热分析技术[荟萃材料]
- 格式:ppt
- 大小:4.71 MB
- 文档页数:91
热分析技术1 热分析技术的类别1.1 热重分析( TGA)热重分析法是在程序控制温度下,测量物质的重量与温度关系的一种技术[6]。
记录重量变化对温度的关系曲线称热重曲线(TG曲线),热重曲线是在氮气流或其他惰性气流下,由于挥发性杂质失去,导致重量减失,以温度为横坐标,重量为纵坐标绘制的图谱,为便于观察,也采用其微分曲线,称为微分热重分析( D/TG)。
热重分析仪由装在升温烘箱中的微量天平组成。
此天平应对温度不发生称量变化,保证在长期程序升温时测量稳定。
1.2 差热分析( DTA)对供试品与热惰性参比物进行同时加热的条件下,当供试品发生某种物理的或化学的变化时,由于这些变化的热效应,使供试品与参比物之间产生温度差。
在程序控制温度下,测定供试品与参比物之间温度差与温度(或时间)关系的技术称为差热分析。
1.3 差示扫描量热分析( DSC)DSC是在DTA基础上发展起来的一种热分析方法[7-9]。
测量输给供试品与参比物热量差(dQ/dT)与温度(或时间)关系的技术成为差示扫描量热分析。
在DTA 中,是样品与参比物,在温度变化时热量的变化对样品温度作图,而在DSC中为保持样品与参比物相同温度所需输入能量的差异与样品的温度作图,其精密度与准确度均高于DTA。
在DSC仪器中,样品和参比物的支架是热互相隔离的,各自固定在自己的温度传感器及加热器上,样品和参比物放在支架内的金属小盘中,在程序升温过程中,当样品熔融或挥发时,样品与参比物需要保持温度一致所需的能量不同,在DSC 图谱中,纵坐标为热量差,横坐标为温度,峰面积为样品的转换能,正峰与负峰分别为吸热峰与放热峰,峰面积与热焓成比例。
2 热分析技术在中药及其制剂质控中的应用2.1 药物纯度的测定药物纯度的测定是药品质量控制的重要内容之一。
热分析技术用于中药纯度的测定有其独特的优点,如样品用量少且一般不需预处理等。
但也有一定的要求,即样品的纯度>97%。
然而在具体的操作方法上,可采用相应的措施使该技术能用于成分复杂的中药及制剂纯度的测定。
熱分析技術介紹完整的热分析系统由四种不同技术组成。
每种技术以独特的方式表征样品。
所有结果的组合可简化数据整理分析。
TGA 测量重量曲线,DSC 测量热流,TMA 测量长度变化,而DMA 则测量模量,所有这些测量值将随着温度或时间的变化而改变。
为测定弹性体的玻璃化转变、组分分析和聚合物的熔融、玻璃化转变、热历史等参数提供专业的差示扫描量热仪DSC、热重分析仪TGA、热机械分析仪TMA等热分析仪器。
热分析是在程序控制温度下,测量样品的性质随温度或时间变化的一组技术。
这里所说的温度程序可包括一系列的程序段,在这些程序段中可对样品进行线性速率的加热、冷却或在某一温度下进行恒温。
在这些实验中,实验的气氛也常常扮演着很重要的作用,最常使用的气体是惰性和氧化气体。
差示扫描量热,DSC差示扫描量热法是在程序控制温度下,测量输入到样品和参比样的热流差随温度(时间)变化的一种技术。
该热流差能反映样品随温度或时间变化所发生的焓变:当样品吸收能量时,焓变为吸热;当样品释放能量时,焓变为放热。
在DSC曲线中,对诸如熔融、结晶、固-固相转变和化学反应等的热效应呈峰形;对诸如玻璃化转变等的比热容变化,则呈台阶形。
热重分析TGA热重分析是在程序控制温度下,在设定气氛下测量样品的质量随温度度或时间变化的一种技术。
质量的变化可采用高灵敏度的天平来记录。
样品在加热过程中产生的气相组分可通过联用技术如TGA-MS、TGA-FTIR 进行逸出气体分析(EGA)。
TGA851 的同步SDTA 技术能同步提供样品的吸热或放热效应的DTA信号。
热重分析能提供下列结果:易挥发性成分(水分、溶剂)、聚合物、碳黑或碳纤维组分、灰分或填充组分的组分分析;聚合物样品的高温分解的机理、过程和动力学。
聚合物的典型TGA 曲线包括如下重量阶梯:1. 挥发物(水分、溶剂和单体)2. 聚合物分解3. 气氛变化4. 碳的燃烧(碳黑或碳纤维)5. 残余组分(灰分、填料、玻璃纤维)静态热机械分析,TMA静态热机械分析是用来测量在程序温度下,样品的尺寸随温度或时间变化的一种技术。
热分析技术
热分析技术是化学分析技术的重要组成部分,它涉及到分析物质的热力学性质,可以用来了解物质的结构、性质和组成,从而对物质进行分析。
热分析技术包括热重分析技术(TGA)、热释放分析技术(TGA)、热模拟分析技术(TMA)和混合热分析技术(MTA)等。
热重分析技术(TGA)是一种研究物质重量变化的分析技术,可用来测定物质的比热容、熔融温度和析出温度等。
它可以用来测定物质的熔点、气固比、热容等。
热释放分析技术(TGA)是一种测量物质释放能量的分析技术。
它可以用来测定物质的熔点、热分解温度和反应活性等。
热模拟分析技术(TMA)是一种模拟物质在不同温度下的变化的分析技术,可用来测定物质的高温行为和变形行为。
混合热分析技术(MTA)是一种综合多种不同的热分析技术的分析技术,可以用来测定物质的聚合物结构、热升温行为和热释放行为等。
热分析技术在物质分析领域有着重要的应用,它可以用来了解物质的组成、性质和变化规律,为物质的研究和开发提供重要信息。
它可以用来分析化学品、药物、食品、矿物、燃料等的结构、性质和组成,从而探究新的化学反应机理。
热分析技术也可以用来检测反应物和产物的热分解性能,检测材料的热稳定性和耐热性,以及测定材料的热力学性质,以便更好地对材料进行设计和制造。
总之,热分析技术在化学分析领域有着重要的应用,它可以用来测定物质的结构、性质和组成,从而对物质进行分析,为物质的研究和开发提供重要信息。
热分析热分析是在程序控制温度下,测量物质的物理性质与温度之间关系的一类技术热重法(TG)热重法是在程序控制温度下,测量物质质量与温度关系的一种技术。
由热重法记录的试样的质量变化对温度的关系曲线为热重曲线(即TG曲线)。
TG曲线以质量作纵坐标,从上向下表示质量减少,以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。
热重法还可以获得试样的质量变化率与温度或者时间的关系曲线,即微熵热重曲线(DTG曲线)。
还可以得到二阶微商热重法(DDTG)。
热重分析的主要用途:(1)了解试样的热反应过程,例如测定结晶水、脱水量及热分解反应的具体过程。
(2)研究在生成挥发性物质的同时所进行的热分解反应、固相反应等。
(3)用于研究固体和气体之间的反应。
(4)测定物质的熔点、沸点。
(5)研究物质的热分解或者蒸发、升华,分析固体混合物。
差热分析(DTA)差热分析是指在程序控温下,测量物质和参比物的温度差与温度变化一种测试技术。
差热曲线的几何要素:(1)基线(2)起始温度(3)最大值TM(4)热效应的幅度(5)热效应的面积(6)热效应峰、谷的半高宽(7)热效应的形态指数(8)基线拍漂移差热分析的主要用途:(1)物相鉴定含水化合物;高温下有气体放出的物质;含有变价元素的物质;非晶态物质的重结晶;晶型转变。
(2)材料合成研究非晶态膜;着色剂(3)陶瓷研究差示扫描量热分析(DSC)差示扫描量热分析是在程序控制温度下,测量输入到试样和参比物的功率差与温度的关系。
差示扫描量热分析应用:可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。
热分析联用技术TG-DTA联用可在程控温度下,同时测定试样重量和热焓随温度的变化。
适用于无机材料,有机高分子材料,食品,药物及催化反应涉及各个固液态试样,可以获得以下重要信息:组分分析,热稳定性,添加剂含量,分解温度,分解动力学,脱酸、脱水,氧化还原反应,非均相催化反应,氧化诱导期,相转变温度及热焓,熔点,反应热优点:(1)能方便区分物理变化与化学变化(2)便于比较、对照、相互补充(3)可以用一个试样、一次试验同时得到TG与DTA数据,节省时间(4)测量温度范围宽:室温~1500C;缺点:(1)同时联用分析一般不如单一热分析灵敏,重复性也差一些。
热分析技术在材料研究中的应用概述导言热分析技术是材料研究领域中一种重要的分析手段,通过对材料在不同温度下的热性质进行测试和分析,可以揭示材料的结构、组成、性能以及热稳定性等方面的信息。
本文将对热分析技术在材料研究中的应用进行概述,旨在深入了解该技术在实验室中的具体应用。
热分析技术的基本原理与分类热分析技术主要包括热重分析(Thermogravimetric Analysis, TGA)、差示扫描量热分析(Differential Scanning Calorimetry, DSC)、热膨胀分析(Thermo-mechanical Analysis, TMA)和热导率分析(Thermal Conductivity Analysis, TCA)等。
热重分析是通过测量材料在不同温度下的质量变化,来分析材料的热失重过程。
它可以用于研究材料的热分解、氧化、还原、吸湿和脱水等性质,对于研究聚合物材料的热分解性能、矿石的烧结性能等方面有着广泛的应用。
差示扫描量热分析是通过测量样品和参比物在相同或不同条件下的热流量差,来研究样品的热量变化。
它可以分析材料的热焓、热容、熔融点、晶化温度、玻璃化转变温度等热性质,对于研究材料的相变行为、热稳定性以及材料的热传导性能等有着重要的应用。
热膨胀分析是通过测量材料在温度变化下的长度、体积或形状的变化,来研究材料的热膨胀特性。
不同材料的热膨胀系数不同,通过热膨胀分析,可以获得材料的热膨胀系数曲线和相变温度等信息,对于材料的热稳定性、维纳定理、薄膜材料等研究具有重要意义。
热导率分析是通过测量材料的热导率,来研究材料的导热性能。
不同材料的导热性能差异很大,通过热导率分析,可以评估材料在工程和科学领域中的导热传递性能,对于研究导热材料、纳米材料以及糊状材料等具有重要的应用。
热分析技术的具体应用举例热分析技术在材料研究中有广泛的应用。
以下将以热重分析和差示扫描量热分析为例,对不同材料进行研究的具体应用进行介绍。