数字示波器的原理和使用方法
- 格式:doc
- 大小:23.00 KB
- 文档页数:9
数字示波器的原理和使用
数字示波器(Digital Oscilloscope)是用于检测和显示电压信
号的一种仪器。
它通过采集电压信号,并将其转换为数字信号进行处理和显示。
数字示波器的工作原理如下:首先,它使用一对输入探头将待测电压信号引入示波器。
探头将电压信号转换为与示波器输入电路兼容的信号。
然后,信号经过模拟前端电路进行滤波和放大。
接着,模拟信号被采样并转换为数字信号,即通过模数转换器(ADC)将连续的模拟信号转换为离散的数字信号。
数
字信号表示的幅值被存储在内存中。
示波器的显示部分会读取内存中存储的数字信息,并将其转换为图形显示。
通常,示波器的显示屏幕会绘制出与时间相关的波形图像,包括电压的幅值和随时间变化的动态。
示波器还可以通过调整时间基准和垂直缩放等功能来提供更详细的波形显示。
为了获得更精确的测量结果,示波器还可以提供各种触发功能。
触发功能通过设置特定的触发条件,使示波器能够在特定事件发生时进行采样和显示。
触发条件通常是基于电压水平、边沿或脉冲宽度等参数设置的。
使用数字示波器时,首先需要正确连接电路进行测量,并选择合适的电压和时间基准来显示所需的信号。
然后,通过调整垂直和水平缩放,可以调整波形图像的幅值和时间范围。
如果需要,还可以使用触发功能来稳定波形显示。
数字示波器的使用范围广泛,可用于电子设备的开发、维修和故障排查等方面。
它可以帮助工程师们准确测量和分析电路中的电压信号,从而确保电子设备的正常运行。
数字示波器的使用方法说明书一、简介数字示波器是一种用于测量电子信号的仪器,它能够将电信号转换成数字信号,通过处理和显示,使人们能够直观地观察和分析电子信号的各种特性。
二、准备工作1. 检查设备:确保数字示波器的外部和内部没有损坏或故障。
2. 准备电源:将数字示波器与稳定可靠的电源连接。
三、使用方法1. 连接信号源:将被测信号源与数字示波器进行连接,确保信号源输出的电压范围在数字示波器的测量范围内。
2. 调节显示模式:根据需要选择适当的显示模式,如时间域显示、频域显示等。
3. 调节触发模式:选择合适的触发模式,如边沿触发、脉冲触发等。
4. 设置水平和垂直缩放:根据被测信号的幅值和频率调整水平和垂直缩放,使被测信号能够在屏幕上完整显示。
5. 调整触发电平:根据被测信号的特性设置触发电平,确保波形稳定地显示在屏幕上。
6. 调整触发延迟:根据需要设置触发延迟,使触发点位于波形的合适位置。
7. 分析波形:观察波形的各个特性,如幅值、频率、周期、上升时间等,并进行相应的测量和分析。
四、注意事项1. 使用过程中避免将数字示波器暴露在潮湿、高温、高压等恶劣环境中,以免损坏设备或危及人身安全。
2. 在连接信号源时,确保输入端与待测电路相互匹配,避免因电阻、电容等不匹配导致的测量误差。
3. 调节触发模式和触发电平时,应根据被测信号的特性选择合适的设置,以确保波形能够稳定地显示在屏幕上。
4. 在分析波形时,要根据具体需要选择合适的测量功能,并正确使用示波器的各项功能和参数进行测量和分析。
五、故障排除1. 若数字示波器无法正常启动或显示异常,首先检查电源连接是否良好,是否存在电源故障。
2. 若波形显示不稳定或触发功能失效,可尝试调整触发模式、触发电平和触发延迟等参数,或检查信号源输出是否正常。
六、维护保养1. 定期清洁:根据使用频率和工作环境,定期清洁数字示波器的外壳和连接接口,确保设备的正常散热和连接良好。
2. 防护措施:避免将硬物、液体等杂物接触到数字示波器的内部电路板,以防止损坏电路板或导致电击等事故发生。
数字示波器实验原理
数字示波器是一种测量和显示电信号波形的仪器。
它通过将输入的模拟电信号转换为数字信号,并使用数码技术进行处理和显示。
数字示波器实验原理主要包括以下几个方面:
1. 信号采集:示波器使用探头将待测电信号接入到示波器的输入端口。
在输入端口,示波器通过电阻分压、差动放大等方式对信号进行预处理和保护。
2. 信号转换:示波器将输入的模拟电信号转换为数字信号。
这需要经过模数转换(A/D 转换),将输入的连续模拟信号转为离散的数字信号。
3. 信号处理:示波器通过对数字信号进行处理,如滤波、放大、补偿等,以改善信号质量和测量的准确性。
4. 波形显示:示波器会将处理后的数字信号转换为模拟信号,然后通过电子束在显示屏上扫描绘制出波形。
示波器的水平和垂直扫描功能能够控制波形的水平和垂直位置,从而实现波形的调整。
5. 触发功能:示波器通过设置触发条件,可以选择信号波形的起始点,也可以分析特定的波形细节。
数字示波器相对于模拟示波器具有更高的精度和稳定性,可提
供更多的测量和调整功能。
它具有高带宽、高分辨率、多通道、存储和回放等特点,广泛应用于电子工程、通信、医疗、科研等领域。
普源数字示波器的使用方法普源数字示波器是一种用于测量电信号波形的仪器,它能够显示电压随时间变化的图像。
本文将介绍普源数字示波器的使用方法,帮助读者更好地理解和使用该设备。
一、示波器的基本结构和原理普源数字示波器主要由输入端口、触发电路、时间基准电路、垂直放大电路、水平扫描电路和显示器组成。
它的工作原理是通过从被测信号中提取出的触发脉冲控制扫描电路,使电子束在屏幕上按一定规律进行扫描,从而形成波形。
二、示波器的基本操作流程1. 连接被测信号:将被测信号与示波器的输入端口相连。
一般来说,被测信号的地线应与示波器的地线相连,以确保测量的准确性。
2. 调整触发电路:触发电路的设置对于正确显示信号波形至关重要。
可以根据被测信号的特点调整触发电路的触发级、触发源和触发沿等参数,以获得清晰稳定的波形图像。
3. 调整垂直放大电路:垂直放大电路用于调整信号的垂直幅度。
可以通过调节垂直灵敏度、增益和偏移等参数,使波形图像适应屏幕的显示范围。
4. 调整时间基准电路:时间基准电路用于调整示波器的扫描速度。
可以通过调节时间/幅度控制旋钮,改变扫描时间的快慢,以适应被测信号的频率范围。
5. 观察和分析波形:在完成上述调整后,可以在示波器的显示屏上观察到被测信号的波形图像。
可以通过水平和垂直的标尺来测量波形的幅度、频率、周期和相位等参数,从而对信号进行分析和判断。
三、示波器的常用功能和特点1. 自动测量功能:示波器可以自动测量波形的最大值、最小值、峰峰值、平均值、频率等参数,简化了测量的操作步骤。
2. 存储和回放功能:示波器可以将测量到的波形数据存储在内部或外部存储器中,并可以随时回放和分析。
3. 数字滤波功能:示波器可以通过数字滤波算法对信号进行滤波处理,以去除噪声和干扰,提高波形的清晰度和稳定性。
4. 多通道显示功能:一些示波器可以同时显示多个通道的波形,方便对比和分析不同信号之间的关系。
5. 外部触发功能:示波器可以通过外部触发信号来控制波形的显示和记录,以便对特定事件进行观察和分析。
数字示波器的使用方法示波器使用教程示波器使用说明数字示波器的使用方法数字示波器是一种高精度、高效率的电子测试仪器。
它可以用来测量电流、电压和频率等电性量,并将结果在荧光屏上显示出来,使用户通过视觉直观地了解电路中的信号波形,方便电路的维护和调试。
那么,如何正确地使用数字示波器呢?本文将从示波器的基本原理、使用方法、测量技巧等方面为您进行详细讲解。
一、数字示波器的基本原理数字示波器(Digital Storage Oscilloscope,DSO)是一种能够将模拟信号进行数字化采样并储存的电子仪器。
当模拟信号进入示波器时,它首先会被采样芯片进行采样,并将采集到的模拟信号转换成数字信号,再通过数字电路进行处理,最后在荧光屏上显示出波形图形。
数字示波器的特点是采样率高、带宽宽、噪声小,并且可以通过内置计算机实现多种复杂的测量和分析功能。
因此,数字示波器已成为电子检测和测试领域中不可或缺的工具之一。
二、数字示波器的使用方法1、准备工作在使用数字示波器之前,我们需要准备好测量物、信号源、电缆和示波器。
其中,信号源可以是任何产生模拟信号的电子元件,如信号发生器、函数发生器或示波器本身。
在将信号源与示波器连接时,需要根据连接方式选择合适的接口和电缆类型,例如BNC接口和同轴电缆可以支持50欧姆和75欧姆的传输线,而探头则可以用于连接带有夹子的对接器以测量电源或电路板上的元件。
2、设置示波器使用数字示波器时,我们需要根据测量要求来设置示波器的参数,如垂直和水平缩放、扫描速度、触发方式等。
其中,垂直缩放主要是设置放大倍数和输入阻抗,以确保输入信号在示波器的垂直方向上显示清晰。
水平缩放则需要根据测量信号的周期和带宽来调节。
在示波器的触发方面,根据信号的周期和频率,可以选择自由运行模式、边沿触发模式、视频触发模式等不同的触发方式,以满足不同测量要求。
3、测量信号当示波器设置完成后,我们就可以测量信号波形了。
此时,我们可以通过示波器荧光屏上的波形图形来观察信号的幅度、周期、频率以及相位等电性参数。
数字示波器原理与应用数字示波器是一种基于数字信号处理技术的电子测试设备,用于观测和测量电信号的波形和各种电气参数。
其工作原理是将被测信号采样并转换为数字信号,然后通过数字处理算法恢复出原始信号的形态和参数。
数字示波器的工作过程可以分为以下几个步骤:1. 采样:示波器通过内部或外部的采样电路对被测信号进行采样,通常采用的是均匀采样方式。
采样定理要求采样频率至少是被测信号最高频率的两倍,以确保采样的准确性。
2. AD转换:模拟信号经过采样后,通过模数转换器(A/D转换器)将其转换为数字信号。
A/D转换器将连续的模拟信号转换为离散的数字数值,采用的常见方式有闩锁式转换、逐次逼近转换等。
3. 存储:数字示波器将转换后的数字信号进行存储,并按照一定的时间顺序排列。
存储器的容量决定了示波器能够存储的信号长度,而存储速度则影响了示波器的最大采样率。
4. 数字处理:通过数字信号处理算法,示波器对存储的数字信号进行处理和分析,恢复出原始信号的形态和各种电气参数。
常见的处理算法包括傅里叶变换、滤波、频谱分析、触发等。
数字示波器的应用非常广泛,常见的应用领域包括电子工程、通信、计算机、医学等。
它具有以下优点:1. 储存容量大:数字示波器的存储器容量通常远大于模拟示波器,可以存储更长的信号和更多的波形,方便分析和比较。
2. 数据处理灵活:数字示波器可以通过软件对采样数据进行各种算法处理和分析,例如滤波、傅里叶变换、触发等,方便用户获取更多的信息。
3. 显示效果好:数字示波器通过数字显示技术,能够实时显示信号的波形、参数和频谱等,操作界面直观清晰。
4. 其他功能完善:数字示波器通常还具备存储和导出数据、自动测量、自动报警等功能,提高了工作效率和可靠性。
数字示波器的发展已经取代了传统的模拟示波器,在现代电子测量领域得到广泛应用。
随着技术的不断发展,数字示波器的性能和功能还将进一步提高,满足不同领域的需求。
示波器的数字信号处理原理和算法数字示波器是一种常见的电子测量仪器,广泛应用于电子工程、通信等领域。
它能将电信号转换为数字形式进行处理和显示,通过数字信号处理算法实现波形的完美呈现和分析。
本文将介绍示波器的数字信号处理原理和常见算法。
一、数字信号处理原理数字信号处理原理是指将连续的模拟信号转换为离散的数字信号,并使用数字技术进行信号处理的基本原理。
在示波器中,连续信号通过高速模数转换器(ADC)转换为数字信号,然后进行数字信号处理。
其原理包括采样、量化和编码三个过程。
1. 采样:采样是指按照一定时间间隔对连续信号进行抽样,将连续信号转换为离散信号。
在示波器中,采样率的选择对信号的重构和分析非常关键,采样率过低会导致信号失真,采样率过高则会浪费存储和计算资源。
2. 量化:量化是指将采样后的连续信号转换为离散的幅度值,即将模拟信号的连续幅度转换为离散的数字值。
示波器中通常使用定点或浮点的数值表示幅度,量化级别的选择对数字信号的精度和动态范围有直接影响。
3. 编码:编码是将量化后的离散信号转换为数字形式表示。
在示波器中,常用的编码方式有二进制补码和二进制反码等。
编码后的信号方便存储和传输,为后续的数字信号处理提供基础。
二、数字信号处理算法数字信号处理算法是指利用数字技术对数字信号进行分析、处理和显示的数学方法和技巧。
在示波器中,常见的数字信号处理算法包括时域分析、频域分析和触发算法等。
1. 时域分析:时域分析是指对信号在时间轴上的变化进行研究和分析。
常见的时域分析算法有采样、插值、去噪、滤波、平均等。
示波器通过时域分析算法可以显示出信号的波形、幅度、频率等特征。
2. 频域分析:频域分析是指将信号从时域转换为频域,研究信号在频率上的分布和特性。
常见的频域分析算法有傅里叶变换、功率谱密度估计、频谱分析等。
示波器通过频域分析算法可以显示出信号的频率成分、谐波分布等信息。
3. 触发算法:触发算法是指根据触发条件对信号进行特定条件下的捕获和显示。
数字示波器的原理与使用示波器一般分为模拟示波器和数字示波器;在很多情况下,模拟示波器和数字示波器都可以用来测试,不过我们一般使用模拟示波器测试那些要求实时显示并且变化很快的信号,或者很复杂的信号。
而使用数字示波器来显示周期性相对来说比较强的信号,另外由于是数字信号,数字示波器内置的CPU或者专门的数字信号处理器可以处理分析信号,并可以保存波形等,对分析处理有很大的方便。
数字存储示波器是20世纪70年代初发展起来的一种新型示波器。
这种类型的示波器可以方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。
数字存储示波器的出现使传统示波器的功能发生了重大变革。
【实验目的】1、了解数字式示波器的基本原理;2、学习数字式示波器的基本使用方法;3、使用数字示波器观测信号波形和李萨如图形。
【实验仪器】SDS1072CNL数字示波器,SIN一2300A系列双轨道DDS信号发生器【仪器介绍】SDS1072CNL数字示波器的前面板功能介绍见图4-11-7所示。
1.电源开关2.菜单开关3.万能旋钮4.功能选择键5.默认设置6.帮助信息7.单次触发8.运行/停止控制9.波形自动设置10.触发系统11.探头元件12.水平控制系统13.外触发输入端14.垂直控制系统15.模拟通道输入端16.打印键17.菜单选项B Host图4-11-7数字示波器的前面板1、垂直控制可以使用垂直控制来显示波形(按CH1或CH2)、调整垂直刻度(V-mV)和位置(Position)。
每个通道都有单独的垂直菜单。
每个通道都能单独进行设置。
1.CH1、CH2:模拟输入通道。
两个通道标签用不同颜色标识,且屏幕中波形颜色和输入通道连接器的颜色相对应。
按下通道按键可打开相应通道及其菜单,连续按下两次可关闭该通道。
2.MATH:按下该键打开数学运算菜单,可进行加、减、乘、除、FFT运算。
数字示波器的使用及其实验数据数字示波器的使用 1.实验原理:双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。
Y CH1Y CH2图1. 双踪示波器原理方框图其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。
由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。
如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。
为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波形。
当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。
如果同步电路信号从仪器外部输入,则称为“外同步”。
操作时,使用“电平(LEVEL)”旋钮,改变触发电平高度,当待测电压达到触发电平时,扫描发生器开始扫描,直到一个扫描周期结束。
但如果触发电位高度超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。
如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。
如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。
图2. 示波器显示正弦波形的原理数字存储示波器的基本原理框图如图3所示:AcquistionDisplayA/DDeMUXuPDisplayInputAMPMemoryMemory图3. 数字存储示波器的基本原理框图数字示波器是按照采样原理,利用A/D变换,将连续的模拟信号转变成离散的数字序列,然后进行恢复重建波形,从而达到测量波形的目的。
数字示波器原理及应用
数字示波器是一种用来显示和记录电压信号波形的仪器。
它通过将输入的模拟电信号进行采样和量化,然后将其转换成数字信号,最后通过数码显示器显示出来。
数字示波器的工作原理是基于采样和量化的过程。
当输入信号经过示波器的探头时,探头会将信号转换成电压信号,并将其送入数字示波器的输入端。
输入信号经过模拟到数字(A/D)转换器后,会被离散化成一系列的样本点,然后这些样本点会被存储在示波器的内存中。
数字示波器内部有一个时钟,它会以一定的速率重新采样已存储的样本点,并将它们转换成数字形式,然后通过数码显示器显示出来。
通过控制时钟的速率,我们可以调整示波器的时间和幅度的比例。
数字示波器广泛应用于各种领域,包括电子设备维修、电路设计、通信工程等。
它具有以下几个优势:
1. 高精度和高灵敏度:数字示波器的采样精度可以达到很高,可以准确地显示电压信号的波形,帮助工程师快速定位和解决故障。
2. 多种波形显示模式:数字示波器可以以不同的显示模式显示波形,例如点与点之间的连线、柱状图和连续曲线等,这使得工程师可以更直观地观察信号的变化。
3. 数据存储和分析:数字示波器可以将采集到的波形数据保存在内存中,并可以随时回放和进行数据分析,方便后续处理和研究。
4. 触发功能:数字示波器具有触发功能,可以设置触发条件,当输入信号满足预设条件时,示波器会自动捕获并显示波形,帮助工程师更好地分析信号。
总之,数字示波器是一种功能强大的仪器,它通过数字技术实现了对模拟信号的显示和分析,广泛应用于各种电子设备的调试和维修工作中。
示波器的原理和应用的实验原理
示波器的原理是利用了信号的振幅、频率、相位等信息来显示波形。
示波器原理分为两大类:模拟示波器和数字示波器。
模拟示波器工作原理:
1. 采样:示波器通过垂直放大器将输入信号放大到合适的幅度,并使用水平放大器将信号在时间上进行放大。
2. 水平扫描:示波器会发出一定的扫描电子束,在水平方向上扫描CRT屏幕,形成水平方向上的光点。
3. 垂直放大:扫描电子束经过垂直放大器,根据输入信号的电压变化控制电子束在银幕上的垂直位置,形成波形。
数字示波器工作原理:
1. 采样:输入信号经过模数转换器(ADC)进行采样,将模
拟信号转换为数字信号。
2. 数字处理:数字示波器将采样的数字信号进行数学处理,例如存储、平均、滤波等。
3. 显示:通过数字信号将处理后的数据转换为模拟信号,再通过模拟示波器的原理进行显示。
示波器的应用实验原理:
示波器常用于观察、测量电子设备的信号波形,例如:
1. 波形分析:通过观察信号的形状和特征,判断电路是否正常工作,诊断故障。
2. 信号测量:示波器可以测量电压、频率、相位、占空比等信号参数。
3. 信号发生器:示波器可以通过外部输入产生信号,用于测试
其他电子设备的响应性能。
4. 存储和比较:示波器通过存储信号波形,可以与其他波形进行比较,分析电路的变化和干扰情况。
数字示波器的原理与使用实验教学中的问题与对策数字示波器是一种电子测量仪器,它用于分析电子信号的波形和幅度,具有数据处理、形状维持和横纵坐标可变等特点,并广泛应用于电子设计和测试等领域。
然而,在数字示波器的使用实验教学中,也存在着一些问题,需要采取相应的对策才能更好地进行教学。
一、数字示波器的原理数字示波器是利用模拟-数字转换器将模拟信号转换为数字信号,而后在数字信号处理器中通过算法恢复出模拟信号后在TFT中显示。
在进行数字示波器的运用时,需要了解以下几个方面的内容:1、输入电路:输入电路包括了信号源、前置放大器、采样器和触发器。
2、采样与量化:设定采样率,精确处理测量的数据。
3、存储与处理:存储容量是数字示波器的重要参数之一。
数字示波器可以存储波形和波形的测量数值。
4、显示和操作:数字示波器的显示和操作依赖于微处理器和TFT液晶屏。
二、实验教学中的问题1、数字示波器的使用步骤繁琐,难于掌握。
2、数字示波器的特殊参数较多,初学者难以理解。
3、实验难度与知识点较高,难以进行有效的实践操作。
4、理论与实践的脱节导致学习效果不佳。
三、对策1、简化使用步骤,提高学生的实用能力。
教师可通过操作演示、实物展示等多种方式,让学生更好地掌握数字示波器的使用步骤,这样能有效减少学生在操作上的困难。
2、突出核心参数,增强学生的理解能力。
教师应重点突出数字示波器的核心参数,如采样率、存储容量等,在讲解时应并通过实例进行讲解,这样可让学生更好地理解数字示波器的使用。
3、提供实验设备,并引导学生进行实践操作。
教师应该向学生提供现代化的数字示波器等实验设备,并安排工程实践课程,让学生在实践操作中更好地理解知识点,从而提高学习效果。
4、强化理论与实践结合的教学方式。
教师可以在课堂上引导学生分析实验数据,并让学生将取得的实验数据与教材中的理论知识结合起来,建立良好的理论知识和实践能力的联系,提高学生的学习效果。
综上所述,数字示波器的原理和应用十分重要,可以用于电子设计和测试等领域。
数字示波器原理
数字示波器是一种用于测量和显示电信号的仪器。
它通过将电信号转换为数字信号,并使用数字信号处理技术对信号进行处理和分析,最终将信号以波形的形式显示在示波器的屏幕上。
数字示波器的工作原理可以简单分为以下几个步骤:
1. 采样:通过示波器的输入端,将需要测量的电信号输入到示波器中。
示波器内部的采样系统根据预设的采样率,以固定间隔对输入信号进行采样,通常采用的是等间隔采样。
2. 数字化:采样后的模拟信号需要经过模数转换,将连续的模拟信号转换为离散的数字信号。
模数转换器将模拟信号按照一定的位数进行采样并量化,将连续的模拟信号转化为数字表示。
3. 存储:模数转换后的数字信号需要存储在示波器的内存中,以便后续处理和显示。
示波器的存储器容量决定了示波器能够存储的样本点数量,从而决定了示波器的时间分辨率。
4. 处理和显示:示波器对存储的数字信号进行处理和分析,以获取所需的各种波形参数,例如幅度、频率、相位等。
处理后的信号通过数字信号处理器进行运算,并通过显示器显示出来。
示波器一般配备有高分辨率的显示屏幕,能够以较高的更新速率实时显示采样到的波形。
数字示波器相比于模拟示波器具有更多的优势,如可以实现更高的采样率、更高的垂直分辨率、更低的噪声水平等。
并且数
字示波器还能够记录并回放信号波形,方便进行详细的分析和故障排查。
因此,数字示波器在电子、通信、自动化等领域得到广泛应用。
数字示波器的实验报告数字示波器的实验报告引言数字示波器是一种广泛应用于电子测量领域的仪器,它能够将电信号转换为数字形式,并通过显示器以波形的形式展现出来。
本次实验旨在探究数字示波器的原理、使用方法以及其在电路实验中的应用。
一、数字示波器的原理数字示波器的工作原理基于模拟信号的采样和数字化处理。
首先,模拟信号经过采样电路,将连续的模拟信号转换为离散的数字信号。
然后,数字信号通过模数转换器(ADC)转换为数字形式,进一步经过处理和存储后,最终通过显示器以波形的形式呈现出来。
二、数字示波器的使用方法1. 连接电路与示波器:首先,将示波器的探头连接到待测电路的信号输出端,确保连接正确且牢固。
同时,将示波器的接地线连接到电路的接地点,以确保测量的准确性和安全性。
2. 设置示波器参数:根据待测信号的特点和实验需求,设置示波器的时间基准、垂直灵敏度、触发条件等参数。
通过调整这些参数,可以获取到合适的波形显示效果。
3. 观察波形:通过示波器的显示屏,可以实时观察到待测信号的波形。
根据波形的特点,可以判断电路的工作状态、频率、幅度等信息。
4. 测量信号参数:示波器可以提供一系列测量功能,如测量频率、周期、占空比、峰峰值等。
通过这些测量功能,可以对待测信号进行更加精确的分析和评估。
三、数字示波器在电路实验中的应用1. 波形分析:通过数字示波器,可以直观地观察到电路中的信号波形,从而判断电路的工作状态和稳定性。
例如,在电路调试过程中,可以通过观察波形来判断是否存在信号失真、噪音干扰等问题。
2. 信号生成与触发:数字示波器不仅可以接收外部信号进行分析,还可以通过内置的信号发生器生成特定的测试信号。
同时,示波器还提供了多种触发方式,如边沿触发、脉冲触发等,可以帮助用户捕捉到特定的信号波形。
3. 故障诊断:当电路发生故障时,数字示波器可以帮助我们找到故障点。
通过观察信号波形的变化,可以判断故障是由哪个部件引起的,从而进行修复或更换。
数字示波器的原理和使用方法在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。
常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。
万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。
示波器是一种使用非常广泛,且使用相对复杂的仪器。
本章从使用的角度介绍一下数字示波器的原理和使用方法。
1、数字示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。
它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。
示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。
1(1 示波管阴极射线管(CRT)简称示波管,是示波器的核心。
它将电信号转换为光信号。
正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。
1(荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。
在荧光膜上常又增加一层蒸发铝膜。
高速电子穿过铝膜,撞击荧光粉而发光形成亮点。
铝膜具有内反射作用,有利于提高亮点的辉度。
铝膜还有散热等其他作用。
当电子停止轰击后,亮点不能立即消失而要保留一段时间。
亮点辉度下降到原始值的10,所经过的时间叫做“余辉时间”。
余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0(1s为中余辉,0(1s-1s为长余辉,大于1s为极长余辉。
一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。
由于所用磷光材料不同,荧光屏上能发出不同颜色的光。
一般示波器多采用发绿光的示波管,以保护人的眼睛。
2(电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。
它的作用是发射电子并形成很细的高速电子束。
灯丝通电加热阴极,阴极受热发射电子。
栅极是一个顶部有小孔的金属园筒,套在阴极外面。
由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。
初速度小的电子仍返回阴极。
如果栅极电位过低,则全部电子返回阴极,即管子截止。
调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。
第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。
前加速极G2与A2相连,所加电位比A1高。
G2的正电位对阴极电子奔向荧光屏起加速作用。
电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。
第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。
第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。
A1上的电压叫做聚焦电压,A1又被叫做聚焦极。
有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。
3(偏转系统偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。
图8(1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。
Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。
两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。
4(示波管的电源为使示波管正常工作,对电源供给有一定要求。
规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。
阴极必须工作在负电位上。
栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。
第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。
第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为?50V。
由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。
2 数字示波器使用本节介绍示波器的使用方法。
示波器种类、型号很多,功能也不同。
数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。
这些示波器用法大同小异。
本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。
2.1 荧光屏荧光屏是示波管的显示部分。
屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。
水平方向指示时间,垂直方向指示电压。
水平方向分为10格,垂直方向分为8格,每格又分为5份。
垂直方向标有0,,10,,90,,100,等标志,水平方向标有10,,90,标志,供测直流电平、交流信号幅度、延迟时间等参数使用。
根据被测信号在屏幕上占的格数乘以适当的比例常数(V,DIV,TIME,DIV)能得出电压值与时间值。
2(2 示波管和电源系统1(电源(Power)示波器主电源开关。
当此开关按下时,电源指示灯亮,表示电源接通。
2(辉度(Intensity)旋转此旋钮能改变光点和扫描线的亮度。
观察低频信号时可小些,高频信号时大些。
一般不应太亮,以保护荧光屏。
3(聚焦(Focus)聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。
4(标尺亮度(Illuminance)此旋钮调节荧光屏后面的照明灯亮度。
正常室内光线下,照明灯暗一些好。
室内光线不足的环境中,可适当调亮照明灯。
2(3 垂直偏转因数和水平偏转因数1(垂直偏转因数选择(VOLTS,DIV)和微调在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。
灵敏度的倒数称为偏转因数。
垂直灵敏度的单位是为cm/V,cm,mV或者DIV,mV,DIV,V,垂直偏转因数的单位是V,cm,mV,cm或者V,DIV,mV,DIV。
实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。
踪示波器中每个通道各有一个垂直偏转因数选择波段开关。
一般按1,2,5方式从 5mV,DIV到5V,DIV分为10档。
波段开关指示的值代表荧光屏上垂直方向一格的电压值。
例如波段开关置于1V,DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。
每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。
将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。
逆时针旋转此旋钮,能够微调垂直偏转因数。
垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。
许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。
例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,2V,DIV。
垂直偏转因数是0(在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。
2(时基选择(TIME,DIV)和微调时基选择和微调的使用方法与垂直偏转因数选择和微调类似。
时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。
波段开关的指示值代表光点在水平方向移动一个格的时间值。
例如在1μS,DIV档,光点在屏上移动一格代表时间值1μS。
“微调”旋钮用于时基校准和微调。
沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。
逆时针旋转旋钮,则对时基微调。
旋钮拔出后处于扫描扩展状态。
通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1,10。
例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS×(1/10)=0.2μSTDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。
数字示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。
例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。
数字示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。
旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。
2.4 输入通道和输入耦合选择1(输入通道选择输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。
选择通道1时,示波器仅显示通道1的信号。
选择通道2时,示波器仅显示通道2的信号。
选择双通道时,示波器同时显示通道1信号和通道2信号。
测试信号时,首先要将示波器的地与被测电路的地连接在一起。
根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。
示波器探头上有一双位开关。
此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。
此开关拨到“×10"位置时,被测信号衰减为1,10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。
2(输入耦合方式输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。
当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。
直流耦合用于测定信号直流绝对值和观测极低频信号。
交流耦合用于观测交流和含有直流成分的交流信号。
在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。
2.5 触发第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。
由此可知,正确的触发方式直接影响到示波器的有效操作。
为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。
1(触发源(Source)选择要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。
触发源选择确定触发信号由何处供给。
通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。
内触发使用被测信号作为触发信号,是经常使用的一种触发方式。
由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。
双踪示波器中通道1或者通道2都可以选作触发信号。
电源触发使用交流电源频率信号作为触发信号。
这种方法在测量与交流电源频率有关的信号时是有效的。
特别在测量音频电路、闸流管的低电平交流噪音时更为有效。
外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。