数学一元一次方程单元测试题
- 格式:doc
- 大小:96.00 KB
- 文档页数:3
人教版七年级数学上册《第三章一元一次方程》单元测试卷-含参考答案一、选择题1.下列方程中是一元一次方程的是()A.x3−3=4+x4B.2x+3x−1C.x2−3x+3=0D.x+2y=32.若x=2是关于x的方程2x+a−4=0的解,则a的值为()A.−8B.0C.2D.8 3.下列说法正确的是()A.如果ac=bc,那么a=b B.如果a=b,那么a+1=b−1 C.如果a=b,那么ac=bc D.如果a2=b2,那么a=b 4.方程2y+1=5的解是()A.y=2B.y=12C.y=1D.y=525.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣46.将方程2x−12−x+13=1去分母后,得到3(2x-1)- 2x+1=6的结果错在()A.最简公分母找错B.去分母时漏乘3项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同7.某车间有25名工人,每人每天可生产100个螺钉或150个螺母,若1个螺钉需要配两个螺母,现安排名工人生产螺钉,则下列方程正确的是()A.B.C.D.8.某商场购进一批服装,每件服装销售的标价为400元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的进价是()A.160元B.180元C.200元D.220元二、填空题9.若(a−1)x2+ax+1=0是关于x的一元一次方程,则a=.10.已知两个方程3(x+2)=5x和4x−3(a−x)=6x−7(a−x)有相同的解,那么a的值是 .11.若关于x的方程x−4−ax6=x+46−1的解是正整数,则符合条件的所有整数a的和是。
12.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.13.为迎接初一新生,47中清华分校对校园重新美化装修.现计划对教室墙体重新粉刷一遍(所有教室面积相同).现有甲,乙两个装修队承担此项工作.已知甲队3天粉刷5个教室,结果其中有30平方米墙面未来得及粉刷;乙队5天粉刷7个教室外还多粉刷20平方米.已知甲队比乙队每天多粉刷10平方米,则每间教室的面积为平方米.三、解答题14.解方程:(1)(2)15.小马虎在解关于x的方程x−13=x+2m2−1去分母时,方程右边的“−1”没有乘以6,最后他求得方程的解为3.(1)求m的值;(2)求该方程正确的解.16.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?17.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?18.某校七年级3位老师带部分学生去红色旅游,联系了甲、乙两家旅行社,甲旅行社说:“老师免费,学生打八折。
2023-2024学年鲁教版六年级数学上册第4章《一元一次方程》单元达标测试题一.选择题:1.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3B.﹣3C.±3D.±22.关于x的方程2x+5a=3的解是x=﹣1,则a的值是()A.1B.4C.D.﹣13.周末小明一家去爬山,上山时每小时走3km,下山时按原路返回,每小时走5km,结果上山时比下山多花h,设下山所用时间为xh,可得方程()A.5(x﹣)=3x B.5(x+)=3xC.5x=3(x﹣)D.5x=3(x+)4.若关于x的一元一次方程k﹣2x﹣4=0的解是x=﹣3,则k的值是()A.﹣2B.2C.6D.105.将一些课外书分给某班学生阅读,若每人分3本,则剩余20本,若每人分4本,则还差25本,设这个班共有x名学生,则可列方程()A.3x+20=4x+25B.3x+20=4x﹣25C.3x﹣20=4x+25 D.20+3x=25﹣4x6.方程|2x+1|=7的解是()A.x=3 B.x=3或x=﹣3 C.x=3或x=﹣4 D.x=﹣47.某外贸服饰店一天内销售两种服装的情况是,甲种服装共卖得200元,乙种服装共卖得100元,若按两种服装的成本分别计算,甲种服装盈利,乙种服装亏本,那么两种服装合起来算该外贸店这一天是()A.盈利B.盈利C.盈利D.盈利8.方程|2x+1|=7的解是()A.x=3B.x=3或x=﹣3C.x=3或x=﹣4D.x=﹣49.方程2x﹣1=3与方程1﹣=0的解相同,则a的值为()A.3B.2C.1D.10.学校组织植树活动,已知在甲处植树的有10人,在乙处植树的有16人,现调10人去支援,使在乙处植树的人数是在甲处植树人数的2倍,设应调往甲处x人,则可列方程为()A.10+x=2(16+10﹣x)B.2(10+x)=16+10﹣xC.10+10﹣x=2(16+x)D.2(10+10﹣x)=16+x11.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:一百馒头一百僧,大僧三个更无争;小僧三人分一个,大僧共得几馒头.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得()个馒头A.25B.72C.75D.9012.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.二.填空题:13.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是千克.15.小马虎在解关于x的方程2a﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x=3,则原方程的解为.16.若2n﹣1=6,则4×2n﹣4=.17.若ab<0,且m=+,则关于x的一元一次方程(m﹣3)x+6=4的解是.18. 如图,数轴上A、B、C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,且c是关于x的方程(m−4)x+16=0的解,则m的值为______。
七年级上册第五章一元一次方程一、选择题1.下列方程是一元一次方程的是( )A .y =2x ―1B .x ―1=0C .x 2=9D .3x ―52.下列利用等式的基本性质变形错误的是( )A .若x ―2=7,则x =7+2B .若―5x =15,则x =―3C .若13x =9,则x =3D .若2x +1=6,则2x =53.若x =2是关于x 的方程x ―a =0的解,则a 的值是( )A .2B .1C .―1D .―24.由x 2―y3=1可以得到用x 表示y 的式子是( )A .y =3x ―22B .y =32x ―12C .y =3―32xD .y =32x ―35.解方程x ―13=1―3x +16,去分母后正确的是( )A .2x ―1=1―(3x +1)B .2(x ―1)=1―(3x +1)C .2(x ―1)=6―(3x +1)D .(x ―1)=6―3x +16.我国明代珠算家程大位的名著《直指算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .x3+3(100―x )=100B .3x +100―x 3=100C .x3―3(100―x )=100D .3x ―100―x 3=1007.下列方程的变形中,正确的是( )A .方程3x ―2=2x +1,移项,得3x ―2x =―1+2;B .方程3―x =2―5(x ―1),去括号,得3―x =2―5x ―1;C .方程23x =32,未知数系数化为1,得x =1;D .方程x ―12―x5=1化成5(x ―1)―2x =10.8. 将 6 块形状、大小完全相同的小长方形,放入长为 m ,宽为 n 的长方形中,当两块阴影部分A,B 的面积 相等时, 小长方形其较短一边长的值为( )A .m 6B .m 4C .n 6D .n 49.已知|a ―1|+(ab ―2)2=0,则关于x 的方程xab +x (a +1)(b +1)+x (a +2)(b +2)+⋅⋅⋅+x(a +2021)(b +2021)=2022的解是( )A .2021B .2022C .2023D .202410.我国古代的“九宫图”是由3×3的方格构成的,每个方格均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫图”的一部分,请推算x 的值是( )2025x 23A .2020B .―2020C .2019D .―2019二、填空题11.已知4x +2y =3,用含x 的式子表示y = .12.如图,在数轴上,点A,B 表示的数分别为a,b ,且a +b =0,若AB =2,则点A 表示的数为 .13.一张试卷有25道必答题,答对一题得4分,答错一题扣1分,某学生解答了全部试题共得70分,他答对了 道题.14.甲对乙说:“当我岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在岁数时,你61岁.”则乙现在为 岁.15.如图,数轴上A ,B 点对应的实数分别是1和3.若点A 关于点B 的对称点为点C (即2AB =BC ),则点C 所对应的实数为 .16.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定F (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之和,G (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果F (M )=60,那么M 各数位上的数字之和为 ;有一个四位正整数N =1101+1000x +10y +z (0≤x ≤4,0≤y ≤9,0≤z ≤8,且为整数)是一个“共进退数”,且F (N )是一个平方数,G (N )13是一个整数,则满足条件的数N 是 .三、解答题17.解方程:2x +13―6x ―16=1.18.当m 为何值时,关于x 的方程x ―m 2―1=2x +m 3的解是非负数.19.一艘轮船从A 地顺水航行到B 地用了4小时,从B 地逆水航行返回A 地比顺水航行多用了2小时,已知轮船在静水中的速度是25千米/时.(1)求水流的速度和A ,B 两地之间的距离;(2)若在A ,B 两地之间的C 地建立新的码头,使该轮船从A 地顺水航行到C 码头的时间是它从B 地逆水航行到C 码头所用时间的一半,问A ,C 两地相距多少千米?20.关于x 的两个一元一次方程x ―1=a ①,3x +1=2a ②,已知方程①的解比方程②的解大1,求a的值.21.我们规定,若关于x 的一元一次方程ax =b 的解为x =b ―a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4―2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.22.甲、乙两人加工机器零件,已知甲、乙两人一天共加工零件35个,甲每天加工零件的个数比乙每天加工零件的个数多5个.(1)问甲、乙两人每天各加工多少个零件?(2)现在工厂需要加工零件600个,先由两人合作一段时间,剩下的全部由乙单独完成,恰好20天完成任务,求两人合作的天数.23.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A站B站C站车次发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 分钟,从B站到C站行驶了 分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①v1v=▲;2②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1―d2|=60,求t的值.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】A7.【答案】D8.【答案】A9.【答案】C10.【答案】D11.【答案】32―2x12.【答案】―113.【答案】1914.【答案】2315.【答案】33―216.【答案】15;310517.【答案】x=―3218.【答案】m≤―6519.【答案】(1)解:设水流的速度为x千米/时,A,B两地之间的距离为y千米,则轮船在顺水中的速度为(25+x)千米/时,在逆水中的速度为(25―x)千米/时.由题意,得{4(25+x)=y6(25―x)=y,解得{x=5 y=120.答:水流的速度为5千米/时,A,B两地之间的距离为120千米.(2)解:设A,C两地相距m千米.由题意,得m25+5=12×120―m25―5,解得m=3607.答:A,C两地相距3607千米.20.【答案】a=―121.【答案】(1)是(2)7322.【答案】(1)甲每天加工零件个数为20个,乙每天加工15个(2)两人合作的天数15天23.【答案】(1)90;60(2)解:①56;②解法示例:∵v1=4(千米/分钟),v1v2=56,∴v2=4.8(千米/分钟).∵4×90=360,∴A与B站之间的路程为360.∵360÷4.8=75,∴当t=100时,G1002次列车经过B站.由题意可如,当90≤t≤110时,D1001次列车在B站停车.∴G1002次列车经过B站时,D1001次列车正在B站停车.ⅰ.当25≤t<90时,d1>d2,∴|d1―d2|=d1―d2,∴4t―4.8(t―25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1―d2|=d1―d2,∴360―4.8(t―25)=60,t=87.5(分钟),不合题意,舍去;ⅲ.当100<t≤110时,d1<d2,∴|d1―d2|=d2―d1,∴4.8(t―25)―360=60,t=112.5(分钟),不合题意,舍去;ⅳ.当110<t≤150时,d1<d2,∴|d1―d2|=d2―d1,∴4.8(t―25)―[360+4(t―110)]=60,t=125(分钟).综上所述,当t=75或125时,|d1―d2|=60.。
人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。
人教2024版七年级上册数学第五章一元一次方程单元测试卷一.选择题1.已知关于x的方程3x+a−2=2的解为x=5,则a的值为()A.1B.−11C.−3D.−132.某商品的标价为300元,打8折后销售仍获利40元,该商品的进价为()A.220元B.200元C.180元D.160元3.下列方程变形中,正确的是()A.由y3=0,得y=3B.由2x=3,得x=23C.由2a−3=a,得a=3D.由2b−1=3b+1,得b=24.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组人数的3倍,则变化后乙组的人数有()人.A.12B.13C.14D.155.一船在静水中的速度为20km/h,水流速度为4k m/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为x km,则下列方程正确的是()A.x20+x4=5B.20x+4x=5C.(20+4)x+(20-4)x=5D.x20+4+x20−4=56.某商场举行促销活动,全场商品一律打八折销售.杨老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元7.如图,在数轴上,点A、B表示的数分别为−12,16,(规定数轴上两点A、B之间的距离记为AB).若点C在A,B两点之间,且满足AC−BC=4,则点C对应的数是()A.1B.2C.4D.68.我国古代《孙子算经》中记载了“多人共车”问题:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意是:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车各是多少?若设有x辆车,则可列方程是()A.x3+2=x−92B.3(x−2)=2x+9C.x−23=x−92D.3(x+2)=2x−9二.填空题9.已知x=2是关于x的方程3a+2x=9−x的解,那么关于y的方程2−ay=−1+2y的解为.10.列等式表示“x的3倍与5的和等于x的4倍与2的差”为.11.乐乐在解关于x的方程2x+15−1=x+m2去分母时,方程左边的-1没有乘10,因而求得方程的解为x=4,则这个方程的正确解为12.甲、乙两班共有48人,若从甲班调3人到乙班,此时甲乙两班人数正好相等.那么甲班原来有人.13.幻方最早源于我国,古人称之为纵横图,如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.−1−6−a02a4a−5−2a−3三.计算题14.解方程:(1)2x−13+1=x−22(2)5x−2x−1=x−2四.解答题15.老师在黑板上出了一道解方程的题:2x−13=1−x+24,东东马上举起了手,要求到黑板上去做,他是这样做的:4(2x−1)=1−3(x+2),①8x−4=1−3x−6,②8x+3x=1−6+4,③11x=−1,④x=−111.⑤老师说:东东解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第步(填序号),错误的原因是.现在,请你细心地解下列方程x−32−2x+13=1.16.某车间有28名工人,生产特种螺栓和螺帽,一个螺栓的两头各套上一个螺帽配成一套,每人每天平均生产螺栓12个或螺帽18个.问要有多少工人生产螺栓,其余的工人生产螺帽,才能使一天所生产的螺栓和螺帽刚好配套?17.某校七年级准备观看电影,由各班班长负责买票,每班人数都多于40人,票价每张36元.一班班长问售票员买团体票是否可以优惠,售票员说:“40人以上的团体票有两种优惠方案可选择.方案1:全体人员可打八折;方案2:若打九折,有5人可以免票.”(1)若一班有43名学生,则班长该选择哪个方案?(2)二班班长思考了一会儿说,你知道二班有多少人吗?18.某企业已收购毛竹52.5吨,根据市场信息,将毛竹直接销售,每吨可获得100元,如果对毛竹进行粗加工,每天可加工8吨,每吨可获得1000元;如果进行精加工,每天加工0.5吨,每吨可获得5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,为此研究了两种方案:(1)方案一:将毛竹全部粗加工后销售,则可获利元(2)方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元(3)问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.19.乐乐用的练习本可以到甲、乙两家商店购买,已知两家商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是从第一本起按标价的80%出售.(1)设乐乐要购买x(x>10)本练习本,则当乐乐到甲商店购买时,须付款元,当到乙商店购买时,须付款元.(2)买多少本练习本时,两家商店付款相同?(3)乐乐准备买50本练习本,为了节约开支,选择哪家更合算?。
人教版七年级数学上册《第五单元一元一次方程》单元测试题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一元一次方程2x-1=7的解是()A.x=3B.x=4C.x=5D.x=62.下列变形中,正确的是()A.若5x−6=7,则5x=7−6B.若5x−3=4x+2,则5x−4x=2+3C.若−3x=5,则x=−35D.若x−13+x+12=1,则2(x−1)+3(x−1)=13.把方程2x−14=1−3−x8去分母后,正确的结果是().A.2x−1=1−(3−x)B.2(2x−1)=1−(3−x)C.2(2x−1)=8−(3−x)D.2(2x−1)=8−(3+x)4.若关于x的方程ax-4=a的解是x=-3,则a的值是()A.-2B.2C.-1D.15.要组织一场篮球联赛,每两队之间只赛一场,计划安排15场比赛,如果邀请x个球队参加比赛,根据题意,列出方程为()A.x(x−1)=15B.x(x+1)=15C.x(x−1)2=15D.x(x+1)2=156.我国元代朱世杰所著的《算学启蒙》一书中,有一道题目是“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”译文:跑得快的马每日走240里,跑得慢的马每日走150里,慢马先走12天,快马几天可以追上慢马?则下列回答正确的是().A.15天B.16天C.18天D.20天7.如图一个正方形先剪去宽为4的长方形,再剪去宽为5的长方形,且剪下来的两个长方形面积相等,那么原正方形的边长为()A.20B.16C.15D.138.若关于x的方程kx+26=12x−23的解为正整数,则所有符合条件的整数k的和为()A.0B.3C.−2D.−39.如图,这是一个用50个奇数排成的数阵,用三角形的框去框住四个数,并求出这四个数的和.在下列给出的选项中,可能是这四个数的和的是()A.146B.150C.198D.210二、填空题10.如果3x−2与2x+1的值相同;那么x=.11.将方程x+24=2x+36的两边同乘12,可得到3(x+2)=2(2x+3),这种变形叫,其依据是.12.一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x立方米的木材做桌面,可列方程.13.如果x=4是方程ax=a+3的解,那么a的值为 .14.为了搞活经济,商场将一种商品A按标价的9折出售(即优惠10%)仍可得利润10%,若商品标价为33元,那么该商品的进货价为 .15.如图一个简单的数值运算程序,当输入x的值-1时,则输出的答案是5,则k的值是.16.爸爸今年的年龄是儿子年龄的13倍,6年后,儿子年龄是爸爸年龄的14,则今年爸爸岁,儿子岁.17.如图,两人沿着边长为70米的正方形,按A→B→C→D→A…的方向行走.甲从点A以65米/分的速度、乙从点B以72米/分的速度行走,甲、乙两人同时出发,当乙第一次追上甲时,将在正方形的边上.三、解答题18.解方程(1)4x+3=5x−1(2)3−2(x+1)=2(x−3)(3)x−24−2x−36=1(4)x−1−x3=x+26−119.小亮是一名七年级学生,在解方程2x−13−2x+m2=10x+16−1时,由于忽视了去分母后分式的分子要加括号,结果方程变形为4x−2−6x+3m=10x+1−6,从而求得方程错误的解为x=12,你能求出m的值吗?如果能,请求出m的值和方程正确的解.20.在大约1500年前的《孙子算经》中记载了这样一个有趣的问题:今有鸡兔同笼,上有头三十五,下有足九十四.问鸡、兔各多少.21.阅读下面的解题过程:解方程:|3x|=6.解:分两种情况:(1)当3x≥0时,原方程可化为一元一次方程3x=6,解得x=2;(2)当3x<0时,原方程可化为一元一次方程﹣3x=6,解得x=﹣2;综合(1)、(2),方程的解为x=2或x=﹣2.请仿照上面例题的解法,解方程:3|x﹣1|﹣2=10.22.某商品的进价为200元,标价为300元,打折销售后的利润率为5%,问此商品是按几折销售的?23.云南省某工厂制作一批零件,由一名工人做要80h完成,现计划由一部分工人先做2h,然后增加5名工人与他们一起做8h,完成了这项工作.假设这些工人的工作效率相同,应先安排几名工人工作?24.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分a超过150千瓦时,但不超过300千瓦时的部分0.6超过300千瓦时的部分a+0.3实施“阶梯电价”收费以后,该市居民陈先生家积极响应号召节约用电,10月用电100千瓦时,交电费50元.(1)a=.(2)陈先生家11月用电280千瓦时,应交费多少元?(3)若陈先生家12月份与11月的电费相差60元,求陈先生家12月份用电量是多少?25.在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程.(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)已知关于x的方程9x−3=kx+14有整数解,那么满足条件的所有整数k=_______.(3)若关于x的两个方程5x+343(m+1)=mn与2x−mn=−193(m+1)是同解方程,求此时符合要求的正整数m,n的值.参考答案1.【答案】B2.【答案】B3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】去分母等式的基本性质(或方程的变形规则)或填:等式的两边都乘以(或都除以)同一个数(除数不能为0)所得结果仍是等式。
浙教版七上数学第五章一元一次方程一、选择题1.下列方程中,是一元一次方程的是( )A.x2−4x=3B.3x−1=x2C.x+2y=1D.xy−3=52.下列等式变形正确的是( )A.若a=b,则a+c=b−c B.若ac=bc,则a=bC.若a=b,则ac=bcD.若(m2+1)a=(m2+1)b,则a=b3.已知关于x的方程8−3x=ax的解是x=−2,则a的值为( )A.1B.7C.52D.−74.把方程3x+2x−13=3−x+12去分母正确的是( )A.18x+2(2x−1)=18−3(x+1)B.3x+(2x−1)=3−(x+1)C.18x+(2x−1)=18−(x+1)D.3x+2(2x−1)=3−3(x+1)5.若x=1是关于x的方程3x−2m=1的解,则m的值是( )A.−1B.1C.−2D.36.如图,数轴上依次有A,B,C三点,它们对应的数分别是a,b,c,若BC=2AB=6,a+b+c=0,则点C对应的数为( )A.4B.5C.6D.87.如图,是2024年1月的月历,任意选取“十”字型中的五个数(比如图中阴影部分),若移动“十”字型后所得五个数之和为115,那么该“十”字型中正中间的号数为( )A.20B.21C.22D.238.《九章算术》中有如下问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长、井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?设绳长为x尺,则根据题意,可列方程为( )A.x3+4=x4+1B.x3−4=x4−1C.x3−1=x4−4D.x3−4=x4+19.如图,线段AB=24cm,动点P从A出发,以2cm/s的速度沿AB运动,M为AP的中点,N为BP的中点.以下说法正确的是( )①运动4s后,PB=2AM;②PM+MN的值随着运动时间的改变而改变;③2BM−BP的值不变;④当AN=6PM时,运动时间为2.4s.A.①②B.②③C.①②③D.②③④10.有一组非负整数:a1,a2,…,a2022.从a3开始,满足a3=|a1−2a2|,a4=|a2−2a3|,a5=|a3−2 a4|,…,a2022=|a2020−2a2021|.某数学小组研究了上述数组,得出以下结论:①当a1=2,a2=4时,a4=6;②当a1=3,a2=2时,a1+a2+a3+⋯+a20=142;③当a1=2x−4,a2=x,a5=0时,x=10;④当a1=m,a2=1(m≥3,m为整数)时,a2022=2020m−6059.其中正确的结论个数有( )A.1个B.2个C.3个D.4个二、填空题11.由a=b,得ac =bc,那么c应该满足的条件是 .12.如果方程3x m+1+2=0是关于x的一元一次方程,那么m的值是 .13.如果|x+8|=5,那么x= .14.若关于x的方程5x-1=2x+a的解与方程4x+3=7的解互为相反数,则a= .15.对于非零自然数a和b,规定符号⊗的含义是:a⊗b=m×a+b2×a×b(m是一个确定的整数).如果1⊗4=2⊗3,那么3⊗4等于 16.人民路有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折.乙超市购物①不超过200元,不给予优惠;②超过200元而不超过600元,打9折;③超过600元,其中的600元仍打9折,超过600元的部分打8折.(假设两家超市相同商品的标价都一样)当标价总额是 元时,甲、乙两家超市实付款一样.三、解答题17.解方程:(1)3x+5=2(x+4)(2)3x−14=1−x+8618.已知a-2(4-x)=5a是关于x的方程,且与方程6-x=x+32有相同的解.(1)求a的值.(2)求多项式8a2−2a+7−5的值.若两个一元一次方程的解相差1,则称解较大的方程为另一个方程的“后移方程”例如:方程x−2=0是方程x−1=0的“后移方程”19.判断方程2x+1=0是否为方程2x+3=0的“后移方程”;20.若关于x的方程3(x−1)−m=m+32是关于x的方程2(x−3)−1=3−(x+1)的“后移方程”,求m的值.21.一项工程,甲队独做10ℎ完成,乙队独做15ℎ完成,丙队独做20ℎ完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6ℎ,问甲队实际工作了几小时?22.将连续奇数1,3,5,7,9,…排列成如下的数表:(1)设中间数为x,用式子表示十字框中五个数之和.(2)十字框中的五个数之和能等于2024吗?若能,请写出这五个数;若不能,请说明理由.23.用A,B两种型号的机器生产相同的产品,产品装入同样规格的包装箱后运往仓库.已知每台B型机器比A型机器一天多生产2件产品,3台A型机器一天生产的产品恰好能装满5箱,4台B型机器一天生产的产品恰好能装满7箱.每台A型机器一天生产多少件产品?每箱装多少件产品?下面是解决该问题的两种方法,请选择其中的一种方法,完成分析填空和解答.【方法一】分析:设每箱装x件产品,则3台A型机器一天共生产①▲)件产品,4台B型机器一天共生产( ▲)件产品,再根据题意列方程.【方法二】分析:设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产(①▲)件产品,4台B型机器一天共生产(②▲)件产品,再根据题意列方程.解:设每箱装x 件产品.答:(写出完整的解答过程)解:设每台A 型机器一天生产x 件产品答:(写出完整的解答过程)24.如图,点A 、B 、C 、D 在数轴上,点A 表示的数是−3,点D 表示的数是9,AB =2,CD =1.(1)线段BC =______.(2)若点B 以每秒1个单位长度的速度向右匀速运动,同时点C 以每秒2个单位长度的速度向左匀速运动,运动t 秒后,BC =3,求t 的值.(3)若线段AB 以每秒1个单位长度的速度向左匀速运动,同时线段CD 以每秒2个单位长度的速度向左匀速运动,M 是AC 中点,N 为BD 中点,运动t 秒后(0<t <9),求线段MN 的长度.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】A5.【答案】B6.【答案】B7.【答案】D8.【答案】B9.【答案】D10.【答案】B11.【答案】c≠012.【答案】013.【答案】-13或-314.【答案】-415.【答案】111216.【答案】75017.【答案】(1)x=3(2)x=−1 1118.【答案】(1)解:6-x=x+32,去分母得:12-2x=x+3,移项合并得:-3x=-9,解得:x=3,把x=3代入a-2(4-x)=5a得:a-2=5a,解得:a=-1 2.(2)解:当a=-12时,原式=-2【答案】19.方程2x+1=0是方程2x+3=0的后移方程20.m=521.【答案】解:设三队合作时间为xh,乙、丙两队合作为(6−x)ℎ,总工程量为1,由题意得:(110+115+120)x+(115+120)(6−x)=1,解得:x=3,答:甲队实际工作了3小时22.【答案】(1)解:设中间数为x,则另4个数分别为x−16、x+16、x−2、x+2,所以十字框中五个数之和为x+(x−16)+(x+16)+(x−2)+(x+2)=5x.(2)解:设中间的数为x,依题意可得:5x=2024,解得:a=404.8因为a=404.8不是整数,与题目的a是奇数不符,所以5数之和不能等于2024.23.【答案】解:【方法一】①设每箱装x件产品,则3台A型机器一天共生产3x件产品,4台B型机器一天共生产7x件产品,依题意列方程,得5x3+2=7x4,解得:x=24,故5x3=40,即每台A型机器一天生产40件产品,每箱装24产品.【方法二】设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产3x件产品,4台B型机器一天共生产4(x+2)件产品,依题意列方程,得3x5=4(x+2)7,解得:x=40,故3x5=24,即每台A型机器一天生产40件产品,每箱装24产品. 24.【答案】(1)9(2)2或4(3)3 2。
第五章一元一次方程(单元测试卷人教版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。
1.下列方程中,属于一元一次方程的是()A .0x =B .42x=C .2234x x -=D .43x y -=2.若()2326m m x --=是关于x 的一元一次方程,则m 的值是()A .1B .1-C .2D .1或23.已知关于x 的方程()2x m nx +=的解2x =,则m n -的值为()A .2-B .1-C .1D .24.解方程x 14x 123+=+,下列去分母的过程正确的()A .3(1)81x x +=+B .3(1)46x x +=+C .186x x +=+D .3(1)86x x +=+5.某车间有技工85人,平均每人每天能生产甲种零件16个或乙种零件10个.已知每2个甲种零件和3个乙种零件配成一套,通过合理安排,分配恰当的人数生产甲或乙种零件,可以使得每天生产的配套零件最多,最多为()A .200套B .201套C .202套D .203套6.根据如图所示的程序计算,若输入x 的值是1-时,输出的值是5.若输入x 的值是3,则输出值为()A .13B .0C .1-D .17.设,x y 为任意两个有理数,规定2x y xy x =-◎,若()1215m +=◎,则下列正确的是()A .5m =B .103m =C .133m =D .4m =8.某茶具生产车间共有22名工人,每人每天可生产30个茶壶或者100只茶杯,一个茶壶与4只茶杯配套.为使每天生产的茶壶和茶杯刚好配套,需要有_________名工人生产茶壶()A .8B .14C .10D .129.某环形跑道长400米,甲、乙两人练习跑步,他们同时反向从某处开始跑,甲每秒跑6米,乙每秒跑4米,x 秒后,甲、乙两人首次相遇,则依题意列出方程:①64400x x +=;②()64400x +=;③40064x x -=;④64400x x -=.其中正确的方程有()A .1个B .2个C .3个D .4个10.某电视机去年提价25%,今年想要恢复原价,则应降价().A .15%B .20%C .25%D .30%二、填空题:共8题,每题3分,共24分。
第五章一元一次方程 单元测试卷一、选择题1.在方程3x -y =2,x +1=0,12x =12,x 2-2x -3=0中,一元一次方程的个数为( )A.1B.2C.3D.42.一元一次方程的解是( )A .B .C .D .3.关于x 的方程的解是,则m 的值是( )A .B .0C .2D .84.下列运用等式性质进行的变形中,正确的是( ) A. 若 ,则 B. 若,则C. 若,则D. 若,则6.方程去分母得( )A .B .C .D .7.某品牌电脑降价以后,每台售价为元,则该品牌电脑每台原价为( )A .元B .元C .元D .元8.如果关于x 的方程 和方程 的解相同,那么a 的值为( )A .6B .4C .3D .29.《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x 只,可列方程为( )A .B .C .D .10.如图,将长与宽比为的长方形分割成一个阴影长方形和由196个面积相等的小正方形构成的边框,(边框的宽度即为小正方形的边长),则阴影长方形的长与宽的比为( )10x -==1x -0x =1x =2x =240x m +-=2x =-8-247236x x ---=-22(24)(7)x x --=--122(24)7x x --=--12(24)(7)x x --=--122(24)(7)x x --=--213x +=213a x--=42(94)35x x +-=42(35)94x x +-=24(94)35x x +-=24(35)94x x +-=3:2ABCDA .B .C .D . .15.已知整式 是关于x 的二次二项式,则关于y 的一元一次方程 的解为 .三、解答题16.解方程:(1).(2).17.解下列一元一次方程 (1)2(x+3)=-x; (2)18.小明解方程2x -15+1=x +a 2时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x =4,试求a 的值,并正确地求出方程的解.四、解答题19.某届足球比赛即将举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5 800元.其中小组赛球票每张550元,淘汰赛球票每张700元,则小李预定了小组赛和淘汰赛的球票各多少张?3:229:1929:1729:2132(24)7(3)2m x x n x --++-(3)160m n y ny -++=20.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片或长方形铁片80片,两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问每天如何安排工人生产圆形铁片和长方形铁片才能合理地将铁片配套?23.如图①,在数轴上有一条线段AB,点A,B表示的数分别是2和﹣7.(1)线段AB= ;(2)若M是线段AB的中点,则点M在数轴上对应的数为 ;(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B';处,若AB′=B′C,求点C在数轴上对应的数是多少?参考答案一、选择题1—5 BCDBC6—10 DCBDB二、填空题11.7212.3x-2x=10 13.2 14.2031 15.y=-2三、解答题16.解:(1)去括号得:,移项,合并同类项得:,未知数系数化为1得:.(2)去分母,得:,去括号,得:,移项,合并同类项,得:,系数化成1,得:.17.解:(1)去括号,得:2x+6=-x移项,得:2x+x=-6合并同类项,得:3x=-6系数化成1,得:x=-2(2)去分母,得:2(x-1)-12(x+1)=1去括号,得:2x-2-12x-12=1移项,合并同类项,得: -10x=15系数化成1,得:18..四、解答题19、解:设小李预定了小组赛球票x张,则预定了淘汰赛球票(10-x)张,根据题意,得550x+700(10-x)=5 800.解得x=8.则10-x=10-8=2(张).答:小李预定了小组赛球票8张、淘汰赛球票2张.20.解:设安排x人生产长方形铁片,则(42-x)人生产圆形铁片,依题意得120(42-x)=2x80x,解得x=18,所以42-18=24(人)则安排24人生产圆形铁片,18人生产长方形铁片21.解:设笔袋的单价为x元,则水笔的单价为(x-22)元,所以x=6(x-22)+2, 解得x=26,则x-22=26-22=4(元),答:笔袋的单价为26元,则水笔的单价为4元.(2)甲书店:50x26+4(a- 20) = 4a +1220(元),乙书店:50x 26 + 4a x 0.5 = 2a+1300(元),所以到甲书店购买所花的费用是(4a+1220)元,到乙书店购买所花的费用是(2a+1300)元(3) 甲书店:4a+1220≤1400,解得a ≤45,此时购买的笔袋和水笔的总数量为 50+a ≤50+45= 95<100,不满足题意,乙书店:2a+1300≤1400,解得a ≤50,此时购买的笔袋和水笔的总数量为50+a ≤50+50=100,满足题意,所以王老师到乙书店能完成本次采购任务.五、解答题22、解:(1)3x-(6+x)=-16, 解得 x=-5,2x+4=x+10, 解得 x=6.∵(-5)+6=1,∴方程3x-(6+x)=-16与方程2x+4=x+10互为“美好方程”.(2)x2+m=0, 解得 x=-2m ,3x=x+4,解得 x=2.∵关于x 的方程一+m=0与方程3x=x+4互为“美好方程”,.∴.-2m+2=1,解得 m=12.23(1)9(2)-2.5(3)解:设 AB'=x ,∵AB′=,则 B'C =5x .∴由题意BC =B′C =5x ,∴ AC =B'C ﹣AB'=4x ,∴ AB =AC+BC =AC+B'C =9x ,即9x =9,∴x=1,∴由题意AC=4,又∵点A表示的数为2,2﹣4=﹣2,∴点C在数轴上对应的数为﹣2.。
初一数学一元一次方程的测试及答案一元一次方程单元测试题一、选择题(每小题3分,共36分)1.下列等式中是一元一次方程的是()A。
S=1ab B。
x-y=0 C。
x=0 D。
1/22x+32.已知方程(m+1)xm+3=0是关于x的一元一次方程,则m 的值是()A。
±1 B。
1 C。
-1 D。
0或13.下列解方程过程中,变形正确的是()A。
由2x-1=3得2x=3-1 B。
由|xx.3x+13x+10|+1=+1.2得+1=+12/44.11/75xx C。
由-75x=76得x=- D。
由-=1得2x-3x=6/76324.已知x=-3是方程k(x+4)-2k-x=5的解,则k的值是()A。
-2 B。
2 C。
3 D。
55.若代数式x-(1+x)的值是2,则x的值是()A。
0.75 B。
1.75 C。
1.5 D。
3.56.方程|2x-6|=0的解是()A。
3 B。
-3 C。
±3 D。
1/37.若代数式3ab2x与0.2b3x-1a能合并成一项,则x的值是()A。
1/1 B。
1 C。
2/3 D。
08.X=-2是下列方程中哪一个方程的解?()A。
-2X+5=3X+10 B。
X-4=4X C。
X(X-2)=-4X D。
5X-3=6X-29.初一(一)班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班共展出邮票的张数是(。
)A。
164 B。
178 C。
168 D。
17410.设P=2y-2,Q=2y+3,且3P-Q=1,则y的值是()A。
0.4 B。
2.5 C。
-0.4 D。
-2.511.用同样长的三根铁丝分别围成长方形、正方形、圆,其中面积最大的图形是()A。
长方形 B。
正方形 C。
圆 D。
由于不知道铁丝的长度而无法确定12.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A。
40% B。
20% C。
25% D。
15%二、填空题(每小题3分,共24分)13.一个数的3倍比它的2倍多10,设这个数为x,可得到方程3x=2x+10.14.已知v=15,v0=5,t=4,代入公式v=v0+at,可得a=(v-v0)/t=2.5.15.解方程5x-3=4x得x=3,代入ax-12=0得a=4.16.由a+b=0和cd=1可得a=-b,c=1/d。
人教版七年级数学第三章《一元一次方程》单元测试卷
班级 姓名
一、选择题
1. 已知下列方程:①22x x -=
; ②0.31x =; ③512x x =+; ④243x x -=; ⑤6x =;⑥20x y +=.其中一元一次方程的个数是 ( ).
A .2
B .3
C .4
D .5 2.已知关于x 的方程5(21)a x a x +=-+的解是1x =-,则a 的值是 ( ).
A .-5
B .-6
C .-7
D .8
3.方程2412332
x x -+-=-,去分母得 ( ). A .22(24)33(1)x x --=-+ B . 123(24)183(1)x x --=-+
C .12(24)18(1)x x --=-+
D . 62(24)9(1)x x --=-+
4.甲、乙两人骑自行车同时从相距65 km 的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5 km ,则乙的时速是 ( ).
A .12.5 km
B .15 km
C .17.5 km
D .20 km
5.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件赔25%,那么这两件衣服售出后商店是 ( ).
A .不赚不赔
B . 赚8元
C .亏8元
D . 赚15元
二.填空题
6.当m =______ 时,式子273
m -的值是-3. 7.若3122m x y -与224n x y 在某运算中可以合并,则_____m =,_____n =.
8.设某数为x ,根据下列条件列出方程:
(1)某数的23
比它的相反数大5.______________________________; (2)某数的13与12
的差刚好等于这个数的2倍.________________________. 9.某商场对某种商品作调价,按原价8折出售,此时商品的利润率为10%,此商品的进价是1000元,则商品的原价是________.
10.某人将1000元存入银行,定期两年,若年利率为2.27%,则两年后利息为________元,若扣除20%的利息税,则实际得到的利息为________元,银行应付给该储户本息共____________元.
三.解答题
11.
321
1 23
x x
-+
-=
12.小明解方程
11
2(1)3()1
23
x x x
---=-的步骤如下:
(1)去括号,得2311
x x x
---=-;
(2)移项,得213
x x
-+=+;
(3)合并同类项,得4
x
-=;
(4)最后得4
x=-.
但是经过检验知道,4
x=-不是原方程的根.请你检查一下,上述解题过程哪里错了?并予以改正.
13.某市居民生活用电基本价格为0.4元/kW·h,若每月用电量超过60 kW·h 超过部分按基本电价的70%收费,若某居民6月份的电费平均为0.36元/k W·h,求6月份共用电多少千瓦时,应交电费多少钱?
18.某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听与书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.
(1)求该同学看中的随身听和书包的单价各是多少元?
(2)某天该同学上街,恰好赶上商家促销,超市A所以商品八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元,如果他在一家超市购买看中的这两样物品,你能说明他选择哪一家购买吗?若两家都可以,在哪一家购买更省钱?。