因式分解单元检测
- 格式:doc
- 大小:131.00 KB
- 文档页数:4
整式的乘法与因式分解单元检测卷一、选择题(每小题3分,共30分)1.下列是分式的为( )A.1x+5B.x 2−5πC.5x 8D.2−x 3 2.计算:4a 2a−b -2b 2a−b =( )A.2B.2a −bC.22a−bD.a−b 2a−b 3.计算(−b a )3⋅a 4的结果为( )A .ab 3B .−ab 3C .b 7aD .-b 7a 4.分式16x 2与−13xy 的最简公分母是( )A.6x 3yB.6x 2yC.18x 2yD.18x 3y 5.分式3a a 2−b 2的分母经过通分后变成2(a -b )2(a +b ),那么分子应变为( )A.6a (a -b )2(a +b )B.2(a -b )C.6a (a -b )D.6a (a +b )6.不改变分式0.5x−10.3x+2的值,把它的分子和分母中各项的系数都化为整数,结果为( )A.0.5x−13x+2B.5x−100.3x+2C.5x−13x+2D.5x−103x+20 7.甲、乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个.设乙每小时加工x 个零件,可列方程为( )A.1201.2x −120x =30 B.120x −1201.2x =30 C.1201.2x −120x =3060 D.120x −1201.2x =3060 8.一艘货轮在静水中的航速为40 km/h ,它以该航速沿江顺流航行120 km 所用时间,与以该航速沿江逆流航行80 km 所用时间相等,则江水的流速为( )A.5 km/hB.6 km/hC.7 km/hD.8 km/h9.【易错题】已知关于x 的分式方程m x−2+1=x 2−x 的解是非负数,则m 的取值范围是( )A.m ≤2B.m ≥2C.m ≤2且m ≠-2D.m <2且m ≠-210.【规律题】对于正数x ,规定f (x )=2x x+1.如:f (2)=2×22+1=43,f (12)=2×1212+1=23,f (3)=2×33+1=32,f (13)=2×1313+1=12.计算:f (1101)+f (1100)+f (199)+…+f (13)+f (12)+f (1)+f (2)+f (3)+…+f (99)+f (100)+f (101)=( )A.199B.200C.201D.202 二、填空题(每小题3分,共15分) 11.化简21−x −2x 1−x 的结果为_______.12.分式方程3x+1=32x 的解为_______.13.已知2x +y =10xy ,则4x+xy+2y 2x−4xy+y 的值为_____________.14.鼻病毒是引起普通感冒的主要病原体,冬季为高发期.它主要通过空气飞沫和直接接触传播.鼻病毒呈球形,直径15 nm~30 nm.则30 nm 用科学记数法表示为 _______________m.15.【易错题】当关于x 的分式方程4x+1+3x−1=m x 2−1有增根时,m 的值为_________.三、解答题(共75分)16.(8分)(1)化简:1x−1+x 2−3x x 2−1. (2)解方程:3x−1=5+3x 1−x .17.(7分)先化简,再求值:(1+3x−2)÷x+1x 2−4x+4,其中x =3.18.(8分)随着快递行业的快速发展,全国各地的农产品有了更广阔的销售空间,某农产品加工企业有甲、乙两个组共35名工人.甲组每天加工3 000件农产品,乙组每天加工2 700件农产品,已知乙组每人每天平均加工的农产品数量是甲组每人每天平均加工农产品数量的1.2倍,求甲、乙两组各有多少名工人.19.(8分)化简:(x x+1+x x−1)·x 2−1x .图1所示的是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是____________,乙同学解法的依据是___________.(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.20.(10分)观察以下等式:第1个等式:22+14=1+14;第2个等式:43+19=1+49;第3个等式:64+116=1+916;第4个等式:85+125=1+1625;……按照以上规律,解决下列问题:(1)写出第5个等式:________________.(2)写出你猜想的第n 个等式(用含n 的等式表示),并证明.21.(10分)【新定义】若非零实数x ,y ,z 满足1x +1y =1z ,我们称x ,y ,z 为“相机组合”,记为(x ,y ,z ).(1)若x 满足“相机组合”(2,1-3x ,6x -2),求x 的值.(2)若x ,y ,z 构成“相机组合”(x ,y ,z ),求分式xy+3xz−yz xy−3xz−yz 的值.22.(12分)商场进货员预测一种应季T 恤衫能畅销市场,就用4 000元购进一批这种T 恤衫,面市后果然供不应求.商场又用8 800元购进了第二批这种T 恤衫,所购数量是第一批购进数量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T 恤衫每件的进价分别是多少元?(2)如果两批T 恤衫按相同的标价销售,最后缺码的40件T 恤衫按七折优惠售出,要使两批T 恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T 恤衫的标价至少是多少元?23.(12分)如图2,A种小麦试验田是边长为a的正方形中减去一个边长为b的正方形蓄水池后余下的部(a+b)的正方形.分;B种小麦试验田是边长为12(1)设两块试验田都收获了m kg小麦,求A,B两种小麦单位面积产量的比.(2)当a=2b时,A,B两种小麦单位面积产量哪个较大?(3)若A,B两种小麦单位面积产量相同,求a,b满足的关系式.参考答案一、1.A 2.A3.B 【提示】(−b a )3⋅a 4=-b 3a 3⋅a 4=−ab 3.故选B. 4.B 【提示】各分母系数的最小公倍数为6,所有字母及最高次字母的积为x 2y ,故这两个分式的最简公分母是6x 2y .5.C 【提示】分式3a a 2−b 2的分母a 2-b 2=(a -b )(a +b ),经过通分后变成2(a -b )2(a +b ),那么分母乘以了2(a -b ),根据分式的基本性质,将分子3a 乘以2(a -b ),则分子应变为6a (a -b ).6.D 【提示】0.5x−10.3x+2=(0.5x−1)×10(0.3x+2)×10=5x−103x+20,故选D.7.D 【提示】乙每小时加工x 个零件,则甲每小时加工1.2x 个零件,根据题意,得120x −1201.2x =3060.故选D.8.D 【提示】设江水的流速为x km/h ,则沿江顺流航行的速度为(40+x )km/h ,沿江逆流航行的速度为(40-x )km/h ,根据题意,得12040+x =8040−x .解得x =8.经检验,x =8是分式方程的解.∴江水的流速为8km/h.故选D.9.C 【提示】分式方程去分母,得m +x -2=-x .解得x =2−m 2.由分式方程的解是非负数,得到2−m 2≥0,且2−m 2−2≠0.解得m ≤2且m ≠-2. 10.C 【提示】因为f (1)=2×11+1=1, f (2)=2×22+1=43,f (12)=2×1212+1=23, f (3)=2×33+1=32,f (13)=2×1313+1=12, f (4)=2×44+1=85,f (14)=2×1414+1=25,…f (101)=101×2101+1=10151,f (1101)=2×11011101+1=151, 所以f (2)+f (12)=43+23=2,f (3)+f (13)=32+12=2,f (4)+f (14)=85+25=2,…f (101)+f (1101)=10151+151=2.所以f (1101)+f (1100)+f (199)+…+f (13)+f (12)+f (1)+f (2)+f (3)+…+f (99)+f (100)+f (101)=2×100+1=201.二、11.2【提示】原式=2−2x 1−x =2(1−x )1−x =2.12.1【提示】去分母,得6x =3x +3.解得x =1.检验:当x=1时,2x (x+1)≠0.所以原方程的解为x=1.13.72【提示】因为2x +y =10xy ,所以4x+xy+2y 2x−4xy+y =2(2x+y )+xy 2x+y−4xy =21xy 6xy =72. 14. 3×10-8【提示】1 m=1 000 000 000 nm ,30 nm=0.000 000 03 m=3×10-8 m.15.6或-8【提示】分式方程去分母,得4(x -1)+3(x +1)=m .由这个方程有增根,得到x =1或x =-1.将x =1代入整式方程,得m =6.将x =-1代入整式方程,得m =-8.综上所述,m 的值为6或-8.三、16.(1)原式=x+1(x+1)(x−1)+x 2−3x (x+1)(x−1) =x 2−2x+1(x+1)(x−1)=(x−1)2(x+1)(x−1)=x−1x+1. (2)去分母,得3=5(x -1)-3x .去括号,得3=5x -5-3x .移项、合并同类项,得-2x =-8.系数化为1,得x =4.检验:将x =4代入x -1中,得4-1=3≠0.则原分式方程的解为x =4.17.原式=x−2+3x−2⋅(x−2)2x+1=x+1x−2⋅(x−2)2x+1=x −2.当x =3时,原式=3-2=1.18.设甲组有x 名工人,则乙组有(35-x )名工人,根据题意,得2 70035−x =3 000x ×1.2.解得x =20.经检验,x =20是所列方程的解,且符合题意.∴35-x =35-20=15.答:甲组有20名工人,乙组有15名工人.19.(1)②;③.(2)答案不唯一.如选择乙同学的解法.(x x+1+x x−1)·x 2−1x=x x+1∙x 2−1x +x x−1∙x 2−1x =x x+1∙(x+1)(x−1)x +x x−1∙(x+1)(x−1)x=x -1+x +1=2x .20.(1) 106+136=1+2536.(2)第n 个等式为:2n n+1+1(n+1)2=1+n 2(n+1)2. 证明:左边=2n n+1+1(n+1)2=2n (n+1)+1(n+1)2 =2n 2+2n+1(n+1)2=n 2+2n+1+n 2(n+1)2 =(n+1)2+n 2(n+1)2=1+n 2(n+1)2=右边,所以等式成立.21.(1)因为x 满足“相机组合”(2,1-3x ,6x -2),所以12+11−3x =16x−2,即3−3x 2−6x =16x−2.去分母,得3-3x =-1.解得x =43.经检验,x =43是方程的根.所以x 的值为43.(2)因为x ,y ,z 构成“相机组合”(x ,y ,z ),所以1x +1y =1z .则xz +yz =xy .原式=xz+yz+3xz−yz xz+yz−3xz−yz =4xz −2xz =-2.22.(1)设该商场购进第一批T 恤衫每件的进价是x 元,则第二批T 恤衫每件的进价为(x +4)元. 根据题意,得2×4 000x =8 800x+4.解得x =40.经检验,x =40是所列方程的解,且符合题意.x +4=40+4=44.答:该商场购进第一批、第二批T 恤衫每件的进价分别是40元和44元.(2)4 00040+8 80044=300(件).设每件T 恤衫的标价是y 元.根据题意,得(300-40)y +40×0.7y ≥(4 000+8 800)×(1+80%).解得y ≥80.答:每件T 恤衫的标价至少是80元.23.(1)根据题意,得A 种小麦单位面积的产量:m a 2−b 2,B 种小麦单位面积的产量:m14(a+b)2.则A ,B 两种小麦单位面积产量的比为m a 2−b 2:m14(a+b)2=m (a+b )(a−b )·14(a+b)2m =a+b 4(a−b ).(2)当a=2b时,m a2−b2=m4b2−b2=m3b2=3m9b2,m1 4(a+b)2=m14(2b+b)2=4m9b2,因为3m9b2<4m9b2,所以B种小麦单位面积产量较大.(3)根据题意,得ma2−b2=m14(a+b)2.整理,得4a2-4b2=(a+b)2,即4(a+b)(a-b)=(a+b)2. 因为a+b≠0,所以4(a-b)=a+b. 整理,得3a=5b.。
班级小组姓名成绩(满分100)一.填空题(每题3分,共30分)1.若||35x a b 与3|1|0.2y a b --是同类项,则x =,y =.2.多项式332233a b a b ab +--按a 的升幂排列是,按b 的降幂排列的是.3.2003200320032004(4)0.25(0.125)8-⨯+⨯=.4.已知2530x y +-=,则432x y = .5.若2210a a --=,则221a a +=.6.若2()9x y +=,2()5x y -=,则xy =.7.2111(3)()3n n n a a a ++-+÷-=.8.9m a =,8n a =,4k a =,则23m n k a -+=.9.221.23450.7655 2.4690.7655++⨯=.10.已知22812520x y x y +--+=,则2(32)x y -=.二.选择题(每题3分,共15分)11.长方形的一边等于32m n +,另一边比它大m n -,则这个长方形周长是()A.4m n +B.82m n +C.146m n +D.128m n+12.当1m =时,2222[4()]m m m ---+-等于()A.7-B.3C.1D.213.计算10099(2)(2)-+-所得的结果是()A.992-B.2-C.992D.214.已知2()11a b +=,2()7a b -=,则ab 等于()A.1-B.2-C.1D.215.若多项式220x x --分解为()()x a x b --,则a ,b 的值可能为()A.4a =,5b =B.4a =-,5b =C.4a =,5b =-D.4a =-,5b =-三.解答题(16,17每题6分,23题8分,其他题目每题7分,共55分)16.已知22a ab -=-,224ab b -=,求222a b -的值.17.李可同学欲将一个多项式加上234xy yz -+时,由于错把“加上”当作“减去”使得计算结果为689xy yz -+-,请你求出正确的答案.18.已知a ,b ,c 是ABC ∆的三边,且222a b c ab ac bc ++=++,求证:ABC ∆是等边三角形.19.若2()(2)x m x x n +--的积不含2x 和x 的项,求m 和n 的值.20.若114a b c ==且76ab bc ac ++=,求222325a b c --的值.21.已知:214(0)x x x +=≠,求①221x x +②21(x x -③441x x +.22.如果25a b -=,试求代数式222[()()2()]4a b a b b a b b +--+-÷的值.23.分解因式①222222()4c a b a b ---②222ax ay x y xy ---+.。
(因式分解\分式)单元测试卷一、填空题:(每空格2分,共42分)1、 直接写出因式分解的结果:①2332255y x y x -= ②_________________22=+++n n na a a ③_____________________942=-x ④=+-3632a a 2、 若是完全平方式162+-mx x ,那么m=________。
若n x x ++1242是一个完全平方式,则n = 。
3、 如果_________;,2,52222=+=+==+y x xy y x xy y x 则4、 利用因式分解简便计算(必须写出完整计算过程)①____________________________________________75.225.722=-②______________________________________1443824382=+⨯+=5、 多项式.____________96922的公因式是与++-x x x6、 分式22-+x x 等于0,则x . 当x 时,分式354-+x x 有意义. 7、 ab a 21,312的最简公分母是 . 3912+-m m m 与的最简公分母是 . 8、 分式方程331-=-+x k x x 无解,则k=______. 9、分式方程134313=---+x x x 的解是_______. 10、件商品,进价为50元,售价为a 元,利润率为_____________.11、一项工作,甲要5小时才可完成,乙要x 小时完成,若甲乙合作, 3小时可完成_____________12、某班学生到距学校12千米的烈士陵园扫墓,一部分人骑自行车先行,经0.5时后,其余的人乘汽车出发,结果他们同时到达.已知汽车的速度是自行车的3倍,求自行车和汽车的速度.若设自行车的速度为x 千米/时,根据以上条件可列分式方程:_______________________________13、种原料和乙种原料的每千克单价比是2:3,将价值200元的甲种原料有价值100元的乙混合后,单价为9元,求甲的单价。
七年级数学下册《因式分解》单元测试卷(附带答案解析)一.选择题1.下列多项式不能用平方差分解因式的是()A.0.36a2﹣0.04b2B.x2﹣16C.﹣a2+b2+c2D.﹣x2+y22.多项式4ab2+8ab2﹣12ab的公因式是()A.4ab B.2ab C.3ab D.5ab3.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣44.下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1D.a2﹣1=a(a﹣)5.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形②是直角三角形③是钝角三角形④是等边三角形,其中正确说法的个数是()A.4个B.3个C.2个D.1个6.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6B.18C.28D.507.若a=x﹣20,b=x﹣18,c=x﹣16,则a2+b2+c2﹣ab﹣ac﹣bc的值为()A.12B.24C.27D.54二.填空题(共8小题)8.因式分解:a3+2a2b+ab2=.9.已知x2+2x+2y+y2+2=0,则x2022+y2023=.10.若x2+2x﹣3=0,则x3+x2﹣5x+2022=.11.分解因式:25a﹣ab2=.12.若x2+mx﹣n=(x+2)(x﹣5),则m﹣n=.13.若mn=1,m﹣n=2,则m2n﹣mn2的值是.14.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.15.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为.三.解答题16.分解因式:x(x+4)+4.17.将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc18.因式分解:(1)2a3﹣8a(2)3x2y﹣18xy2+27y319.因式分解:(1)x2(a﹣b)+9(b﹣a)(2)(a2+4)2﹣16a2.20.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你完成下列各题:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2(2)因式分解:25(a+2)2﹣10(a+2)+1(3)因式分解:(y2﹣6y)(y2﹣6y+18)+81.21.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)若F(a)=且a为100以内的正整数,则a=(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.参考答案与解析一.选择题1.解:A、0.36a2﹣0.04b2=(0.6a+0.2b)(0.6a﹣0.2b),能分解因式,本选项不符合题意B、x2﹣16=(x+4)(x﹣4),本选项不合题意C、﹣a2+b2+c2无法分解因式,本选项符合题意D、﹣x2+y2=(y+x)(y﹣x),本选项不合题意故选:C.2.解:多项式4ab2+8ab2﹣12ab的公因式4ab故选:A.3.解:A、原式不能分解B、原式=(x+y)2﹣2=(x+y+)(x+y﹣)C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4)D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2)故选:A.4.解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.5.解:∵a2+b2+c2=ab+bc+ca∴2a2+2b2+2c2=2ab+2bc+2ca即(a﹣b)2+(b﹣c)2+(a﹣c)2=0∴a=b=c∴此三角形为等边三角形,同时也是锐角三角形.故选:C.6.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2将a+b=3,ab=2代入得,ab(a+b)2=2×32=18故代数式a3b+2a2b2+ab3的值为18故选:B.7.解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]∵a=x﹣20,b=x﹣18,c=x﹣16∴a﹣b=﹣2,a﹣c=﹣4,b﹣c=﹣2则原式=×(4+16+4)=12故选:A.二.填空题8.解:原式=a(a2+2ab+b2)=a(a+b)2故答案为a(a+b)29.解:∵x2+2x+2y+y2+2=0∴(x2+2x+1)+(y2+2y+1)=0∴(x+1)2+(y+1)2=0∴x+1=0,y+1=0解得:x=﹣1,y=﹣1∴x2022+y2023=(﹣1)2022+(﹣1)2023=1+(﹣1)=0故答案为0.10.解:∵x2+2x﹣3=0∴x2=3﹣2x∴x3+x2﹣5x+2022=x(3﹣2x)+x2﹣5x+2022=3x﹣2x2+x2﹣5x+2022=﹣3+2x﹣2x+2022=2019 11.解:25a﹣ab2=a(25﹣b2)=a(5+b)(5﹣b)故答案为a(5+b)(5﹣b)12.解:∵x2+mx﹣n=(x+2)(x﹣5)=x2﹣3x﹣10∴m=﹣3,n=10∴m﹣n=﹣3﹣10=﹣13.故答案为﹣13.13.解:∵mn=1,m﹣n=2∴m2n﹣mn2=mn(m﹣n)=1×2=2故答案为2.14.解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式∴2(3﹣m)=±10解得:m=﹣2或8.故答案为﹣2或8.15.解:因式分解x2+ax+b时∵甲看错了a的值,分解的结果是(x+6)(x﹣2)∴b=6×(﹣2)=﹣12又∵乙看错了b的值,分解的结果为(x﹣8)(x+4)∴a=﹣8+4=﹣4∴原二次三项式为x2﹣4x﹣12因此,x2﹣4x﹣12=(x﹣6)(x+2)故答案为(x﹣6)(x+2).三.解答题16.解:原式=x2+4x+4=(x+2)217.解:(1)原式=4x(2x﹣y)(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).18.解:(1)原式=2a(a2﹣4)=2a(a+2)(a﹣2)(2)原式=3y(x2﹣6xy+9y2)=3y(x﹣3y)2 19.解:(1)原式=x2(a﹣b)﹣9(a﹣b)=(a﹣b)(x2﹣9)=(a﹣b)(x﹣3)(x+3)(2)原式=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)220.解:(1)设x﹣y=m原式=1﹣2m+m2=(1﹣m)2=[1﹣(x﹣y)]2=(1﹣x+y)2(2)设a+2=m原式=25m2﹣10m+1=(5m﹣1)2=[5(a+2)﹣1]2=(5a+9)2(3)设y2﹣6y=m原式=m(m+18)+81=m2+18m+81=(m+9)2=(y2﹣6y+9)2=(y﹣3)4.21.解:(1)2×3=6,4×6=24,6×9=54,8×12=96 (2)F(m)存在最大值和最小值.当m为完全平方数,设m=n2(n为正整数)∵|n﹣n|=0∴n×n是m的最佳分解∴F(m)==1又∵F(m)=且p≤q∴F(m)最大值为1此时m为16,25,36,49,64,81当m为最大的两位数质数97时,F(m)存在最小值,最小值为.故答案为6,24,54,96.。
浙教版七年级数学下册《因式分解》单元练习检测试卷及答案解析一、选择题1、下列等式从左到右的变形,属于因式分解的是()A.a(x-y)=ax-ay B.(x+1)(x+3)=x2+4x+3C.x3﹣x=x(x+1)(x-1) D.x2+2x+1=x(x+2)+12、下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2﹣2x﹣15=(x+3)(x﹣5)C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+4)3、如果二次三项式可分解为,那么a+b的值为( )A.-2 B.-1 C.1 D.24、边长为a,b的长方形,它的周长为14,面积为10,则a b+ab的值为( )A.35 B.70 C.140 D.2805、把多项式(a﹣2)+m(2﹣a)分解因式等于().A.(a﹣2)(+m)B.(a﹣2)(﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)6、能被下列数整除的是( )A.3 B.5 C.7 D.97、下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2-2abC.D.8、把分解因式,其结果为( )A.()()B.()C.D.()9、将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+aC.(a+1)2-a-1 D.(a-2)2+2(a-2)+110、一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( )A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y) D.x2-y2=(x+y)(x-y)二、填空题11、因式分解:-x= .12、分解因式:x2+2(x﹣2)﹣4=______.13、在实数范围内分解因式:a3﹣5a= .14、多项式6x2y-2xy3+4xyz的公因式是__________.15、已知x+y=6,xy=4,则x2y+xy2的值为.16、把多项式ax2+2a2x+a3分解因式的结果是.17、利用整式乘法公式计算104×96时,通常将其变形为__________________时再计算18、若,且,则___.19、分解因:=______________________.20、已知58-1能被20--30之间的两个整数整除,则这两个整数是。
因式分解单元测试卷附答案It was last revised on January 2, 2021第3章 因式分解水平测试(总分:120分,时间:90分钟) 学校 班级 座号 姓名一、选择题(每3分,共24分) 1.-(3a+5)(3a -5)是多项式( )分解因式的结果.A 、9a 2-25B 、9a 2+25C 、-9a 2-25D 、-9a 2+25 2、多项式9x m y n -1-15x 3m y n 的公因式是( )-1-13.已知54-1能被20~30之间的两个整数整除,则这两个整数是( ) A 、25,27 B 、26,28 C 、24,26 D 、22,244、如果多项式-51abc +51ab 2-a 2bc 的一个因式是-51ab ,那么另一个因式是( )-b +5ac +b -5ac -b +51ac+b -51ac5、用提取公因式法分解因式正确的是( )-9a 2b 2=3abc (4-3ab ) -3xy +6y =3y (x 2-x +2y )C.-a 2+ab -ac =-a (a -b +c ) +5xy -y =y (x 2+5x )6、64-(3a -2b )2分解因式的结果是( ).A 、(8+3a -2b )(8-3a -2b )B 、(8+3a+2b )(8-3a -2b )C 、(8+3a+2b )(8-3a+2b )D 、(8+3a -2b )(8-3a+2b )7、8a (x -y )2-4b (y -x )提取公因式后,剩余的因式是() +2ay+b +2ay-b+b8、下列分解因式不正确的是( ). A 、4y 2-1=(4y +1)(4y -1) B 、a 4+1-2a 2=(a -1)2(a+1)2C 、2291314923x x x ⎛⎫-+=- ⎪⎝⎭D 、-16+a 4=(a 2+4)(a -2)(a +2)二、填空(每题3分,共24分)1、将9(a+b )2-64(a -b )2分解因式为____________.2、-xy 2(x +y )3+x (x +y )2的公因式是__ ______.3、x 2+6x+9当x=___________时,该多项式的值最小,最小值是_____________.4、5(m -n )4-(n -m )5可以写成________与________的乘积.5、100m 2+(_________)mn 2+49n 4=(____________)2.6、计算:36×29-12×33=________.7、将多项式42+x 加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式: , , .8、)(22⋅=+++n n n n a a a a三、解答(共72分)1、分解因式:(24分)(1)(x 2+y 2)2-4x 2y 2 (2)x 2-2xy +y 2-mx +my(3)a (x -a )(x +y )2-b (x -a )2(x +y ) (4)12ab -6(a 2+b 2)(5)196(a+2)2-169(a+3)2(6) ()()22141m m m ---2、若a =-5,a +b +c =-,求代数式a 2(-b -c )-(c +b )的值.(6分)3、已知a -2b=21,ab=2,求-a 4b 2+4a 3b 3-4a 2b 4的值. (6分)4.(2016菏泽)已知4x= 3y ,求代数式()()()2222x y x y x y y ---+-的值.5、32003-4×32002+10×32001能被7整除吗为什么(6分)6、已知x 2+y 2-4x+6y+13=0,求(x+y)2017的值。
第八章 因式分解单元检测一、单选题1.下列各式从左到右的变形中,属于因式分解的是( )A .2623x y x xy =⋅B .()24141x x x x ++=++C .()()2339a a a +-=-D .()3222x xy x x y -=-2.多项式23x x a -+可分解为()()52x x -+,则a 的值分别是( ) A .10 B .10- C .2 D .2- 3.多项式2224333126x y x y x y --的公因式是( )A .3xyB .22x yC .223x yD .323x y 4.将()()22m a a -+-分解因式,正确的是( )A .()()21a m --B .()()21a m -+C .()()21a m --D .()()21a m -- 5.已知a 2-2a -1=0,则a 4-2a 3-2a +1等于( )A .0B .1C .2D .3 6.将(x +3)2﹣(x ﹣1)2因式分解正确的是( )A .8(x ﹣1)B .4(2x +2)C .4(x +1)D .8(x +1) 7.下列多项式中,能用完全平方公式分解因式的是( )A .a 2+4B .x 2+6x +9C .x 2﹣2x ﹣1D .a 2+ab +b 2 8.不论x ,y 取何实数,代数式x 2-4x +y 2-6y +13总是( )A .非负数B .正数C .负数D .非正数 9.已知甲、乙、丙均为含x 的整式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x -,乙与丙相乘的积为23x x -,则甲与丙相乘的积为( )A .33x +B .23x x +C .33x -D .23x x - 10.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( )A .201030B .201010C .301020D .203010 二、填空题11.已知a 2+a -1=0,则a 3+2a 2+2021=________.12.如果10x y +=,7xy =,则22x y xy +=______. 13.分解因式2()669x y x y --++=_______.14.已知x 2+mx +16能用完全平方公式因式分解,则m 的值为 ___.15.由多项式与多项式相乘的法则可知:即:(a +b )(a 2﹣ab +b 2)=a 3﹣a 2b +ab 2+a 2b ﹣ab 2+b 3=a 3+b 3即:(a +b )(a 2﹣ab +b 2)=a 3+b 3①,我们把等式①叫做多项式乘法的立方和公式. 同理,(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3①,我们把等式①叫做多项式乘法的立方差公式.请利用公式分解因式:﹣64x 3+y 3=___.三、解答题16.分解因式:(1)22324x y xy y ++.(2)()()2294a x y b y x -+-.17.先因式分解,再计算求值:(x -2)2-6(2-x ),其中x =-2.18.已知10a b +=,8ab =-.(1)求证22a b +的值;(2)求2255a b ab +的值.19.利用分解因式计算:(1)35 9910088⨯(2)2220152253851-+⨯20.把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法叫做配方法.配方法在代数式求值,解方程,最值问题等都有着广泛的应用.例如:①用配方法因式分解:268++.a a原式2691=++-a a2=+-(3)1a=+-++(31)(31)a a=++(2)(4)a a①若222222=-+-+,利用配方法求M的最小值:M a ab b b22222-+-+=-++-++a ab b b a ab b b b2222221122a b b=-+-+()(1)1()2b-≥0,a b-≥0,()21∴当1==时,M有最小值1.a b请根据上述材料解决下列问题:(1)用配方法因式分解:21235-+.a a(2)若231=-+,求M的最小值.M a a(3)已知2223240+-的值.++---+=,求a b ca b c ab b c答案1.D2.B3.C4.C5.C6.D7.B8.A9.B10.B11.202212.7013.2(3)x y --14.8±15.()()224416y x y xy x -++16.(1)()22y x y +(2)()()()3232x y a b a b -+- 17.(x -2)(x +4),-8 18.(1)116(2)-40019.(1)39999964;(2)25300020.(1)()(75)a a -- (2)54- (3)2。
因式分解单元检测卷时间:90分钟满分:120分班级:__________姓名:__________得分:__________ 一、选择题(每小题3分,共30分)1.下列等式从左到右的变形属于因式分解的是()A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)2.多项式-6xy2+9xy2z-12x2y2的公因式是()A.-3xy B.3xyz C.3y2z D.-3xy23.下列各式中,不能用平方差公式因式分解的是()A.-a2-4b2B.-1+25a2 C.116-9a2D.-a4+14.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9) B.x(y+3)2 C.x(y+3)(y-3) D.x(y+9)(y-9) 5.若(x+y)3-xy(x+y)=(x+y)·M,则M是()A.x2+y2B.x2-xy+y2 C.x2-3xy+y2D.x2+xy+y26.计算2100+(-2)101的结果是()A.2100B.-2100 C.2 D.-27.下列因式分解中,正确的是()A.x2y2-z2=x2(y+z)(y-z) B.-x2y+4xy-5y=-y(x2+4x+5)C.(x+2)2-9=(x+5)(x-1) D.9-12a+4a2=-(3-2a)28.如图是边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2-ab的值为() A.70 B.60C.130 D.1409.设n为整数,则代数式(2n+1)2-25一定能被下列数整除的是()A.4 B.5 C.n+2 D.1210.已知a,b,c是三角形ABC的三条边,且三角形两边之和大于第三边,则代数式(a-c)2-b2的值是()A.正数B.0 C.负数D.无法确定二、填空题(每小题3分,共24分)11.分解因式2a (b +c )-3(b +c )的结果是______________.12.多项式3a 2b 2-6a 3b 3-12a 2b 2c 的公因式是________.13.已知a ,b 互为相反数,则a 2-b 24的值为________. 14.把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解:________________.15.分解因式:(m +1)(m -9)+8m =________________.16.若x +y =10,xy =1,则x 3y +xy 3的值是________.17.若二次三项式x 2+mx +9是一个完全平方式,则代数式m 2-2m +1的值为________.18.先阅读,再分解因式:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x )2=(x 2-2x +2)(x 2+2x +2),按照这种方法分解因式:x 4+64=______________.三、解答题(共66分)19.(16分)分解因式:(1)(2a +b )2-(a +2b )2; (2)-3x 2+2x -13;(3)3m 4-48; (4)x 2(x -y )+4(y -x ).20.(10分)(1)已知x =13,y =12,求代数式(3x +2y )2-(3x -6y )2的值;(2)已知a -b =-1,ab =3,求a 3b +ab 3-2a 2b 2的值.21.(8分)给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.22.(10分)利用因式分解计算:(1)8352-1652; (2)2032-203×206+1032.23.(10分)如图,在半径为R 的圆形钢板上,钻四个半径为r 的小圆孔,若R =8.9cm ,r =0.55cm ,请你应用所学知识用最简单的方法计算剩余部分面积(结果保留π).24.(12分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=____________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.参考答案与解析1.D 2.D 3.A 4.C 5.D6.B 7.C 8.B 9.A 10.C11.(b +c )(2a -3) 12.3a 2b 2 13.014.x 2+3x +2=(x +2)(x +1)15.(m +3)(m -3) 16.98 17.25或4918.(x 2-4x +8)(x 2+4x +8)19.解:(1)原式=(2a +b +a +2b )(2a +b -a -2b )=3(a +b )(a -b ).(4分)(2)原式=-3⎝⎛⎭⎫x 2-23x +19=-3⎝⎛⎭⎫x -132.(8分) (3)原式=3(m 4-42)=3(m 2+4)(m 2-4)=3(m 2+4)(m +2)(m -2).(12分)(4)原式=(x -y )(x 2-4)=(x -y )(x +2)(x -2).(16分)20.解:(1)原式=(3x +2y +3x -6y )(3x +2y -3x +6y )=(6x -4y )·8y =16y (3x -2y ).(2分)当x =13,y =12时,原式=16×12×⎝⎛⎭⎫3×13-2×12=0.(5分) (2)原式=ab (a 2+b 2-2ab )=ab (a -b )2.(7分)当ab =3,a -b =-1时,原式=3×(-1)2=3.(10分)21.解:12x 2+2x -1+12x 2+4x +1=x 2+6x =x (x +6)(答案不唯一).(8分) 22.解:(1)原式=(835+165)×(835-165)=1000×670=670000.(5分)(2)原式=2032-2×203×103+1032=(203-103)2=1002=10000.(10分)23.解:S 剩余=πR 2-4πr 2=π(R +2r )(R -2r ).(5分)当R =8.9cm ,r =0.55cm 时,S 剩余=π×10×7.8=78π(cm 2).(9分)答:剩余部分的面积为78πcm 2.(10分)24.解:(1)(x -y +1)2(2分)(2)令A =a +b ,则原式=A (A -4)+4=A 2-4A +4=(A -2)2,故(a +b )(a +b -4)+4=(a +b -2)2.(6分)(3)(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(12分)。
第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2] 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。
因式分解经典练习题一、填空题:1. 若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
2. 22)(n x m x x -=++则m =____ n =____3. 若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。
4. _____))(2(2(_____)2++=++x x x x5. 若442-+x x 的值为0,则51232-+x x 的值是________。
6. 若6,422=+=+y x y x 则=xy ___ 。
7. x 2-y 2-z 2+2yz=x 2-(__________)=(__________)(__________)8.当m=______时,x2+2(m -3)x +25是完全平方式.二.选择题1.在下列等式中,属于因式分解的是( )A .a(x -y)+b(m +n)=ax +bm -ay +bnB .a2-2ab +b2+1=(a -b)2+1C .-4a2+9b2=(-2a +3b)(2a +3b)D .x2-7x -8=x(x -7)-8 2.下列各式中,能用平方差公式分解因式的是( )A .a2+b2B .-a2+b2C .-a2-b2D .-(-a2)+b2 3.若9x2+mxy +16y2是一个完全平方式,那么m 的值是( ) A .-12 B .±24 C .12 D .±124.已知x2+y2+2x -6y +10=0,那么x ,y 的值分别为( ) A .x=1,y=3 B .x=1,y=-3 C .x=-1,y=3 D .x=1,y=-35.一个关于x 的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是( )A .x2-11x -12或x2+11x -12B .x2-x -12或x2+x -12C .x2-4x -12或x2+4x -12D .以上都可以6.下列各式x3-x2-x +1,x2+y -xy -x ,x2-2x -y2+1,(x2+3x)2-(2x +1)2中,不含有(x -1)因式的有( )A .1个B .2个C .3个D .4个7.多项式))(())((x b x a ab b x x a a --+---的公因式是-( ) A 、-a 、 B 、))((b x x a a --- C 、)(x a a - D 、)(a x a --8.若22)32(9-=++x kx mx ,则m ,k 的值分别是( )A 、m=—2,k=6,B 、m=2,k=12,C 、m=—4,k=—12、D m=4,k=-12、9.下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公式分解因式的有( )A 、1个B 、2个C 、3个D 、4个 10.计算)1011)(911()311)(211(2232----Λ的值是( )A 、21,B 、2011.,101.,201D C二、分解因式1.3x 2y -3xy -6y 2. m(n -2)-m 2(2-n) 3.(m 2+3m)4-8(m 2+3m)2+164.x 2-7x -60 5.3x 2-2xy -8y 2 6.a 2+8ab -33b 27.x 4-3x 2+2 8. x 2-ax -bx +ab 9.9-x 2+12xy -36y 210.a4+2a2b2+b4-a2b2 11.9(x-y)2+12(x2-y2)+4(x+y)212.(2y-3x)2-2(3x-2y)+1 13.(a+b)2-4(a2-b2)+4(a-b)214.a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2 15.3a2x-4b2y-3b2x+4a2y16.2a2+4ab+2b2-8c2 17.m2(p-q)-p+q;18.(x2-2x)2+2x(x-2)+1;19.(x-y)2+12(y-x)z+36z2;20.x2-4ax+8ab-4b2;21.(x+1)2-9(x-1)2;22.4a2b2-(a2+b2-c2)2;23.ab2-ac2+4ac-4a;24.x2+4xy+3y2;25.x2y2+18xy-144;26.x4+2x2-8;27.-m4+18m2-17;28.x5-2x3-8x;29.x8+19x5-216x2;30.(x2-7x)[(x2-7x)+10]-24;31.(x2+x)(x2+x-1)-2;32.x2+y2-x2y2-4xy-1;33.(x-1)(x-2)(x-3)(x-4)-48;34.x2-y2-x-y;35.a x2-bx2-bx+ax-2a+2b;36.a2-b2+2ac+c2;37.a3-ab2+a-b;38.625b4-(a-b)4;39.x2+4xy+4y2-2x-4y-35;40.m2-a2+4ab-4b2;41.5m-5n-m2+2mn-n2.四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为多项式x-2y+3和另一个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.9.已知312=-y x ,2=xy ,求 43342y x y x -的值。
第6章“因式分解”测试卷
姓名: 班级:
一、精心选一选
1、下列从左到右的变形,属于分解因式的是( ) A 、2
)3x (x 2x 3x 2+-=+- B 、
x 2y x 6)1xy 3(x 22-=-
C 、222)y 3x (y 9xy 6x -=+-
D 、)x
1x (x 1x 2
+=+
2、多项式223223b a 12b a 18b a 36+-各项的公因式是( )
A 、22b a
B 、3
3b a 12 C 、33b
a 6 D 、
22b a 6
3、下列分解因式正确的是( )
A 、
)1y 2x 2)(y x ()y x ()x y (22---=---
B 、)y x 2)(y x ()y x ()x y (x 32--=---
C 、
)1y 3x 3)(y x (2)x y (2)y x (62+++=+-+
D 、)y x 3)(y x (x 2)x y (x 4)y x (x 2223--=---
4、下列各式中,能用平方差公式分解因式的是( )
A 、22y x +
B 、22y x --
C 、22y x +-
D 、x x 2- 5、把多项式)
a 2(m )2a (m 2-+-分解因式,正确的是( )
A 、)m m )(2a (2+-
B 、)m m )(2a (2--
C 、)1m )(2a (m +-
D 、)1m )(2a (m --
6、下列多项式分解因式后,含有因式(x+1)的多项式是( ) A.x 2+1 B.x 2-1 C.x 2-2x+1 D.x 2+x+1
7、下列各式中属于完全平方式的是( )
A 、22y xy x ++
B 、4
x 2x 2
+-
C 、9x 6x 2-+
D 、1x 6x 92+- 8、如果多项式c
bx x 2++分解因式的结果是)2x )(3x (+-,那么b ,c 的值分别是( )
A 、-3,2
B 、2,-3
C 、―1,―6
D 、―6, ―1 二、耐心填一填 9、分解因式:16
y 2-=_________________;
10、已知8y x =-,2xy =,则y x xy 22-的值为__________________; 11、x 2-(________)+25y 2=(________________)2;
12、已知一个长方形的面积为
22cm
)81a 4(-,它的长为cm )9a 2(+,那么它的宽是__________________m 。
13、如果)3x )(5x (15x 2x 2
+-=--,那么15)n m (2)n m (2----分解因式的结果是
______________________; 14、已知(x -x 2)+ (x 2-y)=1,求代数式
2
21()2
x y xy +-= 15、在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便
记忆。
原理是:如对于多项式44
y x -,因式分解的结果是)
y x )(y x )(y x (22++-,若
取x=9,y=9时,则各个因式的值是:0)y x (=-,18)y x (=+,162)y x (22=+,于
是就可以把“018162”作为一个六位数的密码,对于多项式23
xy
x 4-,取x=10,y=10,用上述方法产生的密码是____________;
16、把1
x 42+加上一个单项式,使其成为一个完全平方式,请你写出所有符合条件的单项
式___________________; 三、细心想一想
17、将下列各式分解因式:
(1) x 3y-xy 3 (2) -5a 2b 3+20ab 2-5ab
(3)(2m -3n)2-2m+3n (4)9(x-y)2-16(y-z)2
(5)13
4
+--x x x (6)8a (x -y )2-4b (y -x )
18(10分)利用因式分解解方程:
(1)4x 2-9=0 (2)(3x-1)2= (2-5x )2
19、先化简,再求值:
(1)[(3a -7)2-(a+5)2]÷(4a -24),其中a=150
.
(2)已知x2+y2-2x+4y+5=0,求(x+1)(y-1)的值
20、(6分)证明:无论a、b为何值时,代数式(a+b)2+2(a+b)+2的值均为正值.
21.(6分)如图,现有正方形甲1张,正方形乙2张,长方形丙3张,•请你将它们拼成一个大长方形(画出图示),并运用面积之间的关系,将多项式3a2+11ab+10b2分解因式.
22、(10分)按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?
(1)填写表内空格:
(2)你发现的规律是____________.
(3)用简要过程说明你发现的规律的正确性。
23、已知m为奇数,那么(m2-1)一定是8的倍数吗?请利用因式分解说明你的理由。
24、观察下列各式:
2
+
⨯
⨯
⨯;
=
1=
1
25
4
3
2
5
2
2=
=
+
⨯
⨯
⨯;
4
11
121
1
5
3
2
3=
=
+
⨯
⨯
⨯;
5
19
4
361
6
1
……
根据上述算式所反应出的规律,猜想“任意四个连续正整数的积与1的和一定是一个完全平方数”,你认为这个猜想正确吗?说说你的理由。