FPGA_8051核控制DDS移相信号发生器
- 格式:pdf
- 大小:428.07 KB
- 文档页数:9
基于FPGA的DDS移相变频正弦信号发生器设计杨春红;李石【期刊名称】《数字通信世界》【年(卷),期】2014(000)010【摘要】The direct digital frequency synthesis (DDS) technology has high frequency resolution, fast frequency switching, low phase noise and higher frequency stability, so it is widely used in communications, aerospace, instrumentation and other fields. In this paper, phase shift frequency variable sine signal generator with DDS as its core was designed based on Field Programmable Gate Array (FPGA) and hardware description language (VHDL). The experimental and simulation results show that the system has stable output frequency, high frequency accuracy, adjustable frequency and phase.%直接数字频率合成技术(DDS)由于具有频率分辨率高、频率切换速度快、相位噪声低和频率稳定度高等优点,广泛应用于通信、航空航天、仪器仪表等领域。
本文以FPGA为核心,以硬件设计语言VHDL为系统逻辑描述手段,设计了基于DDS原理的可移相、变频的正弦信号发生器。
仿真及实验结果表明:该系统具有输出频率稳定、频率精度高,频率和相位可调等特点。
基于FPGA的DDS信号发生器的设计【摘要】本文介绍了基于FPGA和MCU技术的直接数字合成信号发生器的设计,详细分析了其主要模块的系统结构、软硬件设计和具体实现电路。
【关键词】信号发生器;DDS;FPGA1.引言随着数字集成电路和微电子技术的发展,直接数字合成技术(Direct Digital Synthesis)简称DDS将先进的数字处理技术与方法引入信号合成领域,优越的性能和突出的特点使其成为现代频率合成技术中的佼佼者。
DDS器件采用了高速数字电路和高速D/A转换技术,具备了频率转换时间短、相对带宽宽、频率分辨率高、输出相位连续和相位可快速程控切换等优点,可以实现对信号的全数字式调制。
本文给出了基于FPGA和MCU技术的直接数字合成信号发生器的设计,实现了满足预定指标的多频率波形输出。
2.DDS基本原理DDS建立在采样定理基础上,首先对需要产生的波形进行采样,将采样值数字化后存人存储器作为查找表。
然后通过查表读取数据,再经D/A转换器转换为模拟量,将保存的波形重新合成出来。
DDS基本原理框图如图1所示。
图1 DDS基本原理框图基本功能包括:接收频率控制字进行相位累加;使用带反馈的移位寄存器产生随机序列;把随机序列加到相位地址码或幅度值:对相位累加值进行相幅转换;把读出的幅度值进行D/A转换并调节其幅度;对波形进行滤波后放大输出波形。
3.DDS信号的产生下面就FPGA实现DDS正弦波信号为例,对其键技术进行分析。
3.1 采样点的实现对一个幅度为1的正弦波的一个周期进行1024点采样,用Matlab计算得到每一点对应的幅度值,然后量化成8位二进制数据存放在ROM中。
用MATLAB 语言编写的正弦函数数据采集程序如下:CLEAR TIC;T = 2*PI/1024;t = [0:T:2*pi];y=255*sinz(t);round(y);3.2 数据ROM制作有了上面的采样点接下去就可以结合QUARTUS中ROM的制作来设计一个存储1024个采样点的存储器,下面是实现的部分Verilog程序。
基于FPGA的DDS信号发生器设计分析摘要:随着现代电子技术的飞速发展,直接数字频率合成DDS 技术逐渐被广泛使用,DDS 是目前数据调度常用的数据分发技术,此技术能够有效结合数据服务质量要求,完成数据分发操作。
为此提出基于FPGA的DDS信号发生器设计,以提升信号发生器精度效果。
关键词:FPGA;DDS;信号发生器;设计;1 DDS数据分发模型设计网络层云服务器采用的DDS数据分发模型结构如图1所示。
DDS数据分发模型中,将数据库云平台中的数据发送端看作为发布者,数据写入者为数据采集端,而订阅者与读入者即为云平台中的数据接收端。
DDS数据分发模型的身份主要是通信数据库云平台中,通信网络的中间件,此模型能够为通信数据库云平台提供通信数据分发服务,让通信数据可以快速分发传输,从而避免出现数据拥塞问题。
图 1 基于 DDS 的通信数据库云平台2系统硬件设计2.1硬件整体方案函数信号发生器的硬件系统主要包括MCU控制电路,FPGA构成的DDS发生器、DAC转换和低通滤波电路,及一些用于输入输出的器件等。
按键输入和LCD输出显示主要由MCU负责控制,MCU然后将输入的信号运算处理后发送给FPGA,FPGA根据输入的各种参数在ROM表中寻址,同时输出对应控制的波形、频率和幅度的数字信号,最后经过DA转换为对应的模拟电压信号,在经过一个低通滤波器使得模拟电压信号变得平滑。
2.2硬件模块电路系统的硬件电路主要分为两个部分,一是系统主控电路,二是DDS信号发生器电路。
系统主控电路包括以STM32F103C8T6为主控的最小系统板、四路用户按键输入、OLED显示屏输出(SPI)、UART通信连接上位机、硬件SPI连接FPGA负责信号数据传输。
DDS信号发生器电路,其中的FPGA模块的核心芯片为LatticeLCMXO2-4000HC-4MG132,其模块上内置8路输出LED指示灯、4路按键输入、4路拨码输入和两位数码管输出灯资源。
第1章绪论1.1 课题背景频率检测是电子测量领域的最基本也是最重要的测量之一,频率信号抗干扰强,易于传输,可以获得较高的测量精度,所以频率方法的研究越来越受到重视[1]。
在频率合成领域中,直接数字合成(Direct Digital Synthesizer,简称:DDS)是近年来新的技术, 它从相位的角度出发直接合成所需波形。
它是由美国人J.Tierncy首先提出来的,是一种以数字信号处理理论为基础,从相位概念出发直接合成所需波形的一种新的全数字技术的频率合成方法[2]。
其主要优点有:频率改变速度快、频率分辨率高、输出相位连续、可编程、全数字化便于集成等,目前使用最广泛的一种DDS频率合成方式是利用高速存储器将正弦波的M个样品存在其中,然后以查找的方式按均匀的速率把这些样品输入到高速数模转换器,变成所设定频率的正弦波信号[3]。
近30年来,随着超大规模集成、现场可编程门阵列(Field Programmable Gate Array,简称:FPGA)、复杂可编程器件(Complex programmable Logic Device,简称:CPLD)等技术的出现以及对DDS理论上的进一步探讨,使得DDS技术得到了飞速的发展。
它已广泛应用于通讯、雷达、遥控测试、电子对抗、以及现代化的仪器仪表工业等许多领域。
DDS的数字部分,即相位累加器和查表,被称为数控振荡器(NCO)[4]。
波形发生器即通常所说的信号发生器是一种常用的信号源,和示波器、电压表、频率计等仪器一样是最普遍、最基本也是应用最广泛的的电子仪器之一,几乎所有电参量的测量都要用到波形发生器。
不论是在生产还是在科研与教学上,波形发生器都是电子工程师信号仿真试验的最佳工具。
随着现代电子技术的飞速发展,现代电子测量工作对波形发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波形,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度及分辨率高,频率转换速度快且频率转换时输出波形相位连续等。
基于 FPGA 的 DDS 信号发生器的设计发布时间:2022-11-15T12:38:52.851Z 来源:《中国科技信息》2022年第7月14期作者:陈慰安[导读] DDS是一种新的频率合成技术,陈慰安广东省博罗县质量技术监督检测所广东省惠州市 516100摘要:DDS是一种新的频率合成技术,也是一种新的信号生成技术。
该方法具有频率分辨率高、频率转换快、相位变化时能保持相位连续,易于实现频率、相位、振幅等数字调制。
因此,DDS在现代电子设备尤其是通信领域中得到了广泛的应用。
关键词:FPGA;DDS信号发生器;设计1FPGA和DDS相关概述FPGA(FieldProgrammableGateArray)是一种高集成度、高速度、高存储能力的器件。
该方法能够有效地实现DDS技术,极大地改善了功能信号发生器的工作效率,并大幅度降低了电子设备的制造成本。
传统的信号源电路采用模拟电路、单片机或DDS专用的芯片。
尽管其应用领域广泛,但是仍然有很多缺点,例如:设计方案成本高,输出波形类型少,输出信号频率控制不灵活,系统升级困难等。
传统的信号源存在两大问题。
一种是调节电压调节器来调节输出的频率,使其难以调节到一个固定的数值;另外,脉冲的工作周期是不能调节的。
DDS技术是目前世界上最主要的一种数字技术,它有很多优势。
DDS技术是一种低功耗、低成本、高转换频率和高分辨率的频率合成技术。
通常,DDS技术有如下几种产生信号的方法:①集成电路功能信号发生器通常能用于产生信号,但是它的功能不全、可用性低、精度低、不能满足高频信号的需要。
②利用MCU的功能产生器来完成:MAX038的优势在于生成高频信号并生成不同的波形,但是MAX038的输出频率是由模拟信号控制的。
该方法既要实现对信号的变换,又要对其进行控制。
由于步长的增大,导致了频率的精确度下降,使得电路变得更为复杂。
DDS技术是一种新的频率合成技术,它与前面所说的信号产生方式相比,可以直接进行DDS芯片的合成,具有操作简单、节约资源等优点。
摘要利用FPGA芯片及D/A转换器,采用直接数字频率合成技术,设计实现了一个频率、相位可控的正弦信号发生器,同时阐述了直接数字频率合成(DDS)技术的工作原理、电路结构,及设计的思想和实现方法。
经过设计和电路测试,输出波形达到了技术要求,控制灵活、性能较好,也证明了基于FPGA的DDS 设计的可靠性和可行性。
直接数字频率合成(DDS)技术采用数字合成的方法,所产生的信号具有频率分辨率高、频率切换速度快、频率切换时相位连续、输出相位噪声低和可以产生任意波形等诸多优点。
在理论上对DDS的原理及其输出信号的性能进行了分析,完成了基于DDS 的数字移相信号发生器的设计,采用VHDL语言,成功地编写出了设计程序,并且在Quartus 2软件环境中,对编写的VHDL程序进行了仿真,得到了很好的效果。
在本文中,我们设计了一个频率相移测量仪。
主要分为如下几个部分:◆波形数据ROM模块◆32位加法器模块◆10位加法器模块◆32位锁存器模块◆10位锁存器模块关键词:直接数字频率合成(DDS),现场可编程门阵列(FPGA),正弦波信号发生器目录一. 任务解析 (3)二. 系统方案论证 (3)2.1总体方案与比较论证 (3)2.2系统原理与结构 (4)2.2.1主要芯片选型与开发环境 (4)2.2.2DDS技术和原理 (7)A.DDS原理 (7)B.相位累加器 (8)C.波形ROM示意图如图 (9)D.系统结构 (10)E.系统功能分析 (10)F.系统结构模块 (11)三. 系统顶层文件 (11)四.仿真 (13)五.系统的模块与程序实现 (13)5.1 源程序 (13)5.2 32位加法器模块 (15)5.3 32位锁存器模块 (15)5.4 10位加法器模块 (16)5.5 10位锁存器 (17)5.6 波形数据RO (17)5.7 生成正弦数据的程序和文件 (20)5.8 生成的正弦波文件mdata.mif表格 (21)六.设计总结 (22)七.参考文献 (23)一.任务解析1.1任务目的掌握数字移相信号发生器的工作原理和设计方法;掌握DDS技术的工作原理;掌握GW48_SOPC实验箱的使用方法;了解基于FPGA的电子系统的设计方法。
基于FPGA的DDS信号发生器设计随着数字信号处理(DSP)技术的发展,直接数字频率合成器(DDS)逐渐取代了传统的频率合成器,成为一种高性能的信号发生器。
DDS信号发生器通过数字信号直接产生模拟信号,具有频率精度高、可编程性强和快速调频等优点。
本文将通过FPGA实现DDS信号发生器的设计。
首先,我们需要了解DDS信号发生器的基本原理。
DDS信号发生器的核心是相位累加器、查找表和数模转换器(DAC)。
通过累加器产生相位累积,将相位累积的结果通过查找表得到对应的振幅值,并经过数模转换器输出模拟信号。
1.确定需要生成的信号的参数,包括输出频率、相位步进精度、振幅等。
根据这些参数,计算累加器的增量值,即每个时钟周期累加器需要累加的值。
2.在FPGA中设计相位累加器。
相位累加器的宽度取决于相位步进精度,一般为32位或64位。
通过在每个时钟周期加上增量值,实现相位的累加。
3.设计查找表。
查找表的大小取决于数字信号的分辨率,一般为2^N 位。
通过输入相位值查找对应的振幅值。
4.设计数模转换器(DAC)。
通过DAC将数字信号转换为模拟信号输出。
5.在FPGA中实现控制逻辑,包括控制相位累加器和查找表的读写操作,使其按照设定的参数进行相位累加和振幅输出。
6.将设计好的FPGA模块进行综合、布局和时序约束,生成比特流文件。
通过以上步骤,基于FPGA的DDS信号发生器的设计就完成了。
设计好的FPGA模块可以实现高精度、高稳定性的信号发生器,广泛应用于通信、雷达、医疗设备等领域。
需要注意的是,在设计过程中需要考虑到FPGA的资源限制,包括LUT资源的利用、频率分辨率和输出频率的限制等。
此外,还可以通过增加相位累积周期、使用多路查找表和多路DAC等方法进一步优化设计。
综上所述,基于FPGA的DDS信号发生器设计是一个较为复杂的过程,需要对DDS原理有深入的理解,并结合FPGA的特点进行设计。
通过合理的设计和优化,可以实现高性能的DDS信号发生器。
基于FPGA的DDS信号发生器设计摘要:利用FPGA芯片及D/A转换器,采用直接数字频率合成技术,设计并实现了一个频率、幅值可调的信号发生器,同时阐述了该信号发生器的工作原理、电路结构及设计思路。
经过电路调试,输出波形达到技术要求,证明了该信号发生器的有效性和可靠性。
0 引言信号发生器作为一种基本电子设备广泛的应用于教学、科研中,因此从理论到工程对信号的发生进行深入研究,有着积极的意义.随着可编程逻辑器件(FPGA)的不断发展,直接频率合成(DDS)技术应用的愈加成熟,利用DDS原理在FPGA平台上开发高性能的多种波形信号发生器与基于DDS芯片的信号发生器相比,成本更低,操作更加灵活,而且还能根据要求在线更新配置,系统开发趋于软件化、自定义化。
本文研究了基于FPGA 的DDS信号发生器设计,实现了满足预定指标的多波形输出。
可产生不同频率、幅度的正弦波、三角波、矩形波信号,仿真和实测结果均证实了其灵活性和可靠性。
1 函数信号发生器的原理和设计1.1 函数信号发生器的结构图1为DDS信号发生器系统结构框图.系统以FPGA芯片为信息处理核心,主要完成数字频率合成、D/A转换、选择滤波、功率放大、LCD显示等功能。
频率控制字M送入32位的累加器进行累加运算,截取32位累加器的第24到第30位作为ROM的地址,ROM在累加器的控制下,输出8位的数字波形数据,经过DAC0832转换为模拟量,因为DAC0832输出的是电流的形式,所以通过电压转电流电路转换为电压形式的模拟波形,但其中还含有大量的高频成分,为了输出频率纯净的信号波形,再通过一个二阶的有源低通滤波器。
最后为了调节输出信号的峰峰值,再引入一个幅度调节电路。
根据直接数字频率合成理论将系统的频率分辨率及输出频率写为:其中fclk和N为系统时钟和位宽,M为频率控制字,利用信号相位与时间成线性关系的特性,直接对所需信号进行抽样、量化和映射,输出频率可调的信号波形。
设计与分析・Sheji yu Fenxi基于F P GA 的DDS 信号发生器的设计蒋小军(湖南铁道职业技术学院,湖南株洲412001)摘要:直接数字频率合成器(DDS )广泛应用于航空控制、通信、电子测量及研究等领域。
现提出一种DDS 信号发生器,釆用EDA 自顶向下的设计方法,在Q-artus 3集成开发环境中利用原理图和调用PLM 宏功能模块完成软件设计,并通过FPGA 进行硬件测试。
关键词:FPGA ;直接数字频率合成器(DDS) ; PLM引言直接数字频率合成器(DDS), 一种 的频率合成技术和信号生方法,的频率 率, 实现频率的快速切换,并且在变能 ,实现频率、 和 的数控调制。
,在现代电子 及设的频率源设计中,在通信领域,DDS 的应用 广泛。
1系统的整体设计方案设计的一个DDS 信号发生器,如图1所示,它器、 调制器、 ROM 和D/A 换模块 成。
1ROM 中的mif 数件, 生 、方、 等 信号。
器 DDS 的核心,完成 的功能, 器的量!又由于!与输出频率血的B3=2g 血,器的频率字输入。
当系忌2$时等于尤频率字 在图1中 :过了一 器, 频率字改变加器的。
系统时钟图1 DDS 信号发生器结构调制器接 器的 出,在 一, 用于信号的 调制,如PSK (相移键控)等,在 用 , 一个固定的字数 S 字 最好也用步 器 步。
注意,字输入的数 宽 &与频率字$往往 不相等的,波数字储ROMG表)完成仏(凤)的换,也 理解成 到 的换,的 调制器的输出,事实上就是ROM 的地址出送往D/A ,转化模拟信号。
于 调制器的出数 宽&也ROM 的地址宽,因此在实际的DDS 结构中$往往很大,而&为10位左右。
2电路设计DDS 信号发生器电路原理图图2所示,法器ADDER32、 器REG32、数据波形ROM 三大功能子模块组成。
图2电路原理图(1) 32位加法器ADDER32。
基于FPGA的DDS信号发⽣器的设计与实现⼀、实现环境 软件:Quartus II 13.0 硬件:MP801⼆、DDS基本原理 DDS(Direct Digital Synthesizer)即数字合成器,是⼀种新型的频率合成技术,具有相对带宽⼤,频率转换时间短,分辨率⾼和相位连续性好等优点。
较容易实现频率、相位及幅度的数控调制,⼴泛应⽤于通信领域。
DDS的实现⽰意图如下图所⽰: 1、将需要合成的信号的数据存储在rom中,合成待输出信号的⽅法请参考: 2、dds_control实现的功能是将存储在rom中的待合成的信号的数据按照⼀定的规则取出来: dds_control主要由相位累加和频率累加来实现,简单的说,通过控制相位累加和频率累加来实现从rom中取出不同时刻的数据。
(1)相位累加器位数为N位(24~32),相位累加器把正弦信号在相位上的精度定义为N位,其分辨率位1/2N ,决定⼀个波形的起始时刻在哪个点; (2)频率累加器⽤来控制每隔⼏个点从rom中取⼀个数据,决定⼀个波形的频率; (3)若DDS的时钟频率为F clk ,频率控制字fword = 1,则输出频率为 F out = F clk/2N,这个频率相当于“基频”,若fword = B,则输出频率 F out = B * F clk/2N。
因此理论上由以上三个参数就可以得出任意的 f o 输出频率,且可以得出频率分辨率由时钟频率和累加器的位数决定的结论。
当参考时钟频率越⾼,累加器位数越⾼,输出频率分辨率就越⾼。
3、从FPGA中出来的信号都是数字信号(dds_control输出的信号都为数字信号),需要通过dac芯⽚来将数字信号转换为模拟信号,这样将dac芯⽚输出的信号接⼊到⽰波器中,才能看到波形; 4、举例说明频率控制和相位控制: 如上图所⽰,这个是⼀个由33个点构成的正弦波信号,(rom_addr,rom_data),纵坐标为存储在rom中的正弦波信号,横坐标为dds_control ⽣成的地址信号。
《EDA》课程设计报告实验题目:基于DDS的数字移相信号发生器基于DDS的数字移相信号发生器一、课程设计目的1、进一步熟悉Quartus Ⅱ的软件使用方法;2、熟悉利用VHDL设计数字系统并学习LPM ROM的使用方法;3、学习FPGA硬件资源的使用和控制方法;4、掌握DDS基本原理,学习利用此原理进行信号发生器的设计。
二、设计任务1、完成8位输出数据宽度的频率可调的移相正弦信号发生器。
2、完成8位输出数据宽度的频率可调的移相三角波、方波信号发生器。
3、以上三种波形使用一个按键依次切换。
4、波形发生器实现幅度可调。
5、信号发生器的原始数据存储在外部存储器里,由FPGA进行读取,经过D/A转换输出,由示波器观察最终结果。
三、基本原理直接数字频率合成器(DDS)是通信系统中常用到的部件,利用DDS可以制成很有用的信号源。
与模拟式的频率锁相环PLL相比,它有许多优点,突出为(1)频率的切换迅速;(2)频率稳定度高。
一个直接数字频率合成器由相位累加器、波形ROM、D/A转换器和低通滤波器构成。
DDS的原理框图如下所示:图 1 直接数字频率合成器原理图其中K为频率控制字, fc为时钟频率,N为相位累加器的字长,D为ROM数据位及D/A 转换器的字长。
相位累加器在时钟 fc的控制下以步长K作为累加,输出N位二进制码作为波形ROM的地址,对波形ROM进行寻址,波形ROM输出的幅码S(n)经D/A转换器变成梯形波S(t),再经低通滤波器平滑后就可以得到合成的信号波形了。
合成的信号波形形状取决于波形ROM中存放的幅码,因此用DDS可以产生任意波形。
本设计中直接利用D/A转换器得到输出波形,省略了低通滤波器这一环节。
1、频率预置与调节电路不变量K被称为相位增量,也叫频率控制字。
DDS方程为:f0= fc K/2n,f0为输出频率,fc 为时钟频率。
当K=1时,DDS输出最低频率(也既频率分辩率)为fc /2nDDS的最大输出频率由 Nyguist 采样定理决定,即fc /2,也就是说K的最大值为2n-1.因此,只要N足够大,DDS可以得到很细的频率间隔。
基于fpga的dds信号发生器实现方法基于FPGA的DDS信号发生器可以实现高精度、高速率、高可靠性的信号发生。
DDS即直接数字频率合成技术,通过数字控制实现对信号的精确控制,从而生成各种复杂的信号。
其基本原理是将频率可调的数字信号直接进行混频、加权求和等数学处理,得到所需的复杂信号。
在实现基于FPGA的DDS信号发生器时,需要进行如下步骤:
1. 确定FPGA芯片型号和开发环境:根据需求选择合适的FPGA 芯片,同时选择相应的开发环境,如Quartus II、Xilinx ISE等。
2. 编写Verilog/VHDL代码:根据DDS原理,编写相应的Verilog/VHDL代码,实现数字控制和信号处理等功能。
3. 设计电路板:根据芯片的引脚布局,设计相应的电路板,包括时钟电路、功率供应电路、信号输入/输出接口等。
4. 调试和验证:对设计好的电路板进行调试和验证,确保实现的DDS信号发生器能够正常工作。
5. 优化和扩展:根据需求,对实现的DDS信号发生器进行优化和扩展,如增加信号处理模块、扩大频率范围等。
综上所述,基于FPGA的DDS信号发生器是一种高效、高精度、高可靠性的信号发生器,可广泛应用于通信、电子、航空、军事等领域。
其实现方法包括选型、编写代码、设计电路板、调试验证和优化扩展等步骤。
- 1 -。
0 引言由于现代电子技术的飞速发展,信号发生器已成为现代测试领域应用非常广泛的仪器。
而数字技术在生产实践和科技领域中的广泛使用,电子测量工作对信号发生器的频率范围、精度、稳定度、分辨率以及输出电平的范围、精度、频谱纯度等性能有了更严格,更具体的要求。
传统的信号发生器具有成本高,操作不灵活等缺点已经远远满足不了现代电子测量的需要退出了历史舞台[1]。
所以,为了适应现代电子技术的不断发展和试产所需求的信号发生器,研究高性能信号发生器是极为必要的。
FPGA (现场可编程门阵列)具有高集成度、高速度、低费用、低风险。
低功耗等特性,能有效地实现 DDS [2-4] 技术,极大地提高函数信号发生器的性能,大大降低电子系统的生产成本[5]。
现研究的基于51单片机和FPGA 的信号发生器具有超高的频率稳定度和高精度,大大提高了信号发生器的性能,能很好满足电子测量工作的需求。
1 系统设计方案1.1 系统硬件设计本文中主要利用 FPGA(EP4CE10F17C8)桥接控制TFT 的 LCD、4×4 键盘和AD9708(AT89C51单片机和AD9708有一条基准电压信号),系统硬件框图如图1所示。
本文中函数信号主要由FPGA(EP4CE10F17C8)产生;AT89C51单片机用作分析处理用户信息,给AD9708提供基准电压以及控制 FPGA(EP4CE10F17C8)产生需要用户的函数信号。
图1 系统硬件结构框图1.1.1 EP4CE10F17C8简介EP4CE10F17C8是ALTERA 公司推出一款嵌入式FPGA(现场可编程门阵列)芯片。
该芯片是极具功耗和性价比优势,它拥有10320个逻辑单元、414Kbits 的嵌入式存储资源、23个18×18的嵌入式乘法器、2个通用锁相环、10个全局时钟网络、8个用户IO BANK 和最大179个用户I/O,了解器件的整体硬件资源,有助于我们在设计时根据器件提供的资源,对设计进行合理的优化,以达到最佳的性价比。
《电子系统实验报告》课程设计总结报告题目:DDS信号发生器设计人员:学号:同组人员:班级:指导老师:日期:2010.06.12DDS信号发生器一主要功能要求:本课程系统DDS信号发生器设计我们组利用FPGA生成DDS函数信号发生器内核和利用89S52单片机最小系统实现频率字输出和波形选择。
DDS模块与单片机的通信采用SPI串口协议。
系统的16位频率字输出采用单片机的SPI串口协议输出,在DDS模块内部采用16位移位寄存器和16位锁存器进行串行数据到并行数据的转换。
从而实现单片机到DDS模块的通信。
DDS模块由频率累加器、相位累加器、波形查找表、D/A模块组成。
且系统时钟频率工作于75MHZ。
频率和相位累加器采用32位累加器。
波形查找表由三个ROM表组成,分别存储正弦波、方波、三角波的量化数据。
再用一个三选一选择器作为波形输出的控制器件,控制信号由单片机输出。
二进制振幅键控的数字基带信号由VHDL语言生成M序列的二进制信号。
正弦波信号由正弦波表输出。
二者再进过一个乘法器,再到D/A模块。
由此完成2ASK模块的设计。
二进制振幅键控的数字基带信号由VHDL语言生成M序列的二进制信号。
进过二选一模块选择移位全零或者全一,查ROM表,选择移位180度或者0度,再到D/A。
由此完成2PSK模块设计。
(注:正弦波进行1024次量化采用公式512+511*sin(6.18/1024*k)------k值为1到1024对方波进行1024次量化采用前512位量化数值全为1023 后512位量化数值全为0三角波进行1024次量化采用1.3.5.7…..1023.1021.1019………7.5.3.1的方式进行量化)二整体设计框图及整机概述三系统实现的功能(1)可显示信号发生器输出波形与频率。
(2)正弦波、方波、三角波输出频率范围为35HZ ~ 1.17MHZ。
(3)具有频率设置功能。
(4)输出信号频率稳定度优于0.1。
基于FPGA和DDS技术的信号发生器的设计1 引言直接数字频率合成DDS(Direct Digital Synthesizer)是基于奈奎斯特抽样定理理论和现代器件生产技术发展的一种新的频率合成技术。
与第二代基于锁相环频率合成技术相比,DDS具有频率切换时间短、频率分辨率高、相位可连续变化和输出波形灵活等优点,因此,广泛应用于教学科研、通信、雷达、自动控制和电子测量等领域。
该技术的常用方法是利用性能优良的DDS专用器件,“搭积木”式设计电路,这种“搭积木”式设计电路方法虽然直观,但DDS专用器件价格较贵,输出波形单一,使用受到一定限制,特别不适合于输出波形多样化的应用场合。
随着高速可编程逻辑器件FPGA的发展,电子工程师可根据实际需求,在单一FPGA上开发出性能优良的具有任意波形的DDS系统,极大限度地简化设计过程并提高效率。
本文在讨论DDS的基础上,介绍利用FPGA设计的基于DDS的信号发生器。
2 DDS技术工作原理DDS是一种从相位概念出发直接合成所需波形的数字频率合成技术,主要通过查波形表实现。
由奈奎斯特抽样定理理论可知,当抽样频率大于被抽样信号的最高频率2倍时,通过抽样得到的数字信号可通过一个低通滤波器还原成原来的信号。
DDS信号发生器,主要由相位累加器、相位寄存器、波形存储器、D/A转换器和模拟低通滤波器组成如图1所示。
fR为参考时钟,K为输入频率控制字,其值与输出频率相对应,因此,控制输入控制字K,就能有效控制输出频率值。
通常情况下,K值由控制器写入。
由图1可知,在参考时钟fR的控制下,频率控制字K与相位寄存器的输出反馈在相位累加器中完成加运算,并把计算结果寄存于相位寄存器,作为下一次加运算的一个输入值。
相位累加器输出高位数据作为波形存储器的相位抽样地址值,查找波形存储器中相对应单元的电压幅值,得到波形二进制编码,实现相位到电压幅值的转变。
波形二进制编码再通过D/A转换器,把数字信号转换成相应的模拟信号。
多数示例提供完整源程序
KX3C10T+系统提供的大量电子设计自主创新
演示项目于宽领域大深度培养能力、启迪智慧、激励创新
杭州康芯公司
实验6
基于DDS的移相信号发生器设计示例
注意程序路径
注意单片机程序路径单片机Core程序代码
K X 康芯科技
键4控制输入频率字高8位键K3控制输入频率字中8位
键2控制输入频率字低8位键K5控制输入相位字
复位键
接DAC0832模块A 数据输入口接双综示波器接DAC0832模块B 数据输入口接+/-12V 电源
相位字8位
频率字高8位
频率字中8位
频率字低8位。