锅炉燃烧控制方案的设计和应用
- 格式:pdf
- 大小:205.19 KB
- 文档页数:3
基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。
锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。
工业过程中对于锅炉燃烧控制系统的要求是非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。
作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在内的参数,参数之间有着复杂的关系,并且相互关联[2]。
而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。
1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。
这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。
因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。
(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国内外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。
在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。
在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。
锅炉控制及PLC应用引言锅炉是一种广泛应用于工业和供暖领域的设备,其控制系统的优化对于提高能源利用效率、确保运行安全具有重要意义。
可编程逻辑控制器(PLC)作为一种自动化控制设备,具有高可靠性、灵活性等特点,在锅炉控制系统中发挥着重要作用。
本文将介绍锅炉控制的基本原理和实现方式,以及PLC在锅炉控制中的应用和优势。
锅炉控制锅炉控制的主要目标是保证蒸汽或热水供应的稳定,同时最大化能源利用效率。
为实现这一目标,锅炉控制系统应包括传感器、执行器和控制器。
1、传感器:用于监测锅炉的关键参数,如压力、温度、液位等。
这些传感器将实时数据传输到控制系统,以便进行相应的调整。
2、执行器:接受控制器的指令,并调节锅炉的各个部件,如燃烧器、泵等。
执行器的类型和数量取决于锅炉的类型和规模。
3、控制器:根据传感器的输入数据进行计算和决策,向执行器发出调节指令,以保证锅炉运行在最佳状态。
控制器可以是简单的继电器逻辑控制,也可以是较复杂的计算机控制系统。
PLC应用PLC作为一种专门为工业控制设计的计算机,具有高可靠性、灵活性和易于维护等特点。
在锅炉控制中应用PLC,可以提高控制系统的可靠性和自动化水平。
1、PLC选型:根据锅炉控制系统的需求,选择适当型号和品牌的PLC。
选型时应考虑PLC的处理能力、输入输出接口数量和类型、编程功能等因素。
2、程序设计:利用PLC编程语言编写控制程序,实现锅炉控制系统的各种功能。
程序应包括数据采集、数据处理、控制算法、输出调节等环节。
3、系统集成:将PLC与锅炉控制系统中的其他设备(如传感器、执行器等)进行连接和调试,确保整个系统能够协调工作。
注意事项使用PLC进行锅炉控制时,应注意以下问题:1、可靠性:PLC是工业控制领域的高可靠性设备,但仍然需要其可靠性。
选择高质量的PLC和可靠的硬件设备,以及进行合理的程序设计,可以确保控制系统的可靠性。
2、安全性:锅炉是一种具有较高风险的设备,因此PLC控制系统的安全性非常重要。
锅炉燃烧器排烟量的控制与优化随着工业发展和生活水平的提高,锅炉作为一种重要的能源转换设备,在各个领域得到了广泛应用。
锅炉燃烧过程中产生的废气排放,特别是烟囱排烟量成为环保问题亟待解决的领域之一。
控制和优化锅炉燃烧器排烟量,成为当前研究的热点之一。
本文将对锅炉燃烧器排烟量的控制与优化进行探讨。
一、锅炉燃烧器排烟量的现状燃烧过程中产生的废气排放是锅炉使用过程中不可避免的环境污染源。
其中,烟囱排烟量是衡量燃烧效率和废气排放的重要指标。
目前,我国在应对大气污染问题方面加强了相关法律法规的制定和执行,规范了烟囱排烟量的要求。
二、控制锅炉燃烧器排烟量的方法1. 调整燃烧器参数通过调整燃烧器的参数,如燃烧器喷嘴的尺寸、喷嘴的喷射角度、调整燃气和空气的比例等,可以达到控制烟囱排烟量的效果。
合理地选择燃烧器参数,可以提高燃烧效率,减少废气排放。
2. 使用优质燃料选择质量好、燃烧性能较高的燃料,可以使燃烧更充分,减少烟囱排烟量。
同时,燃料的选择也需要考虑到环境友好性,尽量避免使用高污染燃料。
3. 优化燃烧风量合理调整燃烧风量,可以使燃烧过程更加稳定,从而减少烟囱排烟量。
燃烧风量的优化可以通过安装风量调节器或通过控制风机的运行来实现。
4. 温度控制合理控制燃烧工艺中的温度,可以提高燃烧效率,减少废气排放。
通过控制燃烧温度,可以使燃烧更充分,减少烟囱排烟量。
三、锅炉燃烧器排烟量优化的挑战与解决1. 技术挑战锅炉燃烧器排烟量优化面临一系列技术挑战。
首先,不同类型的锅炉燃烧器的结构和工作原理各不相同,因此需要根据具体情况制定相应的烟囱排烟量优化方案。
其次,废气排放涉及到燃烧过程中涉及的多个参数,如燃料、燃气与空气的比例、燃烧温度等,需要进行复杂的计算和调整。
2. 环境限制为了减少锅炉燃烧器排烟量,需要合理控制燃烧参数和优化燃烧工艺,但在实际操作中需要考虑到环保要求和排放标准的限制。
因此,烟囱排烟量的控制与优化需要根据不同地区和不同行业的排放标准来确定。
天然气锅炉低氮燃烧改造及应用效果分析赵庆新发布时间:2023-06-30T09:35:58.813Z 来源:《工程管理前沿》2023年8期作者:赵庆新[导读] 实施天然气节能减排转型升级行动计划,制定燃气电厂大气污染物排放标准,燃气电厂要按照要求开展节能降耗工作。
低氮燃烧技术以其技术较为成熟、降低NOx排放效果显着等优点被广泛应用于天然气电厂。
在天然气电厂的实际运行中,虽然锅炉采用低氮燃烧技术降低NOx排放达到环保要求,但随着锅炉负荷和燃烧条件的变化,也出现了一系列新的问题:锅炉加热结焦表面、管壁超温、水冷壁高温腐蚀、热蒸汽温度低、空气预热器进/出口排气压差增大等问题。
身份证号:37142519880120xxxx 摘要:实施天然气节能减排转型升级行动计划,制定燃气电厂大气污染物排放标准,燃气电厂要按照要求开展节能降耗工作。
低氮燃烧技术以其技术较为成熟、降低NOx排放效果显着等优点被广泛应用于天然气电厂。
在天然气电厂的实际运行中,虽然锅炉采用低氮燃烧技术降低NOx排放达到环保要求,但随着锅炉负荷和燃烧条件的变化,也出现了一系列新的问题:锅炉加热结焦表面、管壁超温、水冷壁高温腐蚀、热蒸汽温度低、空气预热器进/出口排气压差增大等问题。
该问题的出现不仅影响锅炉主要燃烧参数的控制,还会使锅炉效率明显降低,严重时甚至威胁到整个机组的安全稳定运行。
关键词:低氮燃烧;天然气锅炉;配风方式;优化引言纯锅炉燃烧,氮氧化物的产生主要分为热力NOx、快速NOx、燃料NOx、中间NOxN2O、NNHNOx五种途径。
由于天然气锅炉的燃料成分比较简单,氮氧化物的形成主要是热力和快速的。
能源大数据报告显示,在我国能源消费结构中,在燃烧过程中应用低氮燃烧技术,可有效减少NOx的产生和排放。
目前我国的能源消费结构很大程度上是以天然气为主,当然天然气燃烧过程中会产生一定量的污染物。
这类污染物对空气质量和人们的正常生活有着非常恶劣的影响,天然气燃烧过程中产生的氮气对环境的影响非常明显,因此本文将探讨如何在燃烧过程中控制氮氧化物的形成。
锅炉燃烧过程控制系统仿真一、燃烧过程控制系统的基本理论燃油锅炉的燃烧控制主要有三个子系统构成:蒸汽压力控制系统、燃料空气比值控制系统和炉膛负压控制系统。
1.蒸汽压力控制和燃料空气比值控制系统燃油蒸汽锅炉燃烧的目的是生产蒸汽供应其他生产环节使用。
一般生产过程中蒸汽的控制是通过压力实现的,随着后续环节的生产用量不同,反应在燃油蒸汽锅炉环节就是蒸汽压的波动。
维持蒸汽压力恒定是保证生产正常进行的首要条件。
保证蒸汽压力恒定的主要手段是随着蒸汽压力波动及时调节燃烧产生的热量,而燃烧产生热量的调节是通过控制所供应的燃料量以及适当比例的助燃空气实现的。
如图1所示燃烧炉蒸汽压力控制与燃料比值控制系统2.炉膛负压控制系统锅炉炉膛负压力过小时,炉膛内的热烟、热气会外溢,造成热量损失、影响设备安全运行甚至会危及工作人员安全;当炉膛负压太大时,会使外部大量冷空气进入炉膛,改变燃料和空气比值,增加燃料损失、热量损失和降低热效率。
保证炉膛负压的措施是引风量和送风量的平衡。
如果负压波动不大,调节引风量即可实现负压控制;当蒸汽压力波动较大时,燃料用量和送风量波动也会较大,此时,经常采用的控制方案如图2所示。
炉膛负压控制系统3、控制方案:某锅炉燃烧系统要求对系统进行蒸汽压力控制。
本项目采用燃烧炉蒸汽压力控制和姗料空气比值控制系统,并辅以炉膛负压控制的方案,控制系统框图如图所示。
二、燃烧过程控制任务燃烧过程自动调节系统的选择虽然与燃料的种类和供给系统、燃烧方式以及锅炉与负荷的联接方式都有关系,但是燃烧过程自动调节的任务都是一样的。
归纳起来,燃烧过程调节系统有三大任务。
第一个任务是维持汽压恒定。
汽压的变化表示锅炉蒸汽量和负荷的耗汽量不相适应,必须相应地改变燃料量,以改变锅炉的蒸汽量。
第二个任务是保证燃烧过程的经济性。
当燃料量改变时,必须相应地调节送风量,使它与燃料量相配合,保证燃烧过程有较高的经济性。
第三个任务是调节引风量与送风量相配合,以保证炉膛压力不变。
燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。
目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。
燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和安全燃烧。
如图1所示。
图1 燃烧控制系统结构图2、控制方案锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。
一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相协调,才能可靠工作。
对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在最佳燃烧状态。
同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。
2.1 控制系统总体框架设计燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。
将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要最大限度的实施燃烧优化控制。
控制系统的总体框架如图2所示。
图2 单元机组燃烧过程控制原理图P为机组负荷热量信号为D+dPbdt。
控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。
主蒸汽压力控制系统采用常规串级PID控制结构。
2.2 燃料量控制系统当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。
燃料量控制是锅炉控制中最基本也是最主要的一个系统。
因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。
智能锅炉控制系统的设计与实现随着科技的发展和人们生活水平的提高,家居设备的智能化成为了一种趋势。
在众多的智能家居设备中,智能锅炉是一种比较受欢迎的设备。
它可以通过智能控制系统实现远程控制、节能、安全等多种功能。
本文将介绍智能锅炉控制系统的设计与实现。
一、控制系统结构一个智能锅炉控制系统主要由以下部分组成:1.硬件部分:包括传感器、执行器、控制器、显示器等硬件设备。
2.软件部分:主要由控制算法和界面设计组成,控制算法是程序员根据控制需求编写的程序,界面设计则用于方便用户操作和管理。
3.远程通信组件:包括网络通信硬件和软件,实现远程控制和监控等功能。
二、传感器与执行器的选择为了实现智能控制,必须使用传感器来获取锅炉的状态信息,并使用执行器来控制锅炉的运行状态。
在传感器的选择上,应该选择具有高精度、快速响应、耐高温等优点的传感器。
例如,温度传感器应该选用高精度、线性度好、响应速度快、温度范围广的PTC热敏电阻或热电偶传感器。
在执行器的选择上,应该选择具有高精度、稳定可靠性、结构紧凑、响应速度快等优点的执行器。
三、控制器的设计与实现控制器是智能锅炉控制系统的核心,它主要完成控制算法的实现和与硬件设备的通讯。
控制器可以采用嵌入式控制系统、单片机、FPGA等硬件以及VC、VB、C++等软件开发工具进行设计和实现。
在控制方案的设计实现时,要结合锅炉的物理特性和工作状态,运用现代控制理论设计PID算法、模糊控制算法、神经网络控制算法等多种控制算法。
四、界面设计与人机交互一个好的界面设计可以让用户方便快捷地进行操作和管理。
界面设计可以采用电脑、手机APP、微信等多种形态,主要通过图形化的方式将控制参数和系统状态进行直观化显示。
在人机交互方面,可以使用语音、手势等更加便利的交互方式,以提高用户的操作效率和便利性。
五、远程通信组件的设计与实现远程通信组件是实现远程控制的关键,它主要通过网络实现用户对锅炉的远程控制和监控。
锅炉燃烧器智能化改造方案1. 简介该文档旨在提出一种锅炉燃烧器智能化改造方案,以改善锅炉系统的能效和操作效率。
通过引入智能控制和监测技术,可以实现对燃烧过程的精确控制和监测,从而提高燃烧效率、降低燃料消耗和减少环境污染。
2. 改造方案在进行锅炉燃烧器的智能化改造时,可以考虑以下方面:2.1 引入智能控制系统通过引入智能控制系统,可以实现对燃烧过程的自动化控制。
该系统可以根据燃料特性、燃烧器状态和环境变化等信息,自动调节燃烧器的供气量、供油量和点火时间,以实现最佳的燃烧效果。
智能控制系统还可以实时监测锅炉运行状态,并提供故障诊断和报警功能,提高系统的可靠性和安全性。
2.2 引入智能监测设备通过引入智能监测设备,可以对锅炉燃烧过程进行实时监测和分析。
这些设备可以测量燃料供应量、燃烧温度、排烟温度和废气排放等参数,并将数据传输到监控中心或云服务器进行分析和处理。
通过对监测数据的分析,可以及时发现燃烧问题,并采取相应的措施进行调整和修正,提高燃烧效率和环境友好性。
2.3 建立智能化管理平台建立智能化管理平台,可以对锅炉燃烧器的运行进行集中化管理和调度。
该平台可以实现对多台锅炉的统一监控、故障诊断和运行参数设置,提高管理的便捷性和效率。
智能化管理平台还可以与供应商和维修人员进行联动,实现对设备的远程维护和故障排除,降低运维成本和停机时间。
3. 优势和收益通过锅炉燃烧器的智能化改造,可以获得以下优势和收益:- 提高燃烧效率,降低燃料消耗;- 减少燃烧过程中的废气排放,降低环境污染;- 实现燃烧过程的自动化控制,提高操作效率;- 提供故障诊断和报警功能,增强设备的可靠性和安全性;- 实时监测和分析燃烧过程数据,及时发现问题并采取措施调整;- 集中化管理和调度锅炉燃烧器,提高管理效率。
4. 实施计划在实施锅炉燃烧器智能化改造方案时,可以按照以下计划进行:1. 确定改造需求和目标;2. 寻找合适的供应商和智能化设备;3. 进行现有锅炉燃烧器的评估和准备工作;4. 进行智能控制系统和监测设备的安装和调试;5. 建立智能化管理平台并进行测试;6. 进行系统的功能验证和优化;7. 完成培训和技术交接工作;8. 进行改造结果的监测和评估。
燃气锅炉优化控制方案概述本文档旨在提出一种燃气锅炉优化控制方案,以提高燃气锅炉的热效率和运行稳定性。
该方案基于先进的控制算法和传感器技术,通过实时监测、数据分析和自动调节,实现对燃气锅炉的精确控制。
背景燃气锅炉是工业和民用领域最常见的供暖设备之一。
然而,目前许多燃气锅炉在运行效率和控制精度方面存在一定的问题。
为了提高能源利用效率和减少对环境的影响,燃气锅炉的优化控制方案变得尤为重要。
方案设计传感器技术为了实现对燃气锅炉的精确控制,需要借助先进的传感器技术。
以下是一些常用的传感器:1.温度传感器:用于监测燃气锅炉的进水温度、出水温度和燃烧室温度。
2.压力传感器:用于测量燃气锅炉系统的压力变化。
3.流量传感器:用于监测燃气、水和空气的流量。
4.氧气传感器:用于检测燃气锅炉的燃烧效果和氧气浓度。
以上传感器将实时采集燃气锅炉的关键参数,为后续的数据分析和控制提供支持。
数据分析与建模采集到的传感器数据将通过数据分析和建模来获取燃气锅炉的性能指标,并为后续的优化控制提供依据。
常见的数据分析与建模方法包括:1.数据预处理:对采集到的数据进行去噪、修复和归一化等处理,以提高后续分析的准确性。
2.特征提取:通过提取数据中的特征,如均值、方差、峰值等,构建燃气锅炉的性能模型。
3.建模方法:根据实际情况选择合适的建模方法,如统计模型、神经网络模型或混合模型等。
4.模型验证与优化:通过验证建立的模型,并根据实际情况进行模型的优化和调整。
控制算法基于建立的燃气锅炉性能模型,可以设计优化控制算法。
以下是几种常见的控制算法:1.PID控制:基于比例、积分和微分控制的经典算法,用于实现对燃气锅炉的温度、压力和流量等参数的闭环控制。
2.模糊控制:基于模糊逻辑的控制算法,可以通过人工设定规则来响应不同的工况和运行状态。
3.预测控制:基于模型预测的控制算法,通过对未来状态的预测来实现对燃气锅炉的优化控制。
这些控制算法将根据实时的传感器数据和燃气锅炉的性能模型,动态地调节燃气锅炉的操作参数,以实现能源的有效利用和运行的稳定性。
电站锅炉燃烧优化技术的应用与发展刘继伟,曾德良,刘吉臻,谢谢华北电力大学,保定,中国,102206n_yg@【摘要】燃烧优化技术是实现电站锅炉高效燃烧和污染物控制的最经济、最有效的方法之一,电厂对燃烧优化技术的需求日益紧迫。
随着科技的发展,各国专家学者对燃烧优化的研究也日益深入。
本文在总结了燃烧优化的目的、必要性和可行性的基础上,对多年来国内外燃烧优化技术的研究成果及产品做了较为全面的介绍和评价,并分析了各个优化系统和方案存在的问题。
此外,检测技术的进步也会对燃烧优化产生深远的影响,文末介绍了三种新型的检测方法。
【关键词】电站锅炉燃烧优化人工智能软测量检测技术1前言社会的发展和进步,火电厂面临越来越大的压力。
电力需求不断增加,发电品质要求日益苛刻,传统的电压、频率已不是唯一的考核指标,环境因素逐渐纳入其中,形成了新的衡量标准;煤价上涨,煤质波动,以及大型机组日益频繁的参加调频调峰,全工况变负荷运行以及长期中低负荷运行,都对机组运行水平提出了更高的要求。
目前,发电厂越来越多的面临来自电网、环境和自身的压力,节能、降耗、减排的呼声高涨,燃烧优化技术日益得到重视。
燃烧优化,是指在机组安全运行的基础上,提高机组运行效率,达到节能的目的,同时,在保证机组安全、经济运行的基础上,控制和降低污染物排放,达到环保的目的。
这是一个很广泛的领域,任何与燃烧相关的参数检测、设备改造、控制逻辑的改进等,都可以称作燃烧优化[1]。
目前,考虑我国的国情以及电厂的实际情况,燃烧优化的大规模实施已经具备了条件:DCS的普及以及控制系统改造,机组可控性大大提高,使其可以很好的完成优化决策层下达的控制任务;新型测量仪表进入实用阶段,为锅炉运行能性能的在线分析、建模提供了精确的反馈量;人工智能、预测控制等先进算法实用化,为燃烧优化提供了大量有效的工具。
2 机组燃烧优化技术研究从图1可以看出,燃烧优化的诸多目标经常是相互冲突、非线性的,情况复杂多变。
(完整版)锅炉燃烧系统的控制系统设计⽬录1锅炉⼯艺简介 (1)1.1锅炉的基本结构 (1)1.2⼯艺流程 (2)1.2煤粉制备常⽤系统 (3)2 锅炉燃烧控制 (4)2.1燃烧控制系统简介 (4)2.2燃料控制 (4)2.2.1燃料燃烧的调整 (4)2.2.2燃烧调节的⽬的 (5)2.2.3直吹式制粉系统锅炉的燃料量的调节 (5)2.2.4影响炉内燃烧的因素 (6)2.3锅炉燃烧的控制要求 (11)2.3.1 锅炉汽压的调整 (11)3锅炉燃烧控制系统设计 (14)3.1锅炉燃烧系统蒸汽压⼒控制 (14)3.1.1该⽅案采⽤串级控制来完成对锅炉蒸汽压⼒的控制 (14)3.2燃烧过程中烟⽓氧含量闭环控制 (17)3.2.1 锅炉的热效率 (18)3.2.2反作⽤及控制阀的开闭形式选择 (20)3.2.3 控制系统参数整定 (20)3.3炉膛的负压控制与有关安全保护保护系统 (21)3.3.1炉膛负压控制系统 (22)3.3.2防⽌回⽕的连锁控制系统 (23)3.3.3防⽌脱⽕的选择控制系统 (24)3.4控制系统单元元件的选择(选型) (24)3.4.1蒸汽压⼒变送器选择 (24)3.4.2 燃料流量变送器的选⽤ (24)4 DCS控制系统控制锅炉燃烧 (26)4.1DCS集散控制系统 (26)4.2基本构成 (27)锅炉燃烧系统的控制4.3锅炉⾃动燃烧控制系统 (31)总结 (33)致谢 (34)参考⽂献 (35)1锅炉⼯艺简介1.1锅炉的基本结构锅炉整体的结构包括锅炉本体和辅助设备两⼤部分。
1、锅炉本体锅炉中的炉膛、锅筒、燃烧器、⽔冷壁、过热器、省煤器、空⽓预热器、构架和炉墙等主要部件构成⽣产蒸汽的核⼼部分,称为锅炉本体。
锅炉本体中两个最主要的部件是炉膛和锅筒。
炉膛⼜称燃烧室,是供燃料燃烧的空间。
将固体燃料放在炉排上进⾏⽕床燃烧的炉膛称为层燃炉,⼜称⽕床炉;将液体、⽓体或磨成粉状的固体燃料喷⼊⽕室燃烧的炉膛称为室燃炉,⼜称⽕室炉;空⽓将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,⼜称流化床炉;利⽤空⽓流使煤粒⾼速旋转并强烈⽕烧的圆筒形炉膛称为旋风炉。