斜拉桥的结构计算-动力分析1
- 格式:ppt
- 大小:6.90 MB
- 文档页数:1
斜拉桥中的拉索拉力分析斜拉桥作为一种现代桥梁结构设计,凭借其独特的外观和高度的耐力成为了现代城市的标志性建筑之一。
而在斜拉桥的结构中,拉索作为承担桥梁荷载的重要部分,其拉力的分析对于桥梁的设计和施工至关重要。
在斜拉桥中,支撑桥梁的主要力量通过吊塔传递到桥面,最终由拉索承担。
在拉索的设计过程中,我们要考虑到多个因素,如桥面荷载、风荷载以及自重等。
拉索需要能够承受这些力量,同时保持桥梁的结构稳定和安全。
拉索分析的第一步是计算每个拉索所承受的力量。
我们通常使用悬链线理论来进行这一计算。
悬链线理论将拉索的重力、张力和弯曲等因素都纳入考虑。
通过建立数学模型,我们可以计算出每个拉索所承受的拉力大小和方向。
然而,由于桥梁的荷载不仅仅是静力学力量,而且还包括动态荷载,我们需要考虑到拉索的振动问题。
振动会对拉索产生额外的力量作用,可能使其受到过大的拉力,影响桥梁的稳定性。
因此,在拉索设计中,我们需要进行动力学分析,以保证其能够抵御振动力量。
另外,斜拉桥的风荷载也是拉索设计中需要特别关注的问题。
由于桥梁的设计高度较高,风的作用会对拉索产生很大的力量。
在拉索的设计中,我们需要计算并考虑到各个方向上的风荷载,并将其作为额外的力量进行计算。
这可以通过风洞实验和计算机模拟来获得准确的数据,以确保拉索的设计合理。
除了荷载分析外,拉索的材料选择也是设计中需要考虑的重要因素。
拉索通常采用高强度钢缆,以保证其能够承受大的拉力。
在选择材料时,我们需要综合考虑强度、耐腐蚀性以及成本等因素,以找到最适合的材料。
最后,斜拉桥中的拉索还需要进行定期检查和维护,以确保其在使用过程中不会出现疲劳断裂等问题。
由于拉索处于高空环境中,检查和维护工作相对困难,因此需要精细规划和专业团队进行操作。
总而言之,斜拉桥中的拉索拉力分析是桥梁设计中的重要一环。
拉索的设计需要综合考虑荷载、振动、风荷载等因素,并选择合适的材料。
通过科学的分析和合理的设计,我们能够建造出坚固耐用的斜拉桥,为城市的发展和交通运输提供便利。
目录一.文件名及前处理模式 (2)二.截面的建立 (2)1.主梁截面 (2)2.桥塔截面 (30)三.定义单元属性 (31)四.建立主要节点和单元 (32)1.主梁节点和单元 (32)2.桥塔节点和单元 (39)3.斜拉索节点和单元 (40)4.鱼刺骨模型模拟斜拉索与主梁连接 (41)五.加载与求解 (43)1.施加边界条件 (43)2.施加自重和公路一级荷载 (43)六.动力特性 (43)1.前十阶模态自振频率 (43)2.前五阶振型图 (44)一.文件名及前处理模式定义工作文件名与工作标题,并进入前处理模式(PREP7):/FILNAME,BRIDGE,1 !定义工作文件名/TITLE,ZHANG HAO NAN’S HOMEWORK !定义工作标题/REPLOT !重新显示/PREP7 !进入PREP7处理器二.截面的建立1.主梁截面根据本桥图纸,截面一共有32个,其中包括截面纵向变化与横向变化,为简化模型,减小工作量,选取其中11个截面作为分析对象,可以大致上反应桥梁的形态,从左到右选取图纸中的截面:截面1:左边跨直线段截面截面8:4号墩墩顶截面截面11:截面第一次横向变化(39M—43M)起始截面截面14:截面第一次横向变化(39M—43M)结束截面截面16:主跨跨中截面截面22:截面第二次横向变化(43M—45M)起始截面截面24:截面第二次横向变化(43M—45M)结束截面截面25:5号墩墩顶截面截面27:截面第二次横向变化(45M—39M)起始截面截面31:截面第二次横向变化(45M—39M)结束截面截面32:6号墩墩顶截面由于截面形式复杂,而变截面需要前后两端的拓扑一致,即两端的形状,线与线的关系必须一致,两端截面的节点能一一对应,不使用辅助软件的条件下,必须对这些截面在输入时进行划分,取单元形状为四边形,方向为逆时针,并定义梁截面为MESH(自定义截面),截面偏移为梁节点偏移至横截面圆点。
桥梁结构的动力特性分析与实践案例分析引言作为建筑工程行业的教授和专家,我多年来从事建筑和装修工作,积累了丰富的经验,并在桥梁结构的动力特性方面有着深入的研究。
本文旨在分享我的经验和专业知识,着重探讨桥梁结构的动力特性分析及相关实践案例。
通过深入分析和实践案例的讨论,将为读者提供有价值的参考和指导。
一、桥梁结构的动力特性分析1. 动力特性的定义与重要性桥梁结构的动力特性指的是结构在受到外部加载(如车辆行驶、地震等)或内部反馈(如风荷载等)作用下的振动响应。
了解桥梁结构的动力特性对于评估结构的安全性、预测结构的振动响应以及设计适当的控制措施至关重要。
2. 动力特性的分析与评估方法桥梁结构的动力特性分析通常包括模态分析、频率响应分析和时程分析等方法。
模态分析用于确定桥梁的固有振动模态和频率,频率响应分析用于确定结构在受到外部激励时的振动响应,而时程分析则是模拟结构在实际使用过程中的动力响应。
3. 动力特性分析的输入参数和工具在进行桥梁结构的动力特性分析时,需要准确输入结构的几何形状、材料参数、边界条件和加载情况等参数。
同时,还需要借助一些专业的分析工具和软件,如有限元软件、动力分析软件等,来完成复杂的计算和分析工作。
二、桥梁结构动力特性实践案例分析1. 桥梁结构在地震作用下的动力特性地震是桥梁结构最常见的激励源之一,对桥梁结构的动力特性有着显著的影响。
在实践中,我们通常通过分析地震动力学响应谱、地震时程分析等方法来评估桥梁结构在地震中的动力反应。
以某高速公路桥梁为例,我们利用有限元软件进行模态分析,确定了桥梁主要的振型和固有频率,并结合地震动力学响应谱,得出了结构在不同地震等级下的地震反应。
2. 桥梁结构在风荷载下的动力特性风荷载对桥梁结构的影响同样不可忽视。
在实践中,我们可以通过风洞试验、数值模拟和频率响应分析等方法来研究桥梁在风荷载下的动力特性。
以一座大型斜拉桥为例,我们采用风洞试验和有限元模型,分析了桥梁在各种风速条件下的振动响应和结构的疲劳性能,从而为设计防风措施提供了科学依据。
斜拉桥计算流程斜拉桥是一种特殊的桥梁结构,其特点是悬臂梁和斜拉索的组合结构。
计算斜拉桥的流程主要包括以下几个步骤:1.确定桥梁的几何形状:包括桥梁的跨度、跨中高度、支座类型等。
这些参数将直接影响桥梁的结构布置和斜拉索的设置。
2.确定斜拉索的布置形式:根据桥梁的跨度和几何形状,选择合适的斜拉索布置形式。
常见的斜拉索布置形式有一塔一平、两塔一平、两塔两平等。
3.确定斜拉索的参数:斜拉索的参数包括索的数量、索的长度、索的倾角等。
这些参数需要根据桥梁的设计要求和结构特点进行确定。
4.进行桥梁静力分析:根据斜拉桥的结构形式和斜拉索的约束条件,进行静力分析。
静力分析的目的是确定桥梁各部分的受力情况,包括桥墩、主梁、斜拉索等。
常用的静力分析方法有平衡法、变位法、刚度法等。
5.进行结构优化设计:根据静力分析的结果,对桥梁的结构进行优化设计。
优化设计的目的是使得桥梁在满足强度要求的前提下,尽可能减小材料消耗、提高整体结构效益。
6.进行斜拉索的预应力设计:斜拉索是斜拉桥的关键组成部分,其预应力设计至关重要。
预应力设计的目的是使斜拉索在正常使用条件下保持足够的预应力,使得桥梁的受力分布合理、稳定。
7.进行斜拉桥的动力分析:斜拉桥在受到外部荷载作用时,会产生动力响应。
动力分析的目的是确定桥梁在不同工况下的振动特性,包括自振频率、模态形态等。
动力分析结果可以用于优化桥梁的设计和确定桥梁的减振措施。
8.编制施工图纸和技术规范:根据设计计算结果,编制施工图纸和技术规范。
施工图纸是斜拉桥施工的依据,其中包括桥梁的布置、构造、尺寸等详细信息。
技术规范是对施工过程和质量要求的规定,以确保施工的安全和质量。
以上是计算斜拉桥的主要流程,其中涉及到的具体计算方法和设计细节会根据具体情况而有所不同。
设计斜拉桥是一项复杂的任务,需要结构工程师和桥梁专家的深入研究和经验积累。
独塔斜拉桥动力特性分析及基频估算摘要:动力特性分析是桥梁结构抗风、抗震计算的重要基础,基频则直接反映了桥梁结构的竖向动力效应(冲击系数)。
本文以两座独塔斜拉桥为工程背景,运用MIDAS/Civil建立有限元模型,通过对比自振特性方面的差异,分析单索面和双索面对独塔斜拉桥动力特性的影响,并以杭州湾南航道桥为原型,在顺桥向通过对称复制形成双塔斜拉桥,在此基础上研究独塔斜拉桥的基频估算公式。
关键词:独塔斜拉桥;动力特性;基频;单索面;双索面独塔斜拉桥按照拉索布置方式,可分为单索面、竖向双索面和斜向双索面等三种类型[1]。
桥梁结构的基频反映了结构的尺寸、类型、建筑材料等动力特性内容,直接反映了冲击系数与桥梁结构之间的关系[2]。
斜拉桥具有密布的频谱,自振特性表现出明显耦合性[3]。
研究表明,独塔单索面斜拉桥第一阶振型为主塔侧向弯曲[4-6];独塔双索面斜拉桥第一阶振型为主梁竖向弯曲[7,8];斜向双索面比单索面的抗扭刚度要大,使得扭转振型出现较晚;此外,塔梁固结体系也可提高主梁的抗扭刚度。
1有限元模型深圳湾公路大桥通航孔桥(以下简称深圳湾通航孔桥)为独塔单索面钢箱梁斜拉桥,主跨跨径180m,桥跨布置为180m+90m+75m。
主梁为单箱四室薄壁钢箱梁;索塔呈倾斜式,总高度为139.053m,塔身中心斜率为1/5.6713,塔柱为对称空心薄壁箱形截面;全桥共设12对斜拉索,呈不对称布置,边跨斜拉索索距3m,主跨标准索距12m,塔上索距4m,斜拉索采用直径7㎜的镀锌高强度低松弛钢丝。
主2号墩为塔墩梁固结,主1、主3、主4号墩上设球形钢支座。
杭州湾跨海大桥南航道桥(以下简称杭州湾南航道桥)为独塔斜向双索面钢箱梁斜拉桥,主跨跨径318m,桥跨布置为100m+160m+318m;主梁为单箱三室扁平流线型钢箱梁;索塔总高度为194.3m,为钻石型空间索塔,塔柱为空心薄壁截面,横梁为预应力混凝土箱型截面;全桥共设20对斜拉索,呈不对称布置,边跨B13~B20号索索距7.5m,其余索距为15m,斜拉索采用直径为7㎜的镀锌高强度低松弛钢丝。
文章编号:100926825(2007)0620297202高低塔斜拉桥动力特性分析收稿日期6225作者简介甘 露(82),男,重庆大学土木工程学院桥梁与隧道工程专业硕士研究生,重庆 5甘 露摘 要:通过对国内某高低塔单索面斜拉桥建立三维空间有限元模型,进行了自振频率、振型的模态分析,总结了该结构体系斜拉桥的动力特性,可为同类桥梁的分析提供参考。
关键词:斜拉桥,有限元模型,振型,动力特征中图分类号:U448.27文献标识码:A引言从1955年瑞典建成世界上第一座现代斜拉桥后,斜拉桥在世界范围内迅速发展,斜拉桥的复兴被称为20世纪下半叶世界桥梁界最重要的事件。
进入21世纪以来,斜拉桥跨径进一步加大。
同时,随着跨度的不断增大,其结构刚度越来越柔,斜拉桥在动力荷载(如风、地震和汽车荷载等)作用下的动力分析和结构性能倍受工程界关注。
斜拉桥的动力特性包括结构的自振频率和振型等,反映了斜拉桥的质量分布和刚度指标,对正确地进行桥梁结构的抗风研究、抗震设计都具有重要意义。
高低塔(姊妹塔)斜拉桥是介于独塔斜拉桥和普通双塔斜拉桥之间的一种特殊桥型,在结构上有自己的特点。
目前这种桥型在国内修建得不多,对其动力特性分析的文献较少,因此有必要对这种桥型的动力特性进行较深入的分析。
1 斜拉桥动力特性计算1.1 计算理论实际斜拉桥结构是一个质量和刚度连续分布的体系,结构具有无限多个自由度,在进行有限元分析时需要将结构离散为只有有限个自由度的有限元计算模型,由于阻尼对结构自振特性的影响很小,因此在求结构的自振频率和振型时,通常忽略阻尼的影响。
设结构具有n 个自由度,则该体系的自由振动可用式(1)表示:MU ″(t)+KU (t)=0(1)式中:M ,K ———分别是结构体系的质量、刚度矩阵;U (t )———体系各节点的位移矢量。
与上述n 个自由度的模型相对应的特征方程可表示为式(2):(K -ω2M )U =0(2)3.4 支护内力施工结束时支护内力如图4~图7所示。