石墨形态对灰铸铁力学性能的影响
- 格式:docx
- 大小:1.54 MB
- 文档页数:4
灰铸铁材料的微观组织与力学性能研究灰铸铁是一种常见的工程材料,具有较好的耐磨性和抗压性能。
在实际应用中,人们常常关注其微观组织和力学性能的研究,以便更好地了解和改善其性能。
首先,我们来讨论灰铸铁的微观组织。
灰铸铁是一种铁碳合金材料,其主要成分是铸铁和石墨。
石墨以片状或球状分布在铸铁基体中,形成了典型的珠光体结构。
这种结构使得灰铸铁具有良好的抗震性和吸能能力。
此外,灰铸铁中的碳含量较高,一般在2%-4%之间,也会对其微观组织产生影响。
高碳含量会导致珠光体结构的改变,使灰铸铁的硬度和脆性增加。
其次,我们来研究灰铸铁的力学性能。
在传统的研究中,人们普遍关注灰铸铁的抗压性能。
抗压强度是评价灰铸铁力学性能的重要指标之一。
灰铸铁的珠光体结构和石墨形态对抗压强度有着重要影响。
例如,片状石墨比球状石墨对力学性能的影响更大。
此外,微观组织中各组分的相互作用和分布也会对力学性能产生影响。
例如,珠光体与渗碳体的分布、石墨与基体的结合强度等因素都会影响抗压性能。
除了抗压性能,灰铸铁的拉伸性能也是研究的热点之一。
拉伸强度和断裂延伸率是评价灰铸铁拉伸性能的两个重要指标。
与抗压性能类似,石墨形态和珠光体结构都与拉伸性能密切相关。
在拉伸过程中,珠光体的裂纹扩展路径、石墨的断裂模式等也会对拉伸性能产生影响。
此外,灰铸铁中的夹杂物也是影响其拉伸性能的重要因素之一。
夹杂物的形状、分布和数量会显著影响灰铸铁的强度和韧性。
近年来,随着材料科学的发展,人们开始探索灰铸铁的其他力学性能。
例如,疲劳性能是评价材料抗循环载荷能力的重要指标之一。
灰铸铁的疲劳性能受到其微观组织和缺陷的影响。
研究表明,珠光体内部的细小裂纹和夹杂物会成为疲劳断裂的起始点。
因此,在工程应用中,我们需要考虑珠光体结构和夹杂物的数量和质量,以提高灰铸铁的疲劳寿命。
总之,灰铸铁材料的微观组织与力学性能是一个复杂的系统。
人们通过对其微观组织和力学性能的研究,可以更好地了解灰铸铁材料的特性,并为其在工程应用中的性能改进提供依据。
铸铁[填空题]1铸轧一般分为()和()两部分。
参考答案:熔炼;轧制[填空题]2熔炼铝液制备要通过()的操作,来使化学成分均匀。
参考答案:充分搅拌[填空题]3前箱液面波动会引起表面膜张力波动造成氧化膜脱落使铝板表面产生()缺陷;也可能产生铸轧表面横纹,冷轧使用后形成()。
参考答案:非金属夹杂;虎皮斑[填空题]4熔体温度过高或保温时间过长或冷却强度不够都会造成()的现象。
参考答案:晶粒粗大[判断题]5、铝液制备中,为保证化学成分合格、均匀,合理的温度控制和充分的搅拌是必须的。
参考答案:对[判断题]6、铝液过滤的主要目的是去除铝液中的气体杂质。
参考答案:错[判断题]7、化学成分控制要点:取样温度合适、光谱分析准确、合金配比计算准确、搅拌均匀、中间合金及溶剂使用方法正确、轧制工艺匹配合理。
参考答案:对[判断题]8、粘辊缺陷产生原因:熔体温度偏高,铸轧速度快,冷却强度低,辊面温度不均,表面粗糙度不合适,火焰喷涂量小、卷取张力小等。
参考答案:对[单项选择题]9、哪些不是铸轧板腐蚀的原因()A.带材遇到酸、碱、水发生化学反应B.带材张力使用不合适,引起层间错动,发生电化学腐蚀C.铝液中的氢气(或氢分子)含量过高,与空气中氧反应,形成水分子造成铝板腐蚀D.厂房密封不严,昆虫夹入参考答案:C[单项选择题]10、哪些是钳口挤伤缺陷产生的原因()A.卸卷小车顶的过紧或过松B.板头进入钳口最里边时卷筒开始涨缩,未提前按卷取涨缩C.轧辊疲劳D.导辊上边粘附铝渣参考答案:A[单项选择题]11、哪个不是造成铸轧板纵向厚差的原因()A.轧辊同心度、材质均匀性B.轧辊冷却均匀性C.两边辊缝不一致D.轧辊轴承振动、压上液压压力不稳参考答案:C[单项选择题]12、下列哪个原因不是造成铝板宽度超差的原因()A.铸轧咀规格不符合要求B.铸轧速度控制不符合要求C.软耳切削不符合要求D.生产中液面控制不稳定参考答案:B[填空题]13一般对铸轧板有哪些方面的质量要求?参考答案:化学成分、外形及尺寸偏差、低倍组织、表面质量、熔体氢含量、其他要求。
灰铸铁屈服强度-概述说明以及解释1.引言1.1 概述在工程实践中,灰铸铁作为一种常用的工程材料,在各种应用中发挥着重要作用。
灰铸铁具有良好的耐磨性、抗压性和耐腐蚀性,广泛应用于机械制造、汽车制造、建筑工程等领域。
其屈服强度是衡量材料抗拉伸能力的重要参数之一,也是评价其工程性能的关键指标之一。
因此,研究灰铸铁的屈服强度及其影响因素对于提高其工程质量和实际应用具有重要意义。
本文将深入探讨灰铸铁的定义、特点以及影响其屈服强度的因素,介绍灰铸铁屈服强度的测试方法,并对其重要性进行总结和归纳。
同时,展望未来研究方向,为灰铸铁材料的进一步优化和应用提供理论支持和指导。
1.2文章结构1.2 文章结构本文将从灰铸铁的定义和特点入手,介绍灰铸铁的基本知识,包括其组成、性能等方面。
接着,将探讨影响灰铸铁屈服强度的因素,分析各种因素对灰铸铁性能的影响。
最后,将介绍灰铸铁屈服强度的测试方法,为读者提供了解灰铸铁强度测试的基本手段。
通过本文的了解,读者将更加深入地了解灰铸铁的屈服强度特性,为相关领域的研究和应用提供重要参考。
1.3 目的:本文的主要目的是探讨灰铸铁的屈服强度,并分析影响其屈服强度的因素。
通过对灰铸铁的定义和特点进行介绍,以及对其屈服强度的测试方法进行探讨,我们希望能够更全面地了解灰铸铁在工程实践中的应用和性能表现。
同时,通过总结灰铸铁屈服强度的重要性,归纳影响其屈服强度的主要因素,并展望未来研究方向,我们希望为相关领域的研究和实践提供有益的参考和启发。
通过本文的研究,我们期望能够为工程实践提供可靠的指导和建议,提升灰铸铁产品的质量和性能,推动行业的发展和进步。
2.正文2.1 灰铸铁的定义和特点:灰铸铁是一种含有石墨片或球状石墨的铸铁,其特点是具有较高的抗压强度和塑性,在工程领域中被广泛应用。
灰铸铁的主要成分是铁、碳和硅,其中碳的含量一般在2~4之间。
石墨片或球状石墨的存在使灰铸铁具有优良的润滑性和吸振性能,使其在耐磨性和耐冲击性方面表现出色。
一、解释下列名词1、什么是石墨化?答:铸铁中碳原子析出石墨的过程。
什么是石墨化退火(或称高温退火)?答:将温度加热到共析温度以上,使渗碳体分解成石墨的退火。
2、什么是灰口铸铁?答:碳大部分以游离状态的石墨析出,凝固后断口呈暗灰色。
什么是可锻铸铁?答:石墨形状为团絮状的灰口铸铁。
什么是球墨铸铁?答?石墨形状为球状的灰口铸铁。
什么是蠕墨铸铁?答:石墨形状为蠕虫状的灰口铸铁。
什么是变质铸铁(或称孕育铸铁)?答:变质(孕育)处理后的灰铸铁。
什么是白口铸铁?答:碳除少量溶于铁素体外,其余全部以化合态的渗碳体析出,凝固后断口呈白亮的颜色。
二、填空题1、铸铁与钢比较,其成分主要区别是含龙和足量较高,且杂质元素硫和磷含量较多。
2、化学成分和冷却速度是影响铸铁石墨化的主要因素。
3、白口铸铁中的碳主要以渗碳体形式存在,而灰口铸铁中的碳主要以石墨形式存在,两者比较,前者的硬度高而脆性大。
4、石墨的存在给灰口铸铁带来一系列的优越性能,如铸造性能.、切削加工性、减摩性、消震性能良好.、缺口敏感性较低。
5、含碳量为的铸铁,如果全部按Fe-G相图进行结晶,其石墨化过程可分为如下二个阶段:第一阶段:在∏54℃通过共晶反屈形成Go第二阶段:在1154°C~738°C冷却过程中自奥氏体中析出G以及在738℃通过共析反应形成G共析。
6、渗碳体是亚稳定相,高温长时间加热会分解为铁和石墨。
7、灰口铸铁、可锻铸铁及球墨铸铁的石墨形态分别呈心笈、团絮状及球状。
8、HT200是灰铸铁的牌号,其中的碳主要以石墨的形式存在,其形态呈上状,由于它具有良好消震性能性能,在机床业中常用来制造机床床身。
9、球墨铸铁是通过浇铸前向铁水中加入一定量的四位进行球化处理,并加入少量的孕育剂促使石墨化,在浇铸后直接获得球状石墨结晶的铸铁。
10、铸铁在凝固过程中,如果第一阶段充分地石墨化,第二阶段或充分石墨化、或部分石墨化、或完全不石墨化,则分别得至U F、F+P、P为基体的铸铁。
金属材料学习题与思考题第七章铸铁1、铸铁与碳钢相比,在成分、组织和性能上有什么区别?(1)白口铸铁:含碳量约2.5%,硅在1%以下白口铸铁中的碳全部以渗透碳体(Fe3c)形式存在,因断口呈亮白色。
故称白口铸铁,由于有大量硬而脆的Fe3c,白口铸铁硬度高、脆性大、很难加工。
因此,在工业应用方面很少直接使用,只用于少数要求耐磨而不受冲击的制件,如拔丝模、球磨机铁球等。
大多用作炼钢和可锻铸铁的坯料(2)灰口铸铁;含碳量大于4.3%,铸铁中的碳大部或全部以自由状态片状石墨存在。
断口呈灰色。
它具有良好铸造性能、切削加工性好,减磨性,耐磨性好、加上它熔化配料简单,成本低、广泛用于制造结构复杂铸件和耐磨件。
(3)钢的成分要复杂的多,而且性能也是各不相同钢是含碳量在0.04%-2.3%之间的铁碳合金。
我们通常将其与铁合称为钢铁,为了保证其韧性和塑性,含碳量一般不超过1.7%。
钢的主要元素除铁、碳外,还有硅、锰、硫、磷等,而且钢还根据品质分类为①普通钢(P≤0.045%,S≤0.050%)②优质钢(P、S均≤0.035%)③高级优质钢(P≤0.035%,S≤0.030%)按照化学成分又分①碳素钢:.低碳钢(C≤0.25%).中碳钢(C≤0.25~0.60%).高碳钢(C≤0.60%)。
②合金钢:低合金钢(合金元素总含量≤5%).中合金钢(合金元素总含量>5~10%).高合金钢(合金元素总含量>10%)。
2、C、Si、Mn、P、S元素对铸铁石墨化有什么影响?为什么三低(C、Si、Mn低)一高(S高)的铸铁易出现白口?(1)合金元素可以分为促进石墨化元素和阻碍石墨化元素,顺序为:Al、C、Si、Ti、Ni、P、Co、Zr、Nb、W、Mn、S、Cr、V、Fe、Mg、Ce、B等。
其中,Nb为中性元素,向左促进程度加强,向右阻碍程度加强。
C和Si是铸铁中主要的强烈促进石墨化元素,为综合考虑它们的影响,引入碳当量CE = C% + 1/3Si%,一般CE≈4%,接近共晶点。
灰铸铁缺陷产生的原因分析及预防措施一、影响灰铸铁力学性能的主要因素:化学成份 (C 、Si 、Mn 、P 、S 合金元素)灰铸铁的力学性能金相组织石墨的形状、大小、分布 和数量以及基体组织工艺、冶金因素:主要有冷却速度,铁液的过热处理、孕育处理、炉料特性等 (1)关于冷却速度的影响 铸铁是一种对冷却速度敏感性很大的材料,同一 铸件的厚壁和薄壁部份,内部和外表都可能获得相差悬殊的组织,俗称为组织 的不均匀性。
因为石墨化过程在很大程度上取决于冷却速度。
影响铸件冷却速 度的因素较多:铸件壁厚和分量、铸型材料的种类、浇冒口和分量等等。
由于 铸件的壁厚、分量和结构取决于工作条件,不能随意改变,故在选择化学成份 时应考虑到它们对组织的影响。
(2)关于铁液孕育处理的影响 孕育处理就是在铁液进入铸件型腔前,把孕育 剂附加到铁液中以改变铁液的冶金状态,从而可改善铸铁的显微组织和性能。
对灰铸铁而言,进行孕育处理是为了获得 A 型石墨、 珠光体基体、 细小共 晶团的组织,以及减少铸件薄壁或者边角处的白口倾向和对铸件壁厚的敏感性; 对可锻铸铁而言,是为了缩短短退火周期,增大铸件的允许壁厚和改善组织的 结构;对球墨铸铁而言,是为了减少铸件白口倾向,提高球化率和改善石墨的 圆整性。
(3)关于铁液过热处理的影响。
提高铁液过热温度可以: ①增加化合碳含量和 相应减少石墨碳含量, ②细化石墨, 并使枝晶石墨的形成, ③消除铸铁的 “遗 传性”,④提高铸件断面上组织的均匀性, ⑤有利于铸件的补缩。
同样,铁液保 温也有铁液过热的类似作用。
工艺因素和冶金因素(4)关于炉料特性的影响实际生产中往往发现改变金属炉料(例如采用不同产地的生铁或者改变炉料的配比等)而化学成份似乎无变化的情况下铸铁具有不同的组织和性能,这说明原材料的性质直接影响着用它熔炼出来的铸铁的性质,称为铸铁的:“遗传性”为此,采用提高铁液温度和使用多种铁料配料可消除这种“遗传性”,并改善铸铁的组织和性能。
灰铸铁的力学性能与基体的组织和石墨的形态有关要点:1、炭素行业龙头,积极实施战略转型。
公司是我国炭素企业的龙头,是全国唯一的新型炭砖生产基地,产能位居亚洲第一、世界第三,但国内企业产品主要还是集中于普通功率石墨电极和炭砖等传统炭素领域。
为了适应钢铁等行业结构调整的要求并将公司打造成复合型炭素制品研发和生产基地,近年来公司加快了产品结构调整并在核石墨、纳米炭材料、特种石墨、碳纤维、石墨导热片等产品领域取得突破。
2、针状焦项目将进一步完善公司产业链。
由于顶级特殊钢必须使用以优质针状焦生产的超高功率石墨电极冶炼才能得到,而针状焦的生产工艺仅由美国、英国和日本所掌握,所以,长期以来我国针状焦主要依赖进口,不仅成本高昂而且供应不稳定,严重制约了国内超高功率石墨电极的产量。
目前公司自身每年对针状焦的需求已达到近10万吨左右,但进口供应不稳定在很大程度上阻碍了公司产品结构的优化升级。
通过努力,公司已成功研制出了油系针状焦,经中试小批量试制出了符合要求的超高功率石墨电极,现已具备进入规模化生产阶段的基本条件。
公司拟通过非公开发行投资建设10万吨/年油系针状焦项目,项目建成后将满足公司自身的需要,从而进一步完善公司的产业链。
3、特种石墨业务将支撑公司未来业绩增长。
特种石墨被广泛应用于半导体、光伏太阳能、电火花及模具加工、核能、冶金、航天等众多领域,但国内特种石墨的市场供给明显不足。
公司拟通过非公开发行投资建设3万吨/年特种石墨制造与加工项目,预计该项目将于2014年建成投产,由于特种石墨售价为10万元/吨左右,而毛利率更是高达50%-60%,所以3万吨/年特种石墨项目投产后将支撑公司未来业绩增长空间。
4、钢市有望回暖,铁精粉依旧是公司的现金牛业务。
公司铁精粉产能100万吨/年,毛利率一直在50%甚至60%以上,铁精粉业务的收入占比只有30%左右但利润占比却达到50%以上,可以说铁精粉业务是公司的现金牛业务。
尽管全球经济疲软降低了建筑业和制造业对钢铁的需求,但目前钢铁价格已经跌破了很多钢铁企业的成本价,随着铁工基等各项刺激政策的出台,预计2013年钢铁市场有望逐步回暖,铁精粉业务对公司业绩的贡献有望维持稳定。
工程材料试题答案一、(15分)名词解释(每小题3分)1.过冷度2.正火3.奥氏体4.热加工5.调质处理答案:1.过冷度—理论结晶温度与实际结晶温度之差2.正火—将钢件加热到Ac3或Ac cm以上30-50℃,保温适当时间后在静止的空气中冷却的热处理工艺,称为正火。
3.奥氏体—碳固溶于γ-Fe中形成的间隙固溶体称为奥氏体,用γ或A表示。
4.热加工—高于再结晶温度的塑性变形。
5.调质处理—将淬火加高温回火相结合的热处理称为调质处理。
对于上述名词解释,如学生用自己的语言回答,考虑其对概念或名词含义理解程度酌情给分。
二、利用铁碳相图回答下列问题(15分)(1)写出Fe-Fe3C相图上①-⑥区的组织组成物,标明A,E,C,S,P,K各点的含碳量。
①区:___F+P_____ ②区:_____P___③区: P+Fe3CⅡ__④区:P+ Fe3CⅡ+L d`⑤区:_ L d`____⑥区:_Fe3CⅠ+L d`A点:______0_____ E点:___2.14%___ C点:___4.3%__S点:_____0.8%___ P点:___0.02%__ K点:__6.69%_(2)计算室温下含碳0.6%的钢中珠光体和铁素体各占多少?(3)说明含碳量1.0%的钢比含碳量为0.5%的钢的硬度高。
答:(1) 空格中斜体部分为答案。
(6分,每空格0.5分)(2)(5分)由杠杆定律得:室温下含碳0.6%的钢中珠光体为:(0.6-0.02)/(0.8-0.02)*100%=74.4%室温下含碳0.6%的钢中铁素体为:100%-74.4%=25.6%(3)含碳量1.0%的钢中含有硬度高的渗碳体,而含碳量为0.5%的含有较硬度较低的铁素体,故含碳量1.0%的钢比含碳量为0.5%的钢的硬度高。
(4分)三、简答(24分)(每小题4分)1.在铸造生产中,采用哪些措施获得细晶粒组织?2.说明实际金属晶体缺陷种类及特征。
3.石墨的形态对铸铁都有哪些影响?4.常见的热处理方法有哪些?5.什么是铝合金的固溶处理和时效处理。
本单元练习题(铸铁)参考答案(一)填空题1.碳在铸铁中的存在形式有渗碳体和石墨两种。
2.灰口铸铁中根据石墨的形态不同,灰口铸铁又可分为灰铸铁、球墨铸铁、可锻铸铁、和蠕墨铸铁。
3.石墨化过程是指铸铁中的碳以石墨形态析出的过程。
4.可锻铸铁是由白口铸铁经石墨化退火而获得的。
5.影响石墨化的主要因素是化学成分和冷却速度。
6.石墨虽然降低了灰铸铁的力学性能,但却给灰铸铁带来一系列其它的优良性能,主要有:良好的铸造性能、良好的减振性能、良好的减摩性能、良好的切削加工性能、和小的缺口敏感性。
(二)判断题1.由于灰铸铁中碳和杂质元素的含量较高,所以力学性能特点是硬而脆。
(×)2.虽然灰铸铁的抗拉强度不高,但抗压强度与钢相当。
(√)3.可锻铸铁具有较高的塑性和韧性,它是一种可以进行锻造的铸铁。
(×)4.因为铸铁中的石墨对力学性能产生不利影响,所以它是有害而无益的。
(×)5.孕育铸铁的力学性能优于普通铸铁,并且各部位的组织和性能均匀一致。
(√)6.常用铸铁中。
球墨铸铁的力学性能最好,它可代替钢制作形状复杂、性能要求较高的零件。
(√)7.球墨铸铁常常需要进行热处理,获得不同的组织,以满足不同的使用要求。
(√)8.可锻铸铁件主要用于制作形状复杂,要求较高塑性和韧性的薄壁小型零件。
(√)9.为消除铸铁表面或薄壁处的白口组织,应采用时效处理。
(×)10.在铸铁中加入一定量的合金元素,使之具有特殊的物理、化学和其它特殊性能,这种铸铁称之为合金铸铁。
(√)(三)选择题1.由于白口铸铁中的碳主要是以 B 形式存在,所以性能特点是 D 。
A.石墨B.渗碳体C.硬度低,韧性好D.硬度高,韧性差2.灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁中的碳主要以 A 形式存在。
A.石墨B.渗碳体C.铁素体D.奥氏体3.灰铸铁的 C 性能与钢相当。
A.塑性B.抗拉强度C.抗压强度D.冲击韧性4.铸铁变质处理采用的变质剂是 A或B 。
其根本区别就是石墨形态的差异:灰铸铁的石墨形态一般呈层片状,力学性能相对于这四种来说是最差的; 蠕墨铸铁石墨呈蠕虫状,性能强于上面的; 同理,球墨铸铁的石墨经过球化退火后呈球团 状,力学性能比蠕墨铸铁强一点; 可锻铸铁的力学性能是这四种中最好的,与铸钢可媲美,故名;但真正意义上,它并不能用来锻造。
石墨形态很细小,均散分部。
两种铸铁都有有较高的强度和韧性,两者的区别就是可锻铸铁有较高冲击韧度,而球墨铸铁有较高耐磨性能。
灰铸铁组织里的石墨是以片状存在,球墨铸铁组织里的石墨是以球状存在的 区别: 1.看切削加工面灰铁:呈灰色,光泽很暗,表面看来较粗糙。
球铁:灰色,光泽较灰铁亮,表面粗糙程度似灰铁。
2.锉削试验灰铁:锉削阻力较小,锉削时发出“唰唰”声,极少粘锉,屑末呈灰黑色,有少量银白亮点,细看颗粒大小不一,以小颗粒细末为主,用手指碾磨,很容易使手指染黑。
球铁:锉削时阻力比灰铁略大,也有较明显的“唰唰’’声,极少粘锉,屑末呈灰黑色,有细密的亮点,颗粒大小不等,但以大颗粒为主,用手指碾磨屑末,可使手指染黑,但较灰铁染黑程度轻。
3.听敲击声灰铁:声音低沉,持续时间极短。
球铁:声音清脆,有余音,持续时间较短。
灰铸铁强度\塑性低(片状石墨割裂基体,引起应力集中),脆性大,消振性能好.主要用来生产一些强度要求不高,主要承受压应力的各种箱体\底座等.球墨铸铁:球形石墨对基体的割裂作用降到最低,应力集中作用最小,故其强度很高,可以和中碳钢蓖美,可以充分发挥基体的性能,且有一定的塑性和良好的韧性.常用来制作一些强韧性要求高且形状复杂(铸造性能比钢好,但比灰铸铁要差)的工件,比如内燃机曲轴\连杆等之类的零件.球墨铸铁一般还可以经过热处理来进行强化,而灰铸铁一般不能经过热处理来提高强度(片状石墨的影响).。
影响缸体用灰铸铁加工性能的因素近年来,随着中外技术合作的加强,在许多中外合资厂中都出现了缸体灰铸铁件的力学性能,金相组织与国外的铸件相当,都符合要求,但加工时刀具磨损要比进口灰铸件严重的多的现象。
这严重影响了缸体铸件的国产化。
如某一铸造二厂在对自己生产的捷达车发动机缸体铸件进行加工时发现,在相同的刀具和加工工艺的条件下,其刀具磨损是国外同类铸件刀具磨损的10倍。
铸件的加工性能可以从切削力,刀具磨损和表面光洁度等方面考虑。
影响灰铸铁件加工性能的因素是多方面的,石墨的形态和含量,合金元素,微量元素和铸造工艺等都对灰铸铁件加工性能有很大影响。
1 、碳元素对灰铁加工性能的影响灰铸铁件的理想组织为:均匀分布,中等大小的A型石墨;均匀分布中等或中细的珠光体基体;尽可能少的夹杂物颗粒;尽可能少的游离分布的渗碳体和磷共晶;材质纯净。
首先石墨的形态,数量及分布形式对灰铸铁件的加工性能有很大的影响。
石墨既是灰铸铁中的软相,又对加工刀具有润滑作用并且石墨的量多时有利于裂纹的扩展和切屑的断裂。
因此,石墨量多有助于改善灰铸铁的加工性能,即在保证牌号的条件下,提高石墨含量是促成灰铸铁加工性能提高最直接最有效方式。
缸体的碳当量高,石墨量多,这也是进口缸体比国产缸体加工性能好的原因之一。
石墨在铸件中以石墨和碳化物两种形式存在,碳的存在形式也影响加工性能。
当铸铁中含有3%---5%的游离碳化物时,尽管硬度增加不明显,但其力学性能却明显下降,加工性能也急剧恶化。
碳与强碳化物形成元素形成的碳化物特别是灰铸铁中的TIC,WC等硬质点硬度可达到1000HV 以上,铸铁中这些硬质点,可极大的恶化灰铸铁的加工性能。
2 、合金元素对缸体用灰铁件加工性能的影响一般说来,合金元素大多都提高灰铸铁件的硬度对提高加工性能是不利的。
而有些合金元素如锡,可均匀灰铸铁的基体组织,促进石墨析出,细化石墨,改善灰铸铁的加工性能。
研究发现,Cu,CR是常用的且对灰铸铁加工性能影响较大的元素。
第一篇铸造有色合金及其熔炼思考题及参考答案1.基本概念:屈服强度、抗拉强度、固溶强化、时效强化屈服强度就是指金属对起始塑性变形的抗力;抗拉强度是代表最大均匀塑性变形抗力的指标;固溶强化是指形成固溶体使合金强化的方法;时效强化是指通过热处理利用合金的相变产生第二相微粒,造成的强化。
2.金属材料的强化机制主要有哪些,对强度和塑性有什么影响?晶界强化、固溶强化、分散强化、形变强化、复合强化。
形变强化与粒子强化在强度提高时,塑性会显著降低;固溶强化在强度提高时塑性还能保持较好的水平;晶界强化时,细化晶粒提高强度也改善塑性。
3.铸造合金的使用性能有哪些?机械性能、物理性能和化学性能4.铸造合金的工艺性能有哪些?铸造性能、熔炼性能、焊接性能、热处理性能、机加工性能5.基本概念:变质处理、机械性能的壁厚效应所谓变质处理是在熔融合金中加入少量的一种或几种元素(或加化合物起作用而得),改变合金的结晶组织,从而改善合金机械性能。
这种随铸件壁厚增加而使机械性能下降的现象,称为机械性能的壁厚效应。
6.铝硅合金进行变质处理的原因及方法?原因:铝硅合金中的硅相在自发非控制生长条件下会长成粗大的片状,这种形态的脆性相严重割裂基体,大大降低合金的强度和塑性,为了改变这种状况,必须进行变质处理。
方法:生产上常在合金液中加入氟化纳与氯盐的混合物来进行变质处理,加入微量的纯钠也有同样效果。
7.镁、铜、铁和锰对铝硅合金组织和性能的影响?1)镁:少量的镁,即能大大提高抗拉和屈服强度,随着镁量增加,强化效果不断增大,强度急剧上升,而塑性下降;2)铜:使铝硅合金强度显著增加,但伸长率下降,提高合金的热强性;3)铁:恶化了合金的机械性能,特别是塑性,同时降低了合金的抗蚀性;4)锰:在Al-Si合金中加入锰,可大大降低Fe的危害。
8.Al-Si类活塞合金多为共晶及过共晶合金的原因?活塞材料要求具有高的热强性和耐磨性,低的线膨胀系数和密度。
共晶及过共晶合金铝硅合金中含有大量共晶和初生硅硅,可以保证合金有良好的铸造性能和低的线胀系数,并提高强度、耐磨性、抗蚀性。
灰铸铁件进行石墨化退火的原因
灰铸铁是一种含有大量石墨微晶体的铸铁,它的性能和用途与
普通铸铁有很大的不同。
石墨化退火是指将灰铸铁加热至一定温度,保温一定时间后再缓慢冷却的热处理工艺。
进行石墨化退火的主要
原因如下:
1. 改善铸件的加工性能,石墨化退火可以使灰铸铁中的珠状石
墨微晶体增多,尺寸变小,分布均匀,从而提高了铸件的切削加工
性能,降低了切削工具的磨损和延长了使用寿命。
2. 提高铸件的韧性和冲击性能,石墨化退火可以改善灰铸铁的
组织结构,使其具有较好的韧性和冲击性能,从而提高了铸件的抗
拉伸强度和抗压强度,使其更适合承受动载荷和冲击载荷。
3. 降低铸件的脆性,石墨化退火可以减少灰铸铁中的渗碳体含量,降低了铸件的脆性,提高了其抗疲劳性能和抗变形能力,使其
更适合在动态载荷下工作。
4. 改善铸件的耐磨性能,石墨化退火可以使灰铸铁中的珠状石
墨微晶体分布均匀,从而提高了铸件的耐磨性能,延长了使用寿命。
总的来说,石墨化退火可以显著改善灰铸铁的力学性能和加工性能,使其更适合于制造要求较高的零部件和机械构件。
影响灰铸铁材料性能的因素有哪些1、碳当量对材料性能的影响决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。
当碳当量较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形态恶化。
这样的石墨使金属基体够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。
在材料中珠光体具有好的强度、硬度,而铁素体则质地较软而且强度较低。
当随着C、Si的量提高,会使珠光体量减少铁素体量增加。
因此,碳当量的提高将在石墨形态和基体组织两方面影响铸铁件的抗拉强度和硬度。
在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。
2、合金元素对材料性能的影响在灰铸铁中的合金元素主要指Mn、Cr、Cr、Sn、Mo等促进珠光体生成元素这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。
在熔炼过程控制中,对合金元素的控制同样是重要的手段。
3、炉料配比对材料的影响过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。
如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料种钛的含量,对材料机械性能产生很大的影响。
同样,废钢是许多合金元素的来源,因此废钢用量对铸件机械性能的影响是非常直接的。
4、微量元素对材料性能的影响近年来,电炉已经基本取代了冲天炉,但是电炉熔炼丧失了冲天炉熔炼的一些优点,这样一些微量元素对铸铁的影响也就反映了出来。
由于冲天炉内的冶金反映非常强烈,炉料是处于氧化性很强的气氛中,有害微量元素绝大部分都被氧化,随炉渣一起排出,只有一少部分会残留在铁水中,一般不会对铸铁形成不利影响。
在冲天炉的熔炼过程中,焦炭中的氮和空气中的氮气在高温下,一部分分解后会以原子的形式融入铁水中,使得铁水中的氮含量相对很高。
灰铸铁的耐磨性差引言灰铸铁作为一种常见的铸铁材料,其耐磨性一直被认为相对较差。
本文将从灰铸铁的组成、结构和特性等方面解析其耐磨性差的原因,并探讨一些可能的改进方法。
灰铸铁的组成和结构灰铸铁主要由铸造铁、石墨和蓝色锰铁组成。
其中,铸造铁是铁的主要成分,石墨是一种以碳为主要成分的物质,蓝色锰铁则是用于增强铸铁机械性能的合金元素。
这些成分的不同比例和结构特点决定了灰铸铁的耐磨性能。
灰铸铁的耐磨性差的原因1.石墨形态不利于耐磨性:灰铸铁中的石墨呈片层状或点状分布,这种形态对耐磨性不利。
相比之下,球墨铸铁中的石墨以球状分布,能够更好地吸收和分散应力,提高耐磨性。
2.材料硬度较低:与其他铸铁材料相比,灰铸铁的硬度较低,容易在摩擦和磨损过程中失去材料,造成耐磨性差。
3.金相组织不均匀:灰铸铁的金相组织通常不均匀,存在着铁素体与珠光体的混合区域。
这种结构不利于抵抗磨损,容易导致材料断裂和剥落。
4.低强度和韧性:灰铸铁的强度和韧性相对较低,无法有效抵抗外部冲击和摩擦力。
因此,在高负荷和高速工况下,灰铸铁容易出现磨损和疲劳断裂。
改进灰铸铁耐磨性的方法1.改变金相结构:通过含量优化和热处理等方式改变灰铸铁的金相组织,使其更为均匀稳定。
这能够提高材料的强度和韧性,从而增强耐磨性。
2.增加石墨球化剂比例:增加石墨球化剂的比例能够改变石墨的形态,使其更趋于球状。
这样能够提高材料的韧性和耐磨性。
3.增强材料硬度:通过合金化改变灰铸铁的组成,增强材料的硬度。
该方法能够提高材料的抗磨性和耐磨性。
4.采用涂层技术:在灰铸铁表面涂覆一层具有高硬度和耐磨性的涂层,能够有效提高其耐磨性能。
结论综上所述,灰铸铁的耐磨性差主要是由其组成、结构和特性等方面的因素决定的。
针对这些问题,我们可以通过改变金相结构、增加石墨球化剂比例、增强材料硬度和采用涂层技术等方式来改善灰铸铁的耐磨性能,提高其实际应用价值。
当然,针对具体的工程需求,需要综合考虑各种因素,并根据实际情况选择适当的改进方法。
《金属材料与热处理》教材习题答案第六章铸铁1.什么是铸铁?与钢相比,它在成分、组织和性能这几个方面有什么不同?答:铸铁是含碳量大于2.11%的铁碳合金而钢的含碳量通常在1.4%以下,常用的铸铁,含碳量一般在2.5%~4.0%的范围内,此外还含有较高的硅(Si)、锰(Mn)、硫(S)、磷(P)等元素。
铸铁的组织可看成在钢的基体上分布着不同形态、大小、数量的石墨。
由于石墨的力学性能很差,其强度和塑性几乎为零,这样我们就可以把分布在钢的基体上的石墨看作不同形态和数量的微小裂纹或孔洞,这些“孔洞”一方面割裂了钢的基体,破坏了基体的连续性,而另一方面又使铸铁获得了良好的铸造性能、切削加工性能及消音、减震、耐压、耐磨、缺口敏感性低等诸多优良的性能。
2.什么是铸铁的石墨化?影响铸铁石墨化的因素有哪些?答:铸铁中的碳以石墨的形式析出的过程称为石墨化。
影响铸铁石墨化的因素主要是铸铁的成份和冷却速度。
铸铁中的各种合金元素根据对石墨化的作用不同可以分为两大类,一类是非促进石墨化的元素,有碳、硅、铝、镍、铜和钴等,其中碳和硅对促进石墨化作用最为显著。
所以铸铁中碳、硅越高,往往其内部析出的石墨量就越多,石墨片也越大。
另一类是阻碍石墨化的元素,有铬、钨、钼、钒、锰硫等。
冷却速度对石墨化的影响也很大,当铸铁结晶时,冷却速度越缓慢,就越有利于扩散,使石墨析出的越大、越充分;在快速冷却时碳原子无法扩散,则阻碍石墨化,促进白口化。
3.铸铁中石墨有哪几种形态?石墨的形态、数量和分布状态对铸铁的性能会产生什么影响?答:铸铁中石墨有曲片状、团絮状、球状和蠕虫状等形态。
在相同基体的情况下,不同形态和数量的石墨对基体的割裂作用是不同的,呈片状时表面积最大,割裂最严重,蠕虫状次之,球状表面积最小、应力最分散,割裂作用的影响就最小;石墨的数量越多、越集中,对基体的割裂也就越严重,则铸铁的抗拉强度也就越低,塑性就越差。
4.根据石墨的形态不同,铸铁可分为哪几种?答:根据铸铁中石墨形态的不同,可将铸铁分为:石墨呈曲片状存在的普通灰口铸铁,简称灰铸铁或灰铁。
石墨形态对灰铸铁力学性能的影响
1 引言
灰铸铁的弹性模量反映其抵抗塑性变形的一种能力,代表着其刚性的大小,其值将直接影响铸铁件的尺寸稳定性[1]。
弹性模量的大小是保证缸体、曲轴等重要铸件的精度,减少其工作过程中发生变形的重要指标。
一般认为影响灰铸铁弹性模量的主要因素片状石墨的数量和形态。
具有D型石墨的灰铸铁比具有A型石墨的弹性模量高[2]。
节能降耗、汽车轻量化和大功率化的发展,对灰铸铁材料的薄壁高强度化[3]及其弹性模量的要求越来越高。
关于灰铸铁的抗拉强度,人们已进行了大量的研究工作,而有关其弹性模量及其与抗拉强度间的相关关系等方面的研究工作则相对较少。
实际上,对于汽车缸体、连杆、机床和精密机械等铸件而言,通常不是由断裂而失效,而是因铸件尺寸稳定性差而失效。
因此,和抗拉强度相比,弹性模量显得更为重要。
非金属夹杂物对于钢的组织和性能的影响已经引起了人们的广泛重视[4],但对于夹杂物对于铸铁材料的组织和性能的影响,特别是针对弹性模量方面的研究,则报道的较少。
本文旨在对通过对灰铸铁中石墨形态和氧化夹杂数量的分析,揭示其对抗拉强度和弹性模量的影响规律。
2试验方法
石墨数量和石墨形态是严重影响铸铁性能的主要因素,本文采用在基本固定铸铁石墨数量的条件下,研究石墨形态和非金属夹杂对抗拉强度和杨氏弹性模量的影响。
2.1 试验用铁水及炉前处理
将碳当量控制在3.8-3.9之间,采用不同的合金进行孕育处理,得到不同石墨形态的铸铁组织。
试验所用铁水的熔化是在100kg中频感应电炉中进行,采用包内冲入法进行孕育处理,处理温度为1450~1500℃。
浇铸成φ30的圆柱形试样,材料的化学成分如表1所示。
表1 试样的化学成分(wt/%)
C Si Mn P S微量元素孕育剂
3.20 1.800.730.3170.0206Mo、Ni、
Cu、Cr等硅锶
3.11 1.860.760.3340.022硅锶锰
3.11 1.950.740.3080.0204硅锶稀土
3.16 2.030.70.320.1132硅锶2.2 组织参数的测定
从试棒的相同位置取样,经过打磨→磨光→抛光后,首先用3%-4%硝酸酒精进行浸蚀,利用光学显微镜对试样基体组织进行定量分析;然后重新抛光,在不浸蚀的条件下,利用光
学显微镜观察石墨形态及其分布;利用扫描电镜及其能谱对氧化夹杂进行分析。
采用人工方法,选用相同放大位数的金相图片,利用ImageTool软件测量石墨的长宽比(L/D)。
每个试样选择5个视场, 每个视场随机选择50个石墨,将所测结果平均后即获得该试样的石墨长宽比。
利用ImageTool软件测量氧化夹杂的体积分数。
2.3 力学性能测试
按GB/T228-2002规定将圆柱形试棒加工成¢12.5 mm×200 mm力学性能试样,按GB/T 22315-2008规定进行拉伸试验,利用SANS-CMT5205万能材料试验机上测试材料的抗拉强度和杨氏弹性模量。
3 试验结果与分析
3.1各种试样的金相组织特点
利用光学金相显微镜进行观察发现,四种试样中组织均为细片状珠光体+片状石墨+磷化物组织,其中珠光体的含量均大于98%。
图1为孕育剂加入量相同时,不同种类孕育剂所对应的显微组织。
可以看出:四种试样中的石墨形态均以A型为主,但石墨的长宽比有所不同。
定量测量结果显示,图1(a)、(b)、(c)、(d)中石墨的长宽比(L/D)都大于15,并依次减小(见图2)。
图1 不同孕育剂试样的光学显微组织(未浸蚀)
(a )硅锶 (b )硅锶锰 (c )硅锶稀土 (d )S 0.11%+硅锶
图2抗拉强度和杨氏弹性模量与石墨形态的关系
值得注意的是,图1中的各图片中出现了不同数量的白色点状物。
通过对白色点状物进行能谱分析可知,这些点状物均为含有铁、锰、硅等元素的氧化物,图3为其典型能谱。
由图1可看出,图1(a )、(b )和(c )中的氧化夹杂物体积分数依次增加;图1(d )中氧化夹杂物数量最少。
图3 白色颗粒的典型能谱分析结果
3.2 石墨长宽比对灰铸铁抗拉强度和弹性模量的影响
由图2可知,石墨的长宽比L/D 对抗拉强度没有明显影响;但石墨的长宽比增大,杨氏弹性模量有增大的趋势。
这说明,在基体组织相同,石墨形态主要为A
型时,石墨的长
抗拉强度/ M P a , 杨氏模量 / G P a
硅锶 硅锶锰
硅锶稀土 S 0.11%+硅锶
20
30
40
50
石墨长宽比(L /D )
宽比对灰铸铁的抗拉强度间不存在明显的相关性,但减小长宽比有利于提高杨氏弹性模量。
3.3 非金属夹杂对灰抗拉强度和弹性模量的影响
图4 抗拉强度和杨氏弹性模量与氧化夹杂物体积分数的关系
图4为抗拉强度和杨氏弹性模量与氧化夹杂体积分数关系图。
由图4可以看出,金相组织中的氧化夹杂物的数量增加,灰铸铁的抗拉强度减小。
杨氏弹性模量的变化趋势与氧化夹杂数量变化正好相反,氧化夹杂数减小时,杨氏弹性模量明显增大,当氧化夹杂相对最多时,杨氏弹性模量变化到最小。
这说明灰铸铁中的氧化夹杂对其杨氏弹性模量有较明显的影响。
综上所述,氧化夹杂不是影响灰铸铁件抗拉强度的主要因素,但对其有一定的影响;而氧化夹杂对其杨氏弹性模量有明显的作用,夹杂越少,越有利于杨氏弹性模量的提高。
要提高铸件的抗拉强度和杨氏弹性模量,非金属氧化夹杂是必须重视的因素。
4 结论
1)减小石墨长宽比,对灰铸铁的抗拉强度没有明显影响,但对提高杨氏弹性模量有益。
2)氧化夹杂对铸件抗拉强度来说有一定的影响,但不是主要影响因素;而非金属氧化夹杂对杨氏弹性模量有明显作用,夹杂越少,越有利于杨氏弹性模量的改善。
3)控制石墨的长宽比,同时非金属氧化夹杂也减少,将有利于提高灰铸铁的杨氏弹性模量。
20
40
60
80
100
抗拉强度/ M P a , 杨氏模量 / G P a
硅锶
硅锶锰 硅锶稀土 S 0.11%+硅锶
夹杂物体积分数 /%
硅锶锰。