x =-;(3)3P 在直线l 上;26. 解:(1)由图象知:m=10,n=50;(2)yA 与x 之间的函数关系式为:当x ≤25时,A y =7,当x >25时,A y =7+(x-25)×60×0.01,∴A y =0.6x-8,∴()()70250.6825A x y x x <≤⎧⎪=⎨->⎪⎩;(3)∵B y 与x 之间函数关系为:当x ≤50时,B y =10,当x >50时,B y =10+(x-50)×60×0.01=0.6x-20,当0<x ≤25时,A y =7,B y =50,∴A y <B y ,∴选择A 方式上网学习合算, 当25<x ≤50时.A y =B y ,即0.6x-8=10,解得;x=30,∴当25<x <30时,A y <B y ,选择A 方式上网学习合算,当x=30时,A y =B y ,选择哪种方式上网学习都行,当30<x ≤50,A y >B y ,选择B 方式上网学习合算,当x >50时,∵A y =0.6x-8,B y B=0.6x-20,A y >B y ,∴选择B 方式上网学习合算,综上所述:当0<x <30时,A y <B y ,选择A 方式上网学习合算, 当x=30时,A y =B y ,选择哪种方式上网学习都行,当x >30时,A y >B y ,选择B 方式上网学习合算.27. (1)132y x =--;(2) (2)证明:直线向下平移1个单位后解析式为142y x =--, ∴E (-8,0),F (0,-4),∴OE=OA=8,OF=OB=4,在△AOB 和△EOF 中,OA OE AOB EOF OB OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△EOF (SAS ); (3)解:△APE 是等腰三角形;理由如下:由(2)得:△AOB ≌△EOF ,∴∠OAB=∠OEF ,又OA=OE ,∴∠OAE=∠OEA , ∴∠OAB+∠OAE=∠OEF+∠OEA ,即∠PAE=∠PEA ,∴△APE 是等腰三角形;(4)解:由直线AB 和直线EF 的解析式组成方程组为28142y x y x =-+⎧⎪⎨=--⎪⎩,解得:88x y =⎧⎨=-⎩,∴点P 的坐标为(8,-8), ∵BE=OE+OB=8+4=12,∴△APE 的面积=△ABE 的面积+△PBE 的面积=12×12×8+12×12×8=96. 28. 解:(1)BG=12BC ,理由如下: ∵四边形ABCD 是正方形,∴∠EBG=∠FCG=90°,在△EBG 与△FCG 中,EB CF EBG FCG BGE CGF =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△EBG ≌△FCG (AAS ), ∴BG=GC=12BC ; 故答案为:BG=12BC ; (2)GF=12BC ,理由如下:过点E 作EH ⊥BC ,如图1: ∵等腰△ABC,∴∠B=∠ACB ,∵∠ACB=∠ECH ,∴∠B=∠ECH ,在△DBG 与△ECH 中, 90DGB CHE B ECHDB CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△DBG ≌△ECH (AAS ),∴DG=EH ,BG=CH ,∴BC=BG+GC=GH=GC+CH ,同理证明△DGF ≌△FHE ,∴GF=FH=12BC ; (3)由(1)(2)得出EF=12PB= 可得2==,因为将矩形ABCD 沿过A 的直线折叠,使得顶点B 落在CD 边上的P 点处,所以AP=AB ,在Rt △ADP 中,()2222AP AB AD AB PC ==+-,即()22242AB AB =+-,解得:AB=5.所以矩形的面积=20.。
2015-2016学年江苏省连云港市东海县八年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)2的算术平方根是()A.B.2C.±D.±22.(3分)下列图案中,是轴对称图形的个数有()A.1个B.2个C.3个D.4个3.(3分)以下列各组数为边的三角形中,是直角三角形的有()(1)3,4,5 (2)1,2,3 (3)32,22,52(4)0.03,0.04,0.05.A.1个B.2个C.3个D.4个4.(3分)直线y=x﹣1的图象经过()A.第二、三象限B.第一、二、四象限C.第一、三、四象限D.第一、二、三象限5.(3分)已知点P(a+1,2﹣a)到y轴的距离为2,则点P的坐标是()A.(﹣2,5)B.(1,1)C.(2,1)D.(﹣2,5)或(2,1)6.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.7.(3分)如图,在等边三角形ABC中,中线AD、BE交于F,则图中共有等腰三角形共有()A.3个B.4个C.5个D.6个8.(3分)如图,在等腰Rt△ABC和等腰Rt△ADE中,∠BAC=∠DAE=90°,点C、D、E在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④BE2=2(AD2+AB2).其中,结论正确的个数是()A.4B.3C.2D.1二、填空题(每小题3分,共30分)9.(3分)若一个数的立方根是﹣3,则这个数是.10.(3分)化简:||=.11.(3分)点A(﹣3,2)关于x轴的对称点A′的坐标为.12.(3分)已知等腰三角形的一个内角是70°,则它的底角为.13.(3分)如图,AB=AC,D、E分别在AC、AB上,要使△ABD≌△ACE,则还需要添加的一个条件是(填写一个条件即可).14.(3分)已知点A(0,m)和点B(1,n)都在函数y=﹣3x+b的图象上,则m n.(在横线上填“>”、“<”或“=”)15.(3分)一次函数y1=kx与y2=x+a的图象如图所示,则x+a<kx<0的解集是.16.(3分)已知一次函数y=ax+b,若2a+b=1,则它的图象必经过的一点坐标为.17.(3分)在△ABC中,AB=13,AC=15,高AD=12,则BC的长为.18.(3分)如图,点A,A1,A2,…都在直线y=x上,点B,B1,B2,B3,…都在x轴上,且△ABB1,△A1B1B2,△A2B2B3,…都是等腰直角三角形,若按如此规律排列下去,已知B(1,0),则A2016的坐标为.三、解答题(本大题共9个小题,共96分,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:+(﹣)3﹣(2)已知4x2﹣9=0,求x的值.20.(8分)已知函数3x+2y=1(1)将其改成y=kx+b的形式为.(2)判断点B(﹣5,3)是否在这个函数的图象上.21.(8分)如图,4×4方格中每个小正方形的边长都为1.(1)图1中正方形ABCD的面积为,边长为.(3)在图2的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上).22.(8分)如图,已知在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,ED=DC.求证:AB=AC.23.(10分)已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=的图象相交于点(2,a).(1)求一次函数y=kx+b的表达式;(2)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.24.(10分)已知:如图,E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)求∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC的长.25.(10分)某空调公司推销员的月收入y(元)与每月的销售量x(件)成一次函数关系,当他售出10件时月收入为800元,当他售出20件时月收入为1300元.(1)求y与x之间的函数关系式.(2)若想获得至少3800元的月收入,则该推销员每月至少要推销多少件空调?26.(16分)甲、乙两名运动员进行长袍训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图1所示(甲为线段AB,乙为折线ACB),根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练,甲的速度是,乙前15分钟的速度是;(2)分别求甲、乙距终点的路程y(米)与跑步时间x(分)之间的函数关系式;(3)试求x为何值时,两人相距100米?(4)若设甲乙两人之间的距离为s(米),试根据题意在图2所示的坐标系中绘制出s(米)与跑步时间t(分)之间的函数图象.27.(16分)如图,在平面直角坐标系中,点A(1,4),点B(4,0),点C(1,0).(1)点D为射线CO上的一动点,若△DAB为等腰三角形,请直接写出此时点D 的坐标.(2)在y轴上,是否存在一点E,使得△EAB的面积△CAB的面积相等?若存在,求出点E的坐标;若不存在,说明理由.(3)在y轴上,是否存在一点F,使得△FAB的周长最小?若存在,求出点F的坐标;若不存在,说明理由.2015-2016学年江苏省连云港市东海县八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)2的算术平方根是()A.B.2C.±D.±2【解答】解:,2的算术平方根是,故选:A.2.(3分)下列图案中,是轴对称图形的个数有()A.1个B.2个C.3个D.4个【解答】解:第3个图形不都是轴对称图形,故轴对称图形有3个.故选:CD.3.(3分)以下列各组数为边的三角形中,是直角三角形的有()(1)3,4,5 (2)1,2,3 (3)32,22,52(4)0.03,0.04,0.05.A.1个B.2个C.3个D.4个【解答】解:(1)∵32+42=52,∴是直角三角形,故(1)正确;(2)∵12+22≠32,∴不是直角三角形,故(2)错误;(3)∵(32)2+(22)2≠(52)2,∴不是直角三角形,故(3)错误;(4)∵0.032+0.042=0.052,∴是直角三角形,故(4)正确.根据勾股定理的逆定理,只有(1)和(4)正确.故选:B.4.(3分)直线y=x﹣1的图象经过()A.第二、三象限B.第一、二、四象限C.第一、三、四象限D.第一、二、三象限【解答】解:直线y=x﹣1与y轴交于(0,﹣1)点,且k=1>0,y随x的增大而增大,∴直线y=x﹣1的图象经过第一、三、四象限.故选:C.5.(3分)已知点P(a+1,2﹣a)到y轴的距离为2,则点P的坐标是()A.(﹣2,5)B.(1,1)C.(2,1)D.(﹣2,5)或(2,1)【解答】解:由点P(a+1,2﹣a)到y轴的距离为2,得a+1=2或a+1=﹣2.解得a=1,或a=﹣3.点P的坐标是(2,1)或(﹣2,5),故选:D.6.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:D.7.(3分)如图,在等边三角形ABC中,中线AD、BE交于F,则图中共有等腰三角形共有()A.3个B.4个C.5个D.6个【解答】解:∵在等边三角形ABC中,中线AD、BE交于F,∴AD⊥BC,BE⊥AC,∠ABE=∠CBE=∠BAD=∠CAD=30°,DE为△ABC中位线,∴DE∥AB,∴∠BED=∠ADE=30°,∠EDC=60°,∴∠BAF=∠FBA=30°,∠FDE=∠FED=30°,∠EAD=∠ADE=30°,∠DBE=∠DEB=30°,∴△FAB,△FDE,△ADE,△BDE是等腰三角形,∵∠EDC=∠C=60°,∴△ABC,△DCE是等边三角形,则图中共有等腰三角形共有6个.故选:D.8.(3分)如图,在等腰Rt△ABC和等腰Rt△ADE中,∠BAC=∠DAE=90°,点C、D、E在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④BE2=2(AD2+AB2).其中,结论正确的个数是()A.4B.3C.2D.1【解答】解:如图:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确;②∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴②正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴③正确;④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故选:B.二、填空题(每小题3分,共30分)9.(3分)若一个数的立方根是﹣3,则这个数是﹣27.【解答】解:∵(﹣3)3=﹣27,∴﹣27的立方根是﹣3.∴这个数是﹣27.故答案为:﹣27.10.(3分)化简:||=.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.11.(3分)点A(﹣3,2)关于x轴的对称点A′的坐标为(﹣3,﹣2).【解答】解:点A(﹣3,2)关于x轴对称的点的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).12.(3分)已知等腰三角形的一个内角是70°,则它的底角为55°或70°.【解答】解:∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴其一个底角的度数是55°或70°.故答案为:55°或70°.13.(3分)如图,AB=AC,D、E分别在AC、AB上,要使△ABD≌△ACE,则还需要添加的一个条件是∠B=∠C(答案不唯一)(填写一个条件即可).【解答】解:可添加条件:∠B=∠C,理由如下:∵在△ABD和△ACE中,,∴△ABD≌△ACE(ASA).故答案为:∠B=∠C(答案不唯一).14.(3分)已知点A(0,m)和点B(1,n)都在函数y=﹣3x+b的图象上,则m>n.(在横线上填“>”、“<”或“=”)【解答】解:∵k=﹣3>0,∴y将随x的增大而减小,∵0<1,∴m>n.故答案为:>.15.(3分)一次函数y1=kx与y2=x+a的图象如图所示,则x+a<kx<0的解集是0<x<1.【解答】解:∵当0<x<1时一次函数y1=kx的图象在x轴的下方且在一次函数y2=x+a的图象的上方,∴不等式组x+a<kx<0的解集是0<x<1.故答案为0<x<1.16.(3分)已知一次函数y=ax+b,若2a+b=1,则它的图象必经过的一点坐标为(2,1).【解答】解:∵2a+b=1,∴b=﹣2a+1,∴y=ax﹣2a+1,∴(x﹣2)a=y﹣1,∵a为不等于0的任意数,∴x﹣2=0,y﹣1=0,解得x=2,y=1,∴它的图象必经过点(2,1).故答案为(2,1).17.(3分)在△ABC中,AB=13,AC=15,高AD=12,则BC的长为14或4.【解答】解:∵AD为边BC上的高,AB=13,AD=12,AC=15,∴BD==5,CD==9,当AD在△ABC外部时,BC=CD﹣BD=4.当AD在△ABC内部时,B′C=CD+BD=14.故答案为:14或4.18.(3分)如图,点A,A1,A2,…都在直线y=x上,点B,B1,B2,B3,…都在x轴上,且△ABB1,△A1B1B2,△A2B2B3,…都是等腰直角三角形,若按如此规律排列下去,已知B(1,0),则A2016的坐标为(22016,22016).【解答】解:∵△ABO,△AB1B,…,△A n B n B n+1都是等腰直角三角形,∵OB=1,∴AB=1,∴OB2=2,进而得出OB3=8,OB4=16,OB5=16,∴OB n=2n,∴OB2016=22016,∴A n B n=OB n=22016,即点A2016的坐标为(22016,22016),故答案为:(22016,22016).三、解答题(本大题共9个小题,共96分,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:+(﹣)3﹣(2)已知4x2﹣9=0,求x的值.【解答】解:(1)原式=4﹣5﹣4=﹣5;(2)方程整理得:x2=,开方得:x=±.20.(8分)已知函数3x+2y=1(1)将其改成y=kx+b的形式为.(2)判断点B(﹣5,3)是否在这个函数的图象上.【解答】解:(1)函数3x+2y=1改成y=kx+b的形式为;故答案为:;(2)因为当x=﹣5时,y=8≠3,所以点B不在这个函数的图象上.21.(8分)如图,4×4方格中每个小正方形的边长都为1.(1)图1中正方形ABCD的面积为5,边长为.(3)在图2的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上).【解答】解:(1)正方形ABCD的面积=AB2=12+22=5,边长AB=;故答案为:5,;(2)面积为8的正方形的边长==2,面积为8的正方形如图所示.22.(8分)如图,已知在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,ED=DC.求证:AB=AC.【解答】证明:∵AD平分∠EDC,∴∠ADE=∠ADC,在△ADE和△ADC中,,∴△ADE≌△ADC (SAS),∴∠E=∠C,又∵∠E=∠B,∴∠B=∠C,∴AB=AC.23.(10分)已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=的图象相交于点(2,a).(1)求一次函数y=kx+b的表达式;(2)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.【解答】解:(1)∵正比例函数y=经过点(2,a),∴a=×2=1,∵一次函数y=kx+b的图象经过点(﹣1,﹣5)与(2,1),∴,∴解得,∴y=2x﹣3;(3)如图:S=×3×2=3.24.(10分)已知:如图,E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)求∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC的长.【解答】(1)证明:在△ABE中,∠ABE=180°﹣∠BAE﹣∠AEB,在△ABC中,∠C=180°﹣∠BAC﹣∠ABC,∵∠AEB=∠ABC,∠BAE=∠BAC,∴∠ABE=∠C;(2)解:∵FD∥BC,∴∠ADF=∠C,又∠ABE=∠C,∴∠ABE=∠ADF,∵AF平分∠BAE,∴∠BAF=∠DAF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AB=AD,∵AB=8,AC=10,∴DC=AC﹣AD=10﹣8=2.25.(10分)某空调公司推销员的月收入y(元)与每月的销售量x(件)成一次函数关系,当他售出10件时月收入为800元,当他售出20件时月收入为1300元.(1)求y与x之间的函数关系式.(2)若想获得至少3800元的月收入,则该推销员每月至少要推销多少件空调?【解答】解:(1)设y与x之间的函数关系式是:y=kx+b,,解得k=50,b=300.即y与x之间的函数关系式是:y=50x+300;(2)由题意可得,50x+300≥3800解得x≥70,即若想获得至少3800元的月收入,则该推销员每月至少要推销70件空调.26.(16分)甲、乙两名运动员进行长袍训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图1所示(甲为线段AB,乙为折线ACB),根据图象所提供的信息解答问题:(1)他们在进行5000米的长跑训练,甲的速度是250米/分,乙前15分钟的速度是200米/分;(2)分别求甲、乙距终点的路程y(米)与跑步时间x(分)之间的函数关系式;(3)试求x为何值时,两人相距100米?(4)若设甲乙两人之间的距离为s(米),试根据题意在图2所示的坐标系中绘制出s(米)与跑步时间t(分)之间的函数图象.【解答】解:(1)由图象可得,他们在进行5000米的长跑训练,甲20分钟跑了5000米,乙前15分钟跑了(5000﹣2000)米,则甲的速度为:5000÷20=250米/分,乙的速度为:3000÷15=200米/分,故答案为:5000,250米/分,200米/分;(2)设线段AC对应的函数解析式为:y=kx+b,则解得k=﹣250,b=5000,∴线段AC对应的函数解析式是:y=﹣250x+5000(0≤x≤20);设线段AB对应的函数解析式为:y=mx+n,则解得,m=﹣200,n=5000,∴线段AB对应的函数解析式是:y=﹣200x+5000(0≤x≤15),设线段BC对应的函数解析式为:y=ax+c,则解得,a=﹣400,c=8000,∴线段BC对应的函数解析式是:y=﹣400x+8000(15<x≤20);由上可得,甲距终点的路程y(米)与跑步时间x(分)之间的函数关系式是:y=﹣250x+5000(0≤x≤20);乙距终点的路程y(米)与跑步时间x(分)之间的函数关系式是:y=;(3)由题意可得,﹣200x+5000﹣(﹣250x+5000)=100或﹣400x+8000﹣(﹣250x+5000)=100,解得,x=2或x=,即当x=2或x=,两人相距100米;(4)由题意和函数图象可得,当x=15时,两人相距最远,最远的距离为:﹣200×15+5000﹣(﹣250×15+5000)=750米,故s(米)与跑步时间t(分)之间的函数图象如下图2所示:.27.(16分)如图,在平面直角坐标系中,点A(1,4),点B(4,0),点C(1,0).(1)点D为射线CO上的一动点,若△DAB为等腰三角形,请直接写出此时点D 的坐标.(2)在y轴上,是否存在一点E,使得△EAB的面积△CAB的面积相等?若存在,求出点E的坐标;若不存在,说明理由.(3)在y轴上,是否存在一点F,使得△FAB的周长最小?若存在,求出点F的坐标;若不存在,说明理由.【解答】解:(1)∵A(1,4),B(4,0),C(1,0),∴AC=4,BC=3,在Rt△ABC中,根据勾股定理得:AB==5,如图1所示,分三种情况考虑:若AB=AD′=5,由对称性得到D′(﹣2,0);若BD=AB=5,可得OD=BD﹣OB=5﹣4=1,即D(﹣1,0);若AD″=BD″,此时D″为线段AB的垂直平分线与x轴的交点,设直线AB解析式为y=mx+n,把A与B坐标代入得:,解得:m=﹣,n=,即AB解析式为y=﹣x+,由A(1,4),B(4,0)得到线段AB中点坐标为(,2),∴线段AB垂直平分线方程为y﹣2=(x﹣),令y=0,得到x=﹣,即D″(﹣,0),综上,D的坐标为(﹣1,0)或(﹣2,0)或(﹣,0);(2)在y轴上,存在一点E,使得△EAB的面积△CAB的面积相等,理由为:由(1)得直线AB对应的函数关系式为y=﹣x+,过点C作直线AB的平行线,交y轴于点E,如图2所示,设直线CE的函数关系式为y=﹣x+c,∵点C在直线CE上,∴把C(1,0)代入得:0=﹣×1+c,解得:c=,∴点E的坐标为(0,),同理,过点(7,0)作直线AB的平行线,得点E的坐标为(0,),综上,存在点E,且点E的坐标为(0,)或(0,);(3)在y轴上,存在F,使得△FAB的周长最小,如图3所示,点A关于y轴的对称点A1的坐标为(﹣1,4).连接A1B交y轴于点F,连接AF,此时△FAB的周长最小,设直线A1B的函数关系式为y=mx+n,则有,解得:,∴直线A1B的函数关系式为y=﹣x+,则点F的坐标为(0,).附赠:初中数学易错题填空专题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。