[GB][03][地球重力场]
- 格式:ppt
- 大小:5.45 MB
- 文档页数:28
地球重力场的分类
地球的重力场可以根据不同的分类方式进行划分。
以下是两种常见的分类方式:
1. 空间分布方式:
a. 均匀重力场:也称为等势重力场,指在一个区域内重力场的引力大小和方向是均匀分布的。
在这种重力场中,重力的大小和方向在各个位置都是相等的。
b. 非均匀重力场:指在一个区域内重力场的引力大小和方向不均匀分布的情况。
在这种重力场中,不同位置的重力大小和方向可能存在差异。
2. 强度分布方式:
a. 重力加速度强度不变重力场:指在一个区域内,重力加速度的大小在不同位置上保持不变。
这种重力场在理论上比较理想,但在实际地球上并不完全存在。
b. 重力加速度强度变化重力场:指在一个区域内,重力加速度的大小在不同位置上有一定的变化。
这种重力场在实际地球上比较常见,由于地球表面不规则、存在地下大块状物质等因素,导致地球重力场的强度存在一定的不规则性。
需要注意的是,地球的重力场具有天然的复杂性,因为它受到地球内部物质分布、地球形状、海洋和大气的运动等多种因素的影响。
因此,地球的重力场往往是一个综合性的、复杂的场。
第六章 地球重力场模型随着空间技术的进步和发展,现在不但有可能根据卫星轨道根数的变化精确地确定地球动力形状因子2J ,而且有可能结合卫星测高仪、卫星追踪卫星技术、卫星重力梯度仪等空间技术的测量结果以及地面重力测量结果计算出地球大地位球函数展开的高阶项系数。
以一组数值球函数展开系数表示的地球大地位称为地球重力场模型,地球重力场模型一方面支持卫星轨道的精确计算,另一方面可以给出地面上的长波重力异常场,为研究地球内部结构及其动力学过程提供重要的地面约束条件。
6.1 大地位的球函数展开现将第二章已经讨论过的大地位球函数展开中的有关公式汇总如下。
用r 表示地球外部空间任一点P 的径矢,则根据(2.2.18)式,地球在P 点的大地位球函数展开表示为其中kM 为地球的地心引力常数,a 为地球的赤道半径,θ、λ分别为P 点的地心余纬和经度,(cos )mn P θ为cos θ的n 阶m 次伴随勒让德多项式,(cos )cos mn P m θλ、(cos )sin mn P m θλ为归一化的n 阶m 次球面函数,根据(2.2-1.3)式、(2.2-1.6)式和(2.2-1.8)式,()n P x 、()n P x 、()mn P x 、()mn P x 分别为m n c 、m n s 和mn c 、mn s 分别为大地位球函数展开系数和规一化的大地位球函数展开系数,根据(2.2.20)式,有根据(2.3.4)式、(2.3.5)式,大地位二阶球函数展开系数等于其中A 、B 、C 分别为地球绕1Ox 、2Ox 和其旋转轴3Ox 轴的转动惯量,12I 、23I 、13I 分别为地球绕相应轴的惯性积,大地位球函数展开有时写成下面的形式nm J 、nm K 与大地位球函数展开系数m n c 、m n s 之间的关系为2J 称为地球的动力形状因子。
当3n 时,()n P x 、()mn P x 的表达式如表6.1.1所示。
地球重力场地球重力场:在地球内部及其附近存在重力作用的空间。
重力场强度:单位质量的物体在重力场中所受的重力( =G/m )重力加速度g=G/m重力加速度在数值上(包括方向)等于单位质量所受的重力,也就是等于重力场强度。
重力加速度重力重力场强度重力勘探所提的重力都是指重力加速度或重力场强度。
重力(重力加速度)单位在CGS单位制(克、厘米、秒):“cm/s2”,“伽”或“Gal”1 cm/s2 = 1 Gal在SI单位制(千克、米、秒):“m/s2”,“g.u.”1 m/s2 = 106 g.u.重力的变化包括随不同测点位置的空间变化以及同一测点的重力随时间的变化。
空间上:9地球形状、地形:引起约6万g.u. 的变化;9地球自转:重力有3.4万g.u. 的变化;9地下物质密度分布不均匀:能达到几千g.u.变化9人类的历史活动遗迹和建筑物等时间上:9潮汐变化:太阳、月亮等天体引力引起的重力的周期性变化,其大小可达 3 g.u.9非潮汐变化:地球形状的变化和地下物质运动等引起的非周期性变化,其变化大小一般不超过 1 g.u.海水每天有两次涨落运动,其中早晨出现的潮涨称为潮,晚上出现的潮落称为汐,总称潮汐。
地球上海潮涨落主要是由月球还是太阳引起的?月球和太阳对地球的引力不但可以引起地球表面流体的潮汐(如海潮、大气潮),还能引起地球固体部分的周期性形变(固体潮)。
太阳的质量虽比月球的质量大得多,但月球同地球的距离比太阳同地球的距离近,月球的引潮力比太阳的引潮力大。
在日、月引力作用下,地球固体表面也会像海水一样产生周期性的涨落,这就是地球的潮汐现象,称为地球固体潮。
固体潮随时间和空间的变化,除了和地球、太阳、月亮三者之间相对位置的变化有关外,还和地球内部物质的物理性质有关。
因而,利用固体潮资料可以研究地壳内部物质的物理性质和各种物质的分布规律。
它在空间上的变化主要反映地壳和上地幔区域结构的变化。
它在时间上的变化可能与某些灾难性的地震有直接和间接的联系。
地球重力场的定义地球重力场的定义地球重力场是指地球引力作用下,周围物体所受到的重力影响。
在地球表面上,重力加速度的大小约为9.8m/s²,这是由于地球质量、密度和大小等因素所决定的。
地球重力场不仅影响着人类生活,还对许多自然现象产生了重要影响。
一、地球引力的基本概念1.引力的定义引力是指物体之间由于它们之间存在质量而产生的相互吸引作用。
它是经典物理学中最基本、最普遍的力之一。
2.万有引力定律万有引力定律是牛顿在1687年发现的一条规律,它描述了两个物体之间相互作用的大小与距离平方成反比例关系。
即:F=G(m1m2/r²),其中F表示两个物体之间相互作用产生的引力,G为万有引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。
二、地球重力场特点1.强度变化在不同位置处,由于地球半径和密度分布不同,地球表面上所受到的重力加速度大小也不同。
例如,在地球赤道上,重力加速度约为9.78m/s²,而在北极地区则约为9.83m/s²。
2.方向变化地球重力场的方向指向地心,因此在地球表面上垂直于水平面。
但在不同位置处,由于地球自转和引力作用的影响,重力方向也会发生微小的变化。
3.形状特征地球重力场呈现出类似于一个椭球形的形状,其中离地心较远处的引力作用较弱,而靠近地心处则较强。
三、地球重力场应用1.测量地球质量和密度通过测量不同位置处的重力加速度大小和方向等参数,可以推算出地球质量和密度分布情况。
这对于了解地球内部结构和演化历史等问题具有重要意义。
2.卫星导航系统卫星导航系统是利用卫星发射信号,在空中进行定位、导航和测量等操作的一种技术。
其中最基本的原理就是利用卫星所受到的重力影响来计算其位置信息。
3.天文学研究天文学研究中经常需要考虑重力作用的影响,例如行星运动、恒星演化等问题。
地球重力场的研究也为天文学研究提供了基础数据。
四、地球重力场研究方法1.重力仪测量法重力仪是一种专门用来测量地球重力场的仪器。
地球正常重力场概念及一级近似公式下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、地球正常重力场的概念。
地球正常重力场是指在地球表面上的一种重力场,它是由地球质量引起的,并与地球的形状和自转有关。
地球重力场的测量与重力加速度地球是我们所居住的家园,它无时无刻不在产生着重力场。
在日常生活中,我们往往无法感知到地球重力的存在,但它却是影响着万事万物的力量。
如何测量地球的重力场,以及重力加速度的确定,成为了科学家长期以来努力探索的课题。
一、重力场的概念和特征重力场是指由地球或其他天体引起的一种力场。
它是空间中以物体为中心,向四周辐射的力线所形成的场。
在地球上,重力场的强度与不同地点的海拔高度、地球构造有关。
我们都知道在极地地区,重力场比赤道地区稍强,这也间接说明了地球是一个非球形的椭球体。
二、重力场测量的方法为了测量地球的重力场,科学家们开展了各种方法的研究。
其中最早且最常用的方法是重力测量仪的使用。
重力测量仪可以通过测量重力加速度来推断重力场的分布情况。
科学家可以在地球表面的不同地点进行重力测量,绘制出重力场的地图,进一步研究地球内部的结构和性质。
近年来,随着技术的发展,人们还尝试使用卫星测量重力场,这种方法不受地面地形的限制,能够提供更为全面和精确的数据。
三、重力场测量的意义和应用测量地球重力场的目的不仅仅是为了满足科学探索的需求,更重要的是它的应用价值。
首先,地球重力场的测量有助于研究地球内部的特性,包括地壳、地幔和地核的结构和分布情况。
这对于地震的预测和地质资源的开发具有重要意义。
其次,重力场的测量还可以用于导航系统的改进和定位精度的提高,比如全球定位系统(GPS)就是基于重力场进行测量和计算的。
此外,重力场的测量还被广泛应用于航天和飞行器的轨道控制和姿态稳定。
四、重力加速度的确定重力加速度是指在地球上任意一点的万有引力产生的加速度,通常用小写字母"g"表示。
我们通常将重力加速度的平均值固定为9.8米每秒²。
然而,重力加速度在不同地点会有微小的差异,受地球形状、海拔高度和地下物质分布等因素的影响。
为了精确测量和确定重力加速度,科学家们进行了一系列的实验和观测。
地球重力场分类
地球的重力场可以分为两种主要分类:地球引力和地球重力加速度。
1. 地球引力:地球引力是指地球对任何物体施加的吸引力。
根据牛顿的普遍引力定律,地球引力的大小取决于两个物体的质量和它们之间的距离。
地球引力对任何物体都存在,无论其质量大小。
地球引力使物体向地球的中心靠拢,这也是我们通常所说的重力作用。
2. 地球重力加速度:地球重力加速度是指在地球表面上物体受到的重力加速度。
由于地球的质量和大小不均匀分布,地球重力加速度在不同地点有所不同。
在标准条件下,地球重力加速度的平均值约为9.8米/秒²。
这意味着在没有其他外力作用的情况下,自由下落的物体每秒钟会增加9.8米/秒的速度。
总结:地球的重力场可以分类为地球引力和地球重力加速度。
地球引力是地球对物体施加的吸引力,而地球重力加速度是在地球表面上物体受到的重力加速度。
地球重力场对物体有着普遍的影响,并且在不同地点具有不同的强度。
地球重力场测绘技术的原理地球重力场测绘技术是研究地球引力场特征和测量地球重力场中心、形状、大小、分布等参数的一种方法。
地球的引力场被认为是地球质量分布的显著表现,通过对地球重力场的测绘和研究,可以揭示地球内部结构、岩石圈和地幔动力学等方面的信息,对地球科学研究、资源勘探、环境监测等起到重要作用。
地球重力场测绘技术主要依靠测量重力加速度的变化来揭示地壳下深层构造以及地球的内部物质分布情况。
地球的引力场主要由地球的质量引起,地球重力场的强度和方向受到岩石圈、地幔和地核等地球内部物质的影响。
测量地球重力场的常用方法有天文重力测量和地面重力测量。
天文重力测量利用地球周围其他天体的引力作用来测定地球重力场的变化。
这种方法基于万有引力定律,利用卫星等天体的质量和距离测量地球重力场。
天文重力测量的精度高,可以获得大范围的地球重力场数据,但受到卫星轨道和观测仪器精度的限制。
地面重力测量是一种通过在地表测量重力加速度的变化来研究地球引力场的方法。
这种方法依靠重力仪测量重力加速度的变化,并通过对不同地点的重力加速度数据进行处理和分析,揭示地球重力场的分布和特征。
地面重力测量方法简单灵活,适用于小范围的重力场测绘,可以提供较高的测量精度。
地球重力场测绘技术的原理基于测量地球重力加速度的变化来研究地球引力场的特征。
地球的引力场是由地球内部物质分布以及外部引力作用等因素共同决定的,通过测量地球重力场的变化,可以推测地壳下的构造特征和物质分布情况。
这对于研究地球内部结构、板块运动、地震活动、矿产资源勘探等方面具有重要意义。
地球重力场测绘技术在地球科学研究中扮演着不可或缺的角色。
通过对地球引力场的研究,可以推测地球内部的物质密度分布情况,从而揭示地球的构造和演化。
地球重力场测绘技术还可以用于勘探矿产资源、地下水资源以及地质灾害的预测,有助于优化资源利用和环境保护。
除了天文重力测量和地面重力测量,地球重力场测绘技术还包括卫星重力测量、重力地形测量、海洋重力测量等方法。
理解地球重力场测量与其在测绘中的作用地球重力场是地球表面附近的一个物理场,它是指在地球表面某点处所受到的地心引力的大小和方向。
地球重力场测量是指通过测量地球表面不同点处的重力值,以及在不同地点形成的重力场的分布情况,并通过计算和分析这些数据,进而了解地球内部的物质分布和结构。
地球重力场测量在测绘领域中扮演着重要角色,可以为地质勘探、构造研究、地壳运动预测等提供重要的参考和支持。
地球的形态并不是完全规则的,其形状、大小和质量分布都存在微小的变化。
地球重力场可以反映这些微小变化,从而揭示地球内部的结构信息。
利用重力场测量数据,可以研究地球上的山脉、地壳运动以及地下水和矿产资源的分布情况。
通过建立地球重力场模型,可以准确描述和预测地球内部物质的分布和运动规律,为地质勘探和资源开发提供科学依据。
在地质勘探中,地球重力场测量可以帮助识别地下的矿体和岩石构造。
地质勘探人员通过测量地球重力场的变化,可以找到潜在的矿产资源区域,并进一步了解地下构造和岩石组成。
通过精确测量重力变化,可以辅助勘探人员确定地下矿体的位置、形态和规模,为矿产资源开发提供准确的信息。
此外,地球重力场测量还可以监测地壳运动,及时发现地震隐患,为地震灾害预警提供可靠数据。
在构造研究中,地球重力场测量可以揭示地球内部结构的演化历程。
通过测量地球重力场的分布,可以解析地球的构造特征和各层之间的界面形态。
地球的内部结构和演化过程直接影响着陆地和海洋的形成,因此,地球重力场测量是研究地球动力学和构造演化的重要手段之一。
通过分析地球重力场数据,研究人员可以揭示大陆陆缘的形成、板块运动的规律以及构造演化的过程,为理解地球的演化历史提供重要线索。
地球重力场测量在测绘中的重要性不容忽视。
地理和测绘学科需要准确的地球形状和尺寸数据,而地球重力场测量提供了这些重要的参数。
在地球形状的测绘中,重力场测量可以校正地球椭球体模型,使得地球模型更加精确。
在全球定位系统(GPS)的测绘应用中,地球重力场测量可以提供引力异常校正数据,提高测量精度。
地球重力场的应用宁津生院士在现代大地测量学发展中,地球重力场的理论与应用研究是最活跃的学科领域之一。
因为地球重力场是地球的一个物理特性,是地球物质分布和地球旋转运动信息的综合效应,并制约地球本身及其邻近空间的一切物理事件。
因此,确定地球重力场的精细结构及其随时间的变化,不仅为大地测量学中定位与描述地球表层及其内部的形态,同时也为现代地球科学中解决人类面临的资源、环境和灾害等紧迫课题,提供基础地球物理空间信息。
由此可见,地球重力场研究也是地球科学的一项基础性任务。
大地测量学、地球物理学、地球动力学、大气科学和海洋学以及军事科学等相关地学学科的发展,均迫切需要地球重力场的支持。
在本文中,作者着重分析一下地球重力场的应用问题。
地球重力场的广泛应用研究地球重力场是地球科学的一项基础性任务,它在自然科学和工程技术中有着广泛的应用。
下面仅举几例。
地球重力场与测绘学地球重力场是反映地球物质分布特征的物理场,制约地球及其空间任何物体的运动,与空间技术发展密切相关,是建设数字地球或数字中国的基础物理场信息。
建立地理空间基础框架的核心是定位。
这里地球重力场的作用是将为定位所获取的物理空间中的大地测量观测数据转换到坐标计算的几何空间中,并且在精密卫星定位中为精密定轨必须有精密地球重力场模型的支持才能实现,这样才能保证以卫星绝对定位方法建立的由一定数量基准点构成的地心参考框架可以使卫星相对点定位达到相应的精度。
另外有许许多多与地理位置相关的空间数据或空间信息,都需要以大地水准面或似大地水准面为起算面的正高或正常高系统,例如水利工程、灾害预测和评估、测绘各种比例尺的地形图、地壳形变监测等都有这样的要求。
因此,必须建立全球或全国统一的高程基准,即统一定义的精确大地水准面或似大地水准面。
它还可用于远距离高程控制、陆海和陆岛的高程连接等。
一般来说还应该建立大地水准面,它既具有几何意义,也具有物理意义,其应用较之似大地水准面更为广泛。
地球重力场公式范文地球重力场是指地球周围的重力场,其数学表达式是地球所产生的引力场强度。
根据牛顿引力定律,地球对物体的引力与物体质量和地球质量之间的乘积成正比,与物体与地球之间的距离的平方成反比。
因此,地球的重力场公式可以表示为:F=G*(m1*m2)/r^2其中,F是物体所受地球引力的大小,G是引力常数,m1和m2分别是地球和物体的质量,r是物体与地球的距离。
在实际应用中,考虑到地球是一个球体,地球的质量分布也不均匀,地球的重力场公式可以进一步进行修正,引入球面坐标系和各阶球谐函数等概念。
比较常用的修正公式是斯托克斯(Stokes)函数方法,即以球谐函数为基础的重力场展开方法。
斯托克斯函数方法将地球的重力场展开成无数个球谐函数的加和,得到如下公式:V=GM/r*[1-∑(Cn/r^n+Sn/r^(n+1))]其中,V是地球上其中一点的重力势能,G是引力常数,M是地球的质量,r是地球表面的地心距离,Cn和Sn是重力谐振项系数,n是重力梯度项阶数。
每个阶数的球谐函数代表了地球重力场的一个特定分布模式,从低阶到高阶,分别表示了地球重力场的整体性质和局部性质。
在实际测量中,通常只考虑前几个阶数的球谐函数。
例如,常见的重力场模型EGM96就采用了到360度的球谐函数展开,共有12,960个球谐函数。
除了斯托克斯函数方法外,还有直接测量和建模方法可以用于确定地球的重力场。
直接测量方法通过测量物体在地球表面上所受的重力加速度或重力位移来获得地球的重力场。
而建模方法则通过结合地球物理观测数据和数学建模算法来估计地球的重力场模型。
总结起来,地球的重力场可以通过牛顿引力定律和斯托克斯函数方法进行描述,这些数学模型和测量方法可以用于研究和解释地球引力的性质和分布。
地球正常重力场和正常地磁场是地球物理学中重要的研究对象,它们对地球的环境和大气有着重要影响。
国际标准对地球正常重力场和正常地磁场有着明确的界定和表现形式,本文将对其进行详细介绍和解释。
一、地球正常重力场的国际标准和表现形式1.1 地球正常重力场的定义地球正常重力场是指地球表面某一点处,由于地球自身引力和离心力的作用而产生的重力场。
它是地球物理学研究的重要对象之一,直接影响着地表物体的重量和形态。
1.2 地球正常重力场的国际标准国际上对地球正常重力场有严格的标准,根据国际标准组织的相关规定,地球正常重力场的国际标准是以国际地球引力标准模型(International Gravity Standardization Network,IGSN)为基础建立的,IGSN通过对地球重力场进行系统观测和精密测量,得出了地球正常重力场的基准数值和模型。
1.3 地球正常重力场的表现形式地球正常重力场的表现形式包括重力场的大小、方向和变化规律。
在地球表面,地球正常重力场的大小随着地理位置的不同而有所差异,通常以重力加速度的数值来表示;重力场的方向指向地球的质心,是垂直于椭球面的;重力场的变化规律与地球的形态、大气厚度、海洋分布等因素密切相关。
二、正常地磁场的国际标准和表现形式2.1 正常地磁场的定义正常地磁场是指地球表面某一点处,由于地球内部磁场的作用而产生的地磁场。
地磁场是地球表面地磁测量的重要对象,也是导航定位、地震预警等应用领域的基础。
2.2 正常地磁场的国际标准国际上对正常地磁场也有明确的标准,根据国际地球物理学联合会的相关规定,正常地磁场的国际标准是以国际地球磁场标准模型(International Geomagnetic Reference Field,IGRF)为基础建立的,IGRF通过对地球地磁场进行系统观测和精密测量,得出了正常地磁场的基准数值和模型。
2.3 正常地磁场的表现形式正常地磁场的表现形式包括地磁场的强度、磁倾角和磁偏角等参数。