《第七章玻耳兹曼统计》(期末复习资料)
- 格式:doc
- 大小:250.15 KB
- 文档页数:8
《第七章 玻耳兹曼统计》小结一、基本概念: 1、1>>αe 的非定域系及定域系遵守玻耳兹曼统计。
2、经典极限条件的几种表示:1>>αe ;12232>>⎪⎭⎫ ⎝⎛⋅h m kT NVπ;m kTh N V π231>>⋅⎪⎭⎫⎝⎛;()λ>>⋅31n3、热力学第一定律的统计解释:Q d W d dU +=l ll l ll da d a dU ∑∑+=εεl ll d a W d ε∑=l ll da Q d ∑=ε即:从统计热力学观点看,做功:通过改变粒子能量引起内能变化;传热:通过改变粒子分布引起内能变化。
二、相关公式1、非定域系及定域系的最概然分布l e a l l βεαω--=2、配分函数:量子体系:∑-=ll leβεω1Z∑---==ll l l l ll le e e a βεβεβεωωωNZ N 1半经典体系:()rrr p q r h dp dp dp dq dq dq eh d e l2121,1Z ⎰⎰⎰==-βεβεω 经典体系:()r rr p q r hdp dp dp dq dq dq e h d e l2121,01Z ⎰⎰⎰==-βεβεω 3、热力学公式(热力学函数的统计表达式) 内能:β∂∂=1lnZ -NU物态方程:VlnZ N1∂∂=βp定域系:自由能:1-NkTlnZ F = 熵:B M k .ln S Ω=或⎪⎪⎭⎫ ⎝⎛∂∂-=ββ11lnZ ln Nk S Z1>>αe 的非定域系(经典极限条件的玻色(费米)系统): 自由能:!ln -NkTlnZ F 1N kT += 熵:!ln kln S .N k BM Ω=Ω=或!ln lnZ ln Nk S 11N k Z -⎪⎪⎭⎫⎝⎛∂∂-=ββ三、应用: 1、求能量均分定理①求平均的方法要掌握:()dx x xp ⎰=x②能量均分定理的内容---能量均分定理的应用:理想气体、固体、辐射场。
第七章玻耳兹曼统计7.1据公式l l lp a V ε∂=-∂∑证明,对于非相对论粒子()222221222xy z p n n n m m L πε⎛⎫==++ ⎪⎝⎭h 有23U p V =。
解:边长L 的立方体中,粒子能量本征值:()2222122x y zn n n x y z n n n m L πε⎛⎫=++ ⎪⎝⎭h ,简记为23l aV ε-= 其中3V L =是系统体积,常量()()222222xy z a nn n mπ=++h ,并以指标l 代表,,x y z n n n 三个量子数。
从而得:5132233l l aV V V εε--∂=-=-∂,代入压强公式,有21233l l l l ll Up a a V V V εε∂=-==∂∑∑。
7.2试根据公式l l lp a V ε∂=-∂∑证明,对于相对论粒子()122222xyzcp cnn nL πε==++,有13Up V=。
解:边长为L 的立方体中,极端相对论粒子的能量本征值为:()122222x y zn n nxyzcnn nLπε=++ 用指标l 表示量子数,,,x y z n n n V 表示系统的体积3V L =,可将上式简记为13l aV ε-=其中:()122222.xyza c n n nπ=++由此4311.33l l aV V V εε-∂=-=-∂代入压强1.33l l l l ll U p a a V V V εε∂=-==∂∑∑ 7.3选择不同的能量零点,粒子第l 个能级的能量可以取为l ε或*l ε。
以∆表示二者之差,*.l l εε∆=-试证明相应配分函数存在关系*11Z e Z β-∆=,并讨论由配分函数1Z 和*1Z 求得的热力学函数有何差别. 解:当选择不同的能量零点时,粒子能级的能量可以取为l ε或*.l l εε=+∆配分函数()**11l l l l l l lllZ e ee e e Z βεβεβεββωωω-+∆---∆-∆====∑∑∑,故*11ln ln .Z Z β=-∆根据内能的统计表达式:1ln U NZ β∂=-∂,容易证明*,U U N =+∆ 根据压强的统计表达式:1ln N p Z Vβ∂=∂,容易证明*,p p =根据熵统计表达式:11ln ln S Nk Z Z ββ⎛⎫∂=- ⎪∂⎝⎭,容易证明*,S S =其他热力学函数请自行考虑。
第七章 玻耳兹曼统计7.1 试根据公式lllp a Vε∂=-∂∑证明,对于非相对论粒子 ()222221222x y z p n n n m m L πε⎛⎫==++ ⎪⎝⎭, (),,0,1,2,,x y z n n n =±±有2.3U p V=上述结论对于玻耳兹曼分布、玻色分布和费米分布都成立. 解: 处在边长为L 的立方体中,非相对论粒子的能量本征值为()2222122x y zn n n x y z n n n m L πε⎛⎫=++ ⎪⎝⎭, (),,0,1,2,,x y z n n n =±± (1)为书写简便起见,我们将上式简记为23,l aV ε-= (2)其中3V L =是系统的体积,常量()()222222xy z a nn n mπ=++,并以单一指标l代表,,x y z n n n 三个量子数. 由式(2)可得511322.33aV V Vεε-∂=-=-∂ (3) 代入压强公式,有22,33l ll l llUp a a V VVεε∂=-==∂∑∑ (4) 式中l l lU a ε=∑是系统的内能.上述证明示涉及分布{}l a 的具体表达式,因此式(4)对玻耳兹曼分布、玻色分布和费米分布都成立.前面我们利用粒子能量本征值对体积V 的依赖关系直接求得了系统的压强与内能的关系. 式(4)也可以用其他方法证明. 例如,按照统计物理的一般程序,在求得玻耳兹曼系统的配分函数或玻色(费米)系统的巨配分函数后,根据热力学量的统计表达式可以求得系统的压强和内能,比较二者也可证明式(4).见式(7.2.5)和式(7.5.5)及王竹溪《统计物理学导论》§6.2式(8)和§6.5式(8). 将位力定理用于理想气体也可直接证明式(4),见第九章补充题2式(6). 需要强调,式(4)只适用于粒子仅有平衡运动的情形. 如果粒子还有其他的自由度,式(4)中的U 仅指平动内能.7.2 试根据公式lllp a Vε∂=-∂∑证明,对于相对论粒子 ()122222xyzcp cnn nLπε==++, (),,0,1,2,,x y z n n n =±±有1.3Up V=上述结论对于玻耳兹曼分布、玻色分布和费米分布都成立.解: 处在边长为L 的立方体中,极端相对论粒子的能量本征值为()122222x y zn n nxyzcnn nLπε=++ (),,0,1,2,,x y z n n n =±± (1)用指标l 表示量子数,,,x y z n n n V 表示系统的体积,3V L =,可将上式简记为13,l aV ε-= (2)其中()122222.xyza c n n nπ=++由此可得4311.33l l aV V Vεε-∂=-=-∂ (3) 代入压强公式,得1.33l ll l ll Up a a V V Vεε∂=-==∂∑∑ (4) 本题与7.1题结果的差异来自能量本征值与体积V 函数关系的不同. 式(4)对玻耳兹曼分布、玻色分布和费米分布都适用.7.3 当选择不同的能量零点时,粒子第l 个能级的能量可以取为l ε或*.l ε以∆表示二者之差,*.l l εε∆=-试证明相应配分函数存在以下关系*11Z e Z β-∆=,并讨论由配分函数1Z 和*1Z 求得的热力学函数有何差别. 解: 当选择不同的能量零点时,粒子能级的能量可以取为l ε或*.l l εε=+∆显然能级的简并度不受能量零点选择的影响. 相应的配分函数分别为1,l l lZ e βεω-=∑ (1)**1l ll ll lZ eeeβεβεβωω---∆==∑∑1,e Z β-∆= (2)故*11ln ln .Z Z β=-∆ (3)根据内能、压强和熵的统计表达式(7.1.4),(7.1.7)和(7.1.13),容易证明*,U U N =+∆ (4) *,p p = (5)*,S S = (6)式中N 是系统的粒子数. 能量零点相差为∆时,内能相差N ∆是显然的. 式(5)和式(6)表明,压强和熵不因能量零点的选择而异. 其他热力学函数请读者自行考虑. 值得注意的是,由式(7.1.3)知*,ααβ=-∆所以l l l a e αβεω--=与***l l l a e αβεω--=是相同的. 粒子数的最概然分布不因能量零点的选择而异. 在分析实际问题时可以视方便选择能量的零点.7.4 试证明,对于遵从玻耳兹曼分布的定域系统,熵函数可以表示为ln ,s s sS Nk P P =-∑式中s P 是粒子处在量子态s 的概率,1,s ss e e P N Z αβεβε---==s∑是对粒子的所有量子态求和.对于满足经典极限条件的非定域系统,熵的表达式有何不同? 解: 根据式(6.6.9),处在能量为s ε的量子态s 上的平均粒子数为.s s f e αβε--= (1) 以N 表示系统的粒子数,粒子处在量子态s 上的概率为1.s ss e e P N Z αβεβε---== (2)显然,s P 满足归一化条件1,s sP =∑ (3)式中s∑是对粒子的所有可能的量子态求和. 粒子的平均能量可以表示为.s s sE P ε=∑ (4)根据式(7.1.13),定域系统的熵为()()1111ln ln ln ln s s sS Nk Z Z Nk Z Nk P Z βββεβε⎛⎫∂=- ⎪∂⎝⎭=+=+∑ln .s s sNk P P =-∑ (5)最后一步用了式(2),即1ln ln .s s P Z βε=-- (6)式(5)的熵表达式是颇具启发性的. 熵是广延量,具有相加性. 式(5)意味着一个粒子的熵等于ln .s s sk P P -∑ 它取决于粒子处在各个可能状态的概率s P . 如果粒子肯定处在某个状态r ,即s sr P δ=,粒子的熵等于零. 反之,当粒子可能处在多个微观状态时,粒子的熵大于零. 这与熵是无序度的量度的理解自然是一致的. 如果换一个角度考虑,粒子的状态完全确定意味着我们对它有完全的信息,粒子以一定的概率处在各个可能的微观状态意味着我们对它缺乏完全的信息. 所以,也可以将熵理解为信息缺乏的量度. 第九章补充题5还将证明,在正则系综理论中熵也有类似的表达式. 沙农(Shannon )在更普遍的意义上引进了信息熵的概念,成为通信理论的出发点. 甄尼斯(Jaynes )提出将熵当作统计力学的基本假设,请参看第九章补充题5.对于满足经典极限条件的非定域系统,式(7.1.13′)给出11ln ln ln !,S Nk Z Z k N ββ⎛⎫∂=-- ⎪∂⎝⎭上式可表为0ln ,s s sS Nk P P S =-+∑ (7)其中()0ln !ln 1.S k N Nk N =-=--因为,s s f NP =将式(7)用s f 表出,并注意,ssfN =∑可得ln .s s sS k f f Nk =-+∑ (8)这是满足玻耳兹曼分布的非定域系统的熵的一个表达式. 请与习题8.2的结果比较.7.5 因体含有A ,B 两种原子. 试证明由于原子在晶体格点的随机分布引起的混合熵为()()()()!ln!1!ln 1ln 1,N S k Nx N x Nk x x x x =-⎡⎤⎣⎦=-+--⎡⎤⎣⎦其中N 是总原子数,x 是A 原子的百分比,1x -是B 原子的百分比. 注意1x <,上式给出的熵为正值.解: 玻耳兹曼关系给出物质系统某个宏观状态的熵与相应微观状态数Ω的关系:ln .S k Ω= (1)对于单一化学成分的固体(含某种元素或严格配比的化合物),Ω来自晶格振动导致的各种微观状态. 对于含有A ,B 两种原子的固体,则还存在由于两种原子在晶体格点上的随机分布所导致的Ω。
《第七章 玻耳兹曼统计》(期末复习)、热力学第一定律的统计解释:比较可知: 即:从统计热力学观点看, 做功:通过改变粒子能级引起内能变化;传热:通过改变粒子分布引起内能变化、相关公式 1、非定域系及定域系的最概然分布ai2、配分函数:3、热力学公式(热力学函数的统计表达式)内能:U 曲竽 物态方程:定域系:自由能:—熵®k"B 或s = Nk (inZ 」詈]dU =6W dQU 八 a i ;i 二 dUdQ - ';i da iI 量子体系:乙八代八I半经典体系:Z-'td-... e 1;q,pdq i dq 2 dq 「dp i dp 2 dp r1-厂h r应用:a i乙二 NI-—i^J经典体系: 乙二e_打 土 = ... e 1;q,P dqgdq r dpg dp「 齐h1、用玻耳兹曼分布推导单原子分子的理想气体物态方程并 说明所推导的物态方程对多原子分子的理想气体也适用。
2、能量均分定理 ① 能量均分定理的内容 ② 能量均分定理的应用:A 、 熟练掌握用能量均分定理求理想气体(单原子分子,多 原子分子)内能、热容量。
知道与实验结果的一致性及存在 的问题。
B 、 知道经典的固体模型,熟练掌握用能量均分定理求经典 固体的内能及定容热容量。
知道与实验结果的一致性及存在 的问题。
3、定域系的量子统计理论:①、爱因斯坦固体模型;②、熟练掌握用量子统计理论求爱因斯坦固体的内能及其热容 量;③、知道爱因斯坦固体模型成功之处及其不足和原因。
四、应熟练掌握的有关计算 1、求配分函数Z i 进而求系统的热力学性质 2、用S 二kln"的证明及相关应用 四、解题指导例1 :根据公式p = - | a*电=cp =(n XX +n : +n ;)1/2 , n * =n 厂 n z =0,±1,二2,…1、求广义力的基本公式丫八a i 」的应用;i:yT ,证明:对于极端相对论粒子,s sIi AiA I一V _ 3V 4/3 _ 3V V 1/3 _ 3V论对玻尔兹曼、玻色、费米分布均存立。
《第七章 玻耳兹曼统计》(期末复习)一、热力学第一定律的统计解释:Q d W d dU +=l ll l ll ll da d a dU a U ∑∑∑+=⇒=εεε比较可知:l ll d a W d ε∑=l ll da Q d ∑=ε即:从统计热力学观点看,做功:通过改变粒子能级引起内能变化; 传热:通过改变粒子分布引起内能变化 二、相关公式1、非定域系及定域系的最概然分布le a l l βεαω--=2、配分函数: 量子体系:∑-=ll leβεω1Z∑---==ll l l l ll le e e a βεβεβεωωωNZ N 1半经典体系:()rrr p q r h dp dp dp dq dq dq e h d e lΛΛΛ2121,1Z ⎰⎰⎰==-βεβεω经典体系:()rr r p q r h dp dp dp dq dq dq e h d e l02121,01Z ΛΛΛ⎰⎰⎰==-βεβεω3、热力学公式(热力学函数的统计表达式) 内能:β∂∂=1lnZ -N U物态方程:VlnZ N 1∂∂=βp定域系:自由能:1-NkTlnZ F = 熵:B M k .ln S Ω=或⎪⎪⎭⎫ ⎝⎛∂∂-=ββ11lnZ ln Nk S Z三、应用:1、用玻耳兹曼分布推导单原子分子的理想气体物态方程并说明所推导的物态方程对多原子分子的理想气体也适用。
2、能量均分定理 ①能量均分定理的内容 ②能量均分定理的应用:A 、熟练掌握用能量均分定理求理想气体(单原子分子,多原子分子)内能、热容量。
知道与实验结果的一致性及存在的问题。
B 、知道经典的固体模型,熟练掌握用能量均分定理求经典固体的内能及定容热容量。
知道与实验结果的一致性及存在的问题。
3、定域系的量子统计理论: ①、爱因斯坦固体模型;②、熟练掌握用量子统计理论求爱因斯坦固体的内能及其热容量;③、知道爱因斯坦固体模型成功之处及其不足和原因。
四、应熟练掌握的有关计算1、求配分函数1Z 进而求系统的热力学性质2、用Ω=kln S 的证明及相关应用 四、解题指导1、求广义力的基本公式∑∂∂=ll l ya εY 的应用;例1:根据公式Va p l ll∂∂-=∑ε,证明:对于极端相对论粒子,2/1222)(2z y X n n n Lc cp ++==ηπε ,Λ,2,1,0±±===z y x n n n有VU p 31=。
上述结论对玻尔兹曼、玻色、费米分布均存立。
证明:令2/12222)(2n n n c c A y X l++=ηπ,3V AL A l l l ''==ε,因此得到VV A V V A V l ll l 331313/13/4εε-=-=-=∂∂压强∑∑=∂∂-=lll l lla VV a p εε31因内能∑=l l a U ε,所以VU p 3=。
证毕由于在求证过程中,并未涉及分布l a 的具体形式,故上述结论对玻尔兹曼、玻色、费米分布均存立。
2、熵的统计表达式及玻耳兹曼关系的应用例2试证明,对于遵从玻尔兹曼分布的系统,熵函数可以表示为∑-=sPs Ps Nk S ln式中P s 是总粒子处于量子态s 的概率,1Z e N e N a P ss s s βεβεα---===,∑s对粒子的所有量子态求和。
对于满足经典极限条件的非定域系统,熵的表达式有何不同? 证明:对于定域系证法(1):()∑∑∑∑∑∑∑∑∑∑-=---=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=ss SS S s S S S s s s S S s s s S S S S S S PsPs Nk Z P P Z P N a Z P a N Z P U N Z P N N Z P Z ln ln Nk ln Nk ln Nk ln Nk ln Nk lnZ ln Nk lnZ ln Nk S 111111111βεεβεβεββββββ证法(2):对于满足玻耳兹曼分布的定域系∏∏=Ωla lll la ω!N!llll l ll ll ll l l ll ll a a N a a a a N N N a a N ωωωlnln N ln ln ln ln !ln !ln ln ∑∑∑∑∑∑-=++--=+-=Ωs s s ss s ss ss llll ll a NaN N N a N a a N a a a N a ln ln ln ln lnln ∑∑∑∑∑∑-=-=-=ω S sS s s s s ss P P N N a N a N a NN a N ln ln ln ∑∑∑-=-== 故:∑-=Ω=sPs Ps Nk kT S ln ln讨论:对满足对1>>αe 的非定域系011S ln !ln ln !ln lnZ ln Nk S +-=--=-⎪⎪⎭⎫ ⎝⎛∂∂-=∑∑s s Ps Ps Nk N k Ps Ps Nk N k Z ββ 或0M.B ln !ln ln kln S S P P Nk N k k S S +-=-Ω=Ω=∑例3:对如图所示的夫伦克尔缺陷,(1)假定正常位置和填隙位置数均为N ,证明:由N 个原子构成的晶体,在晶体中形成n 个缺位和填隙原子而具有的熵等于!!!)(ln2n N n N k S -=(2) 设原子在填隙位置和正常位置的能量差为u ,试由自由能TS nu F -=为极小证明在温度为T 时,缺位和填隙原子数为kT u Ne n 2/-≈ (设N n <<)证明:(1)当形成缺陷时,出现几个缺陷的各种占据方式就对应不同的微观状态,N 个正常位置出现n 个空位的可能方式数为!!!)(/n N n N -,同样离开正常位置的n 个原子去占据N 个间隙位置的方式数也为!!!)(/n N n N -,从而形成n 个空位并有n 个间隙位置为n 个原子占据的方式数即微观态数[]2)(/!!!n N n N -=Ω ,由此求得熵!!!)(ln2n N n N k kIn S -=Ω=(2)系统的自由能TS nu F -=,取无缺陷时的晶体自由能为零时,平衡态时系统的自由能为极小。
将自由能F 对缺陷数n 求一阶导数并令其为零,求得缺位和填隙原子数为kT u Ne n 2/-≈ (设N n <<)3、求配分函数,确定体系热力学性质 例4:已知粒子遵从玻尔兹曼分布,能量表示式为bx ax p p p mz y x ++++=2222)(21ε其中,b a 、为常数,求粒子的平均能量。
解:方法一:由配分函数求z y x bx ax p p p mzy x dp dp dxdydzdp e hh dp dp dxdydzdp eZ z y x ⎰⎰⎰⎰--++--==ββββε2222)(23311ΛΛdx e e m h A dx em h A x a b x a a b bxax ⎰⎰∞+∞-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--∞+∞---⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=22222423323322ββββπβπββββββπβπβπab a b x a b x a ab e B a e m h A dx ee m h A 42423324233222222---∞+∞-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--=⋅⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=⎰ββa b B Z 4ln 2ln ln 21--=∴ab kT a b Z 4242ln 221-=-=∂∂-=ββε方法二 由玻尔兹曼分布公式求由玻尔兹曼分布,粒子坐标在dxdydz ,动量在z y x dp dp dp 范围的概率为311h dp dp dxdydzdp eZ dW z y x βε-= ,31h dp dp dxdydzdp eZ zy x ⎰-=βε由此求得一个粒子平均能量⎰=dWεε,积分范围为:+∞<<-∞∈z y x p p p V z y x ,,;,,将ε代入积分,利用Γ函数,最后得到ab kT 422-=ε方法三 用能量均分定理求bx ax p p p mz y x ++++=2222)(21εab a b x a p p p m z y x 4)2()(2122222-++++= 能量表示式中,按照能量均分定律,每一平方项的平均值为kT 21,在上式中,对变量的平方项有4项,于是a b a b x a p p p m z y x 4)2()(2122222-++++=εab kT 422-=例5、试求双原子分子理想气体的振动熵解:双原子分子原子间的振动在温度不太高时可视为简谐振动,振动能量为Λ2,1,0)21(=+=n h n n νε ⑴单个分子的振动配分函数υβνββεh h n e e eZ n--∞=--==∑12/01)1ln(21ln 1νβνβh e h Z ----= ⑵双原子分子理想气体的振动熵]ln [ln 11ββ∂∂-=Z Z Nk S )]1ln()1/([νβνβνβh h e e h Nk ----=令hv T v βθ=/为振动特征温度,则上式写为)]1ln(1)/ex p(1[/T v v ve T T Nk S θθθ----= ⑶例6、试求爱因斯坦固体的熵。
解:据爱因斯坦模型,理想固体中原子的热运动可以视为3N 个独立谐振子的振动,且各振子频率都相同并设为常数ω。
固体中一个振子能量为:Λη210,)21(、、=+=l n n ωε一个振子配分函数ωβωββεηη--∞=--==∑e e eZ n n12/01固体中共3 N 个谐振子,由此得到固体的熵]ln [ln 311ββ∂∂-=Z Z Nk S )]1ln(1[3ωβωβωβηηη----=e e Nk 例7、定域系统含有N 个近独立粒子,每个粒子有两个非简并能级21εε和,求温度为T 的热平衡态下系统的内能和熵,在高、低温极限下将结果化简,并加解释。
解:1个粒子的配分函数为]1[)(112121εεββεβεβε-----+=+=e e e e Z]1ln[ln )(1112εεββε--++-=e Z求得系统的内能和熵分别为1)(ln )(121112+-+=∂∂-=-εεβεεεβeN N Z N U ⑴]ln [ln 11ββ∂∂-=Z Z Nk S ⎭⎬⎫⎩⎨⎧+-++=---)(12)(12121)(]1ln[εεβεεβεεβe e Nk ⑵ 讨论:⑴当温度T 较低时,1)(12>>-εεβe ,⑴式中的第二项可以忽略,因而1εN U ≈,即0→T 时,所有粒子均处于基态1ε;同样,在⑵式中的第二项为零;第一项中0)(12≈-εεβe ,则⑵为01ln =≈Nk S ,这与热力学第三定律一致。