汽车外场气动噪声仿真与计算
- 格式:pdf
- 大小:413.56 KB
- 文档页数:5
汽车气动噪声的数值模拟分析随着车辆性能的提高及高等级公路的建设,车辆的速度越来越快,车辆外流场的气动噪声以车速的6次方的数量增长。
因而,当车辆的其它噪声得到有效的控制后,车辆的气动噪声就变得尤为重要了。
70年代,研究人员发现,车速为70km/h的情况下,气动噪声的范围为62~78dB,而在速度为110km/h的情况下,气动噪声的范围达到80~90dB。
新的研究表明,车速超过100km/h,气动噪声对车外噪声的影响己超过了其它噪声。
数值模拟方法可在新车设计初期的造型阶段进行气动噪声的预测,为选型及造型参数修改提供依据,从而可以较早地得到较理想的产品,避免产品缺陷。
文章以一款车型为例进行了气动噪声的数值模拟。
1湍流模型的选择气动噪声模拟可以选择几种不同的数值方法,大涡模拟可以得到精确的模拟效果,但要求生成的网格质量好,计算比较耗时。
在产品设计的初始阶段,往往需要噪声的大致分布情况,基于模型的噪声源方法可以解决这一问题。
模型的湍流动能输运方程:湍流动能耗散率输运方程:2模型网格的划分和计算域的建立模型是在CATIA软件上建立的,然后导入ICEMCFD软件中进行网格划分。
为了提高计算的效率,对模型的底部进行了简化处理。
根据经验,流场仿真计算所取的计算域到达一定的大小时,汽车的流场就不再受计算域大小的限制。
假设汽车模型长为L,宽为W,高为H,则计算域的取法为汽车前部取3L,侧面取4W,上部取5H,汽车后部取7L。
为了解决汽车求解域大,网格数目多的难点,按照离车身的距离不同,网格的大小也不同:离车身近的区域网格划分比较密,使之能够清楚的表现车身表面附近的细致情况。
而远离车身的区域,网格可以适当的稀疏,以减少网格的数量,节约计算时间。
最终网格划分结果如图1所示,网格数1369839。
3边界条件1)入口边界。
入口边界为速度边界。
2)出口边界。
出口边界为压力边界。
3)地面边界。
假设汽车行驶的工况:在静止的空气中(无风条件下)、平直的路面上等速直线运动。
空气动力学和气动噪声的数值模拟在工程领域中,空气动力学和气动噪声是一个非常重要且具有挑战性的领域。
空气动力学研究主要涉及流体力学的应用,用于解决气体在运动状态下的力学问题。
而气动噪声则是由于气流与各种结构的相互作用所产生的噪声。
数值模拟成为研究空气动力学和气动噪声的重要手段,能够提供详细的流场和噪声信息,对于设计和优化工程结构具有重要意义。
数值模拟方法主要包括计算流体力学(CFD)和计算声学学(CAS)。
计算流体力学是利用数值方法对流体力学方程进行求解,得到流体流动的速度、压力和温度等相关参数。
而计算声学学则通过数值模拟声波传播和辐射来预测噪声产生和传播的情况。
在空气动力学的数值模拟中,最常用的方法是基于有限体积或有限元的数值离散化方法。
这些方法将流场分割为离散的网格单元,并根据控制方程在每个单元内进行数值计算。
在计算过程中,需要考虑流体的物理性质、边界条件和初始条件等因素。
通过对控制方程进行解析求解或迭代求解,可以得到流体流动的详细信息。
然而,由于空气动力学问题十分复杂且非线性,需要进行大量的计算和模型验证才能得到准确的结果。
气动噪声的数值模拟相对而言更为复杂。
噪声的产生和传播涉及到气动声学理论、声学信号处理以及声学辐射模型等多个领域。
在数值模拟中,需要考虑声源的位置、形状和振动频率等因素,以及流体与结构的相互作用对噪声的影响。
此外,还需要进行声学辐射计算和噪声源的定位等问题。
准确模拟气动噪声需要综合考虑这些因素,并进行相应的数值计算。
近年来,随着计算机性能的提升和数值方法的发展,空气动力学和气动噪声的数值模拟取得了显著的进展。
利用高性能计算技术和优化算法,可以高效地解决复杂的数值模拟问题,并提供准确的结果。
同时,还可以通过对不同参数和边界条件的灵敏性分析,优化工程结构的设计,降低空气动力学和气动噪声的产生。
空气动力学和气动噪声的数值模拟在航空航天、汽车制造、风电等领域具有广泛应用。
例如,在飞机设计中,利用数值模拟可以预测机翼和机体的气动性能,优化构型设计,提高飞行性能。
汽车气动噪声的数值仿真与研究作者:孟繁桐来源:《世界家苑·学术》2017年第10期摘要:对小车模型进行仿真共分为三个阶段:稳态计算阶段、稳态噪声阶段以及瞬态计算阶段。
通过数值计算得出结论:网格疏密程度对噪声结果产生影响;迎风区域受到的压力数值最大,而噪声数值较大的区域往往发生在形状变形的位置处,例如A柱、后视镜以及位置处。
关键词:数值计算;稳态流场;气动噪声;分离涡模拟1 前言在高速运行下,气动噪声成为了主要噪声来源。
数据表明[1],当汽车行驶速度每提升10km/h,声压级增加约2.5dB,突变位置处激发的气动噪声大致与速度的六次方成正比。
采用数值模拟研究汽车气动噪声经历了一个过程[2],1999年Leep提出了简化的汽车模型。
2003年Bipin Lokhande模拟无限大的计算区域。
2004年Murad对简单倾角的A柱模型结构进行数值仿真。
2005年Vedy采用CAA方法对汽车后视镜模型进行数值仿真。
2010年同济大学采取DES、RANS和LES组合方法研究汽车后视镜影响下的流场分布。
2013年Christoph Reichl分别采用四面体、六面体网格进行数值仿真。
本文采取数值模拟方法对车身模型进行声学研究分析。
2 整车气动噪声特性分析本节以整车为例,初步了解汽车的气动噪声特性,分别从流动和气动噪声的角度分析整车的气动特性,总结汽车外形对于气动噪声的影响规律。
2.1 整车模型与计算域本次数值计算采用简化轿车模型,将后视镜部件进行省略。
模型按照1:1比例进行建模,车长为3588mm,车身高度为1527mm。
整车模型放置在长方体的虚拟风洞中,车身前部计算域长度选取为14457mm,车身后部计算域长度选取为37026mm,车顶上部计算域长度为13705mm,车身旁横向计算域长度为5251mm。
由于小车左右两部分可以近似认为对称的,所以对小车进行简化处理,即将计算域以及小车模型从中间对称线平均分开成左右两部分,数值计算时仅对其中一部分进行计算。
FRONTIER DISCUSSION | 前沿探讨汽车在低速行驶时,车内噪声主要是发动机噪声和路面轮胎噪声,当汽车速度超过80km/h时,风噪占主导地位[1]。
风噪是一种空气动力性噪声,封闭乘员室内部的气动噪声声源项主要是偶极子声源,偶极子声源是是由车身表面湍流边界层内的扰动、表面脉动压力共同引起的。
如今,越来越多学者、专家致力于对风噪的研究,他们从实验、理论分析、数值模拟这三个方面出发,在讨论汽车流场、汽车风噪分析技术和降低汽车风噪方面提供了许多新思路和要点。
邹锐[2]运用CFD方法对某车型进行了外流场瞬稳态仿真,稳态上分析了外流场气流流动状况及气流分离情况,机舱盖尾涡、A柱涡、后视镜尾涡的形成、发展以及对车内噪声的影响,瞬态上在A柱、后视镜和侧窗玻璃上选取了若干监测点,从流场与声场上具体分析了车外湍流对该区域的影响。
宗轶琦[3]运用LES与FE-SEA方法对车内噪声进行了研究,发现了FE-SEA模型在20-100Hz能够较为准确的捕捉车内噪声响应峰值,但与实车道路试验对比,计算精度略逊于FEM模型;在200-500Hz区域,FE-SEA模型相比于FEM模型、SEA模型、BEM模型,计算精度最高;在500Hz以后的高频区域内,FE-SEA模型也能保证较高的计算精度。
然而这些研究都仅限于研究汽车由于气流分离产生的气动噪声,也即只考虑了由单相流工况下的气动噪声,没有考虑到多相流工况下的气动噪声,如汽车在雨天行驶时,就属于气液两相流工况,因为此时的环境变量既包括空气,又包括雨滴。
这里例举一些其他机械在气液两相流工况下的响应情况。
曾广志[4]对风雨环境下桥上城际列车的运行安全性做了研究,研究结果表明:列车和桥梁迎风侧表面附近的雨滴密度随着侧风风速和风向角的增加而增加,较之于无雨工况下,在有雨条件下列车的表面压力、侧向力和倾覆力矩系数有增大的趋势。
张坻[5]等对输流管道的两相流噪声进行了研究,研究结果表明:由于管道中的气泡生成与发展和两相流产生的压力脉动和速度脉动是两相流噪声产生的根本原因,低马赫数下,偶极风雨场条件下汽车乘员舱气动噪声数值模拟宗轶琦1 陶海1 沈辉1 杨易2 罗泽敏31.扬州大学 机械工程学院 江苏省扬州市 225127 2.湖南大学 机械与运载工程学院 湖南省长沙市 4100823.广州汽车集团股份有限公司汽车工程研究院 广东省广州市 516434摘 要:本研究以某汽车为研究对象,基于数值模拟探讨不同降雨量工况下的汽车乘员舱气动噪声声压级水平。
气动噪声的数值模拟和研究气动噪声是一种由于气流经过物体或是空气之间互相摩擦时产生的声音。
这种噪声的来源广泛,从家用电器、汽车发动机到风力发电机、飞机引擎都可能会产生气动噪声。
随着工业化和城市化的发展,气动噪声已经成为人们生活中不可避免的一部分。
因此,为了改善人们的生活环境和促进工业的健康发展,对气动噪声的数值模拟和研究显得尤为重要。
气动噪声的数值模拟是基于数值计算方法的研究,其核心是CFD(计算流体力学)。
CFD是应用数学、物理和计算机科学的学科领域,是一种通过数字方法解决流体运动方程的技术。
在CFD的数值计算中,气体或流体流动过程中的各种参数和特性都能够通过数值计算得出,这样就能够较好地模拟出气动噪声的产生过程。
数值模拟能够提供详尽的求解结果,在气动噪声研究中被广泛应用。
通过优化流体流动过程和物体的形状,能够减轻或消除气动噪声的产生。
例如,针对风力发电机叶轮的气动噪声问题,可以对其外形进行优化,并通过数值模拟得出不同形状的叶轮在不同条件下的噪声效果,以此来选择最优解。
气动噪声的数值模拟需要依靠多重参数,包括风速、压力、粘度等。
这些参数对噪声的产生和传播都有影响,并且相互之间的关系也会影响噪声的产生情况。
因此,数值模拟是一项复杂的工作,需要结合实际测试数据和理论研究,才能得出准确的结果。
除了数值模拟,还可以通过实验手段来研究气动噪声。
实验是一种验证数值模拟结果的有效方法,也能够直接获取噪声产生时的音压级和声学能量等参数。
然而,实验也存在着成本高、时间长、数据难以获取的问题。
因此,气动噪声的数值模拟研究在实际应用中更为常见。
气动噪声不仅对人们的生活和工作造成影响,而且还可能对环境产生影响。
随着环保意识的提高,人们开始越来越关注气动噪声的研究和处理。
气动噪声的数值模拟和研究为人们提供了一种有效、可靠的方法,能够更好地把噪声控制在合理范围内,实现更高效、更环保的工业和生活方式。
总之,气动噪声的数值模拟和研究是一个不断发展和完善的领域。
actran气动噪声计算原理Actran是一种流体动力学仿真软件,可以用于计算气动噪声。
在Actran中,气动噪声的计算原理是通过数值模拟来预测流体动力学系统中产生的噪声。
需要了解气动噪声的来源。
气动噪声是由流体运动引起的压力波动产生的,这些压力波动通过流体传播并转化为声波,最终达到人耳能够感知的声音。
在工程实践中,对气动噪声的减小和控制是一个重要的课题,因为它对人类健康和环境保护都有着重要的影响。
Actran的气动噪声计算原理基于声学和流体动力学的数值模拟方法。
在计算过程中,首先需要建立一个准确的流体动力学模型,包括流场的边界条件、流体性质和流体运动方程等。
这些参数将直接影响到最终的噪声计算结果。
然后,需要通过求解流体运动方程来模拟流体的运动行为。
在气动噪声计算中,通常采用Navier-Stokes方程来描述流体的运动,该方程是一组非线性偏微分方程,可以通过数值方法进行求解。
Actran使用了有限元方法和有限差分方法来离散化和求解Navier-Stokes方程,从而得到流体的速度场和压力场分布。
在得到流体的速度场和压力场之后,接下来需要计算噪声源项。
噪声源项是指在流体中产生噪声的区域,通常是流体中存在的湍流或涡流。
这些湍流或涡流会导致局部的压力波动,从而产生噪声。
Actran使用湍流模型和涡源模型来计算噪声源项,通过数值模拟来预测噪声的产生和传播。
需要进行声波传播计算,以确定噪声在空间中的传播路径和强度分布。
声波传播计算是通过声学模型来实现的,包括声波传播方程和声学边界条件等。
Actran使用了声学有限元方法和声学边界元方法来进行声波传播计算,从而得到噪声的传播路径和声压级分布。
Actran的气动噪声计算原理是基于数值模拟方法的。
通过建立准确的流体动力学模型、求解流体运动方程、计算噪声源项和进行声波传播计算,可以预测流体动力学系统中产生的气动噪声。
这对于设计和优化噪声控制措施具有重要的参考价值,可以帮助减少噪声对人类健康和环境的影响。