无源光网络(PON)
- 格式:doc
- 大小:331.00 KB
- 文档页数:3
无源光网络(PON)技术1. PON技术的概述无源光网络(PON)技术是最新发展的点到多点的光纤接入技术。
无源光网络由光线路终端(OLT)、光网络单元(ONU)和光分配网络(ODN)组成。
一般其下行采用TDM广播方式、上行采用TDMA(时分多址接入)方式,而且可以灵活地组成树型、星型、总线型等拓扑结构(典型结构为树形结构),PON的本质特征就是ODN全部由无源光器件组成,不包含任何有源电子器件。
这样避免了外部设备的电磁干扰和雷电影响,减少了线路和外部设备的故障率,简化了供电配置和网管复杂度,提高了系统可靠性,同时节省了维护成本,是电信维护部门长期期待的技术,越来越受到业界的关注和重视,发展非常迅猛。
与点到点的有源光网络相比,PON技术的主要特点在于维护简单,成本较低(节省光纤和光接口)和较高的传输带宽,其高性能价格比的特点会使其在很长时间内保持竞争优势,PON一直视被为接入网未来的发展方向。
PON网络由于其简洁、廉价、可靠的网络拓扑结构被普遍认为是宽带接入网的最终解决方案,支持光纤到户FTTH。
与核心网不同的是,FTTH对成本更加敏感。
成本的突破很大程度上意味着条件的成熟。
剖析FTTH成本因素,主要有两个方面,一是设备采购成本,二是运营成本。
根据NTT公布的数据,FTTH的这两项成本已经与高速ADSL基本接近。
值得一提的是,目前ADSL设备的价格下降潜力已经不大,但是FTTH的成本随着规模增长有望继续下降。
从整体上看,在接入网领域光通信酝酿着新一轮的发展。
所以FTTH技术目前已被证实不仅技术上是成熟的,而且经济上是可行的。
继1998年ITU-T通过了基于ATM的G.983系列建议,2001年开始,两大通信标准化组织IEEE和ITU-T开始研究制订新一代PON技术标准,以满足未来宽带接入网的要求。
PON作为FTTH唯一的实现方式,它的三个同胞兄弟APON、EPON和GPON似乎从一开始就注定了要在竞争中不断完善和发展。
pon工作原理Pon工作原理。
PON(Passive Optical Network)即无源光网络,是一种新型的宽带接入技术,它利用光纤作为传输介质,通过被动光分配器将光信号分发给多个用户,实现了光纤接入网络中的光线路共享,是目前最为先进的光纤接入技术之一。
那么,PON是如何实现光信号的传输和分发的呢?下面我们就来详细了解一下PON的工作原理。
首先,PON的结构主要包括OLT(Optical Line Terminal)、ODN(Optical Distribution Network)和ONT(Optical Network Terminal)三个部分。
OLT位于运营商的中心局,负责与用户进行通信,ODN是光分配网络,负责将光信号分发给不同的用户,而ONT 则是用户端的设备,用于接收光信号并转换为电信号供用户使用。
在PON系统中,OLT发送的光信号经过光纤传输到达ODN,然后通过光分配器分发给不同的ONT。
在这个过程中,PON系统采用了TDMA(Time Division Multiple Access)技术,即时间分割多路访问技术,通过时间的划分来实现多用户共享同一条光纤的传输。
具体来说,OLT发送的光信号中包含了不同用户的数据,每个ONT在预定的时间段内接收自己的数据,而在其他时间段则处于休眠状态,这样就实现了多用户共享同一条光纤的传输。
另外,PON系统中还采用了光的波分复用技术,即将不同波长的光信号叠加在同一条光纤上进行传输。
这样一来,不同波长的光信号就相互独立,可以实现不同用户之间的数据隔离,提高了光纤的利用率和传输效率。
总的来说,PON系统的工作原理可以简单概括为,OLT发送的光信号经过光纤传输到达ODN,通过光分配器分发给不同的ONT,采用TDMA技术实现多用户共享同一条光纤的传输,同时采用波分复用技术实现不同用户之间的数据隔离。
这样一来,PON系统既实现了光纤接入网络中的光线路共享,又提高了传输效率和用户间的数据隔离,是一种高效、先进的光纤接入技术。
术语解释:PON:无源光网络,指局端设备(OLT)与远端/用户端设备(ONU)之间采用点对多点无源光分配网(ODN)的光接入系统。
OLT:光线路终端,指光接入网的局端设备。
ONU:光网络单元,指光接入网的远端/用户端设备。
ODN:光分配网,主要由光缆、分光器、光连接器等无源光器件组成的网络。
EPON:基于 IEEE 802.3-2005 标准的以太网无源光网络技术,目前PON口的以太网速率为对称1Gbit/s,目前已有厂商可以提供2.5Gbit/s和10Gbit/s的PON口。
典型光分路比为 1:32。
GPON:基于 ITU-T G.984 标准的 Gbit/s 无源光网络技术,典型速率为下行 2.5Gb/s、上行 1.25Gb/s,典型光分路比为 1:64。
FTTH:光纤到用户家庭,用户接入设备部署在用户家里。
FTTO:光纤到办公室,用户接入设备部署在办公室。
FTTB:光纤到用户楼宇,用户接入设备部署在楼内,典型应用情况下,用户线缆长度在 100m~300m 以内。
FTTCab:光纤到交接箱,用户接入设备部署在小区机房(或室外机柜),典型应用情况下,用户铜缆接入距离为 500m~1km。
FTTC:光纤到路边(Fiber To The Curb ),主要是为住宅用户提供服务的,光网络单元(ONU)设置在路边,即用户住宅附近,从ONU出来的电信号再传送到各个用户,一般用同轴电缆传送视频业务,用双绞线传送电话业务。
FTTN:光纤到节点(fiber-to-the-node),是光纤延伸到电缆交接箱所在处,一般覆盖200~300用户。
FTTN可采用PON接入技术。
FTTD:光纤到桌面(Fiber To The Desk),光纤到桌面就是使用光纤替代传统铜线,将光纤延伸至用户电脑终端,全程实现真正意义上的“全光网络”。
IAD:软交换接入层设备,用于将用户的话音业务分组化并接入到分组交换网络中,其用户端口数一般为几个~几十个。
无源光网络(PON)和有源光网络(AON)技术比较深圳市首迈通信技术有限公司摘要:本文对无源光网络(PON)和有源光网络(AON)在网络结构和技术性能进行比较,分析两者在我国FTTH市场的适应性,阐述我国对FTTH接入技术的选择。
光纤到户(Fiber To The Home——FTTH)接入技术作为未来最终的、一劳永逸的宽带接入解决方案,在日本和美国已得到广泛应用(共有用户约500万)。
在我国FTTH尚处于明芽阶段,尚未有商用的FTTH接入网络,但FTTH在我国已得到了越来越多的关注。
现有的FTTH技术主要包括无源光网络(Passive Optical Network——PON)和有源光网络(Active Optical Network——AON),AON 接入技术又称小区交换有源光网络接入技术(Remote Office AON——RAON),它们各有优势,适合于不同的应用环境。
本文在对它们的网络结构和技术性能进行比较,并结合我国住宅小区的特点,比较上述两种FTTH技术在我国住宅小区应用的优劣,浅析我国住宅小区对FTTH接入技术的选择。
1. 几种FTTH接入技术最早的FTTH技术是光纤从电信运营商中心机房拉至用户家里以点对点(P2P)的方式组网,如图1.1所示。
其能轻易提供100M或1G带宽,网络结构简单,运营维护成本低,支持数据、话音和视频等多种业务,支持目前和未来各种宽带应用的能力。
但这种接入方式显然有其明显缺点:过分依赖光缆资源,光纤链路过长过多;由于中心机房离用户较远(一般平均距离在4—5km),这种大芯数远距离光缆铺设成本非常高,尤其在国内城市几乎不可能;一般中心机房覆盖区域大,用户众多,设备和光缆配线集中在中心机房需要大量空间。
目前,这种P2P的FTTH技术只应用在大客户(如大型企业、重点单位等),在FTTH接入中将很少使用。
目前谈论最多的FTTH接入技术是基于一点对多点(P2MP)网络拓扑结构的无源光网络(Passive Optical Network—PON)的FTTH接入网,如图1.2所示,在靠近用户时使用光分配器(Splitter)实现一点对多点(P2MP)的网络结构。
无源光网络(PON)技术概述摘要:简单介绍无源光网络(PON)技术,包括它们的组成、分类和性能特点,实际应用中的组网方式和光功率计算等。
关键词:无源光网络EPON GPON FTTx我国目前的主流有线宽带接入技术主要包括ADSL、FTTB+LAN、FTTx等,其中光纤接入(FTTx)技术是今后一定时期内的发展方向,它主要通过无源光网络(PON)技术实现。
1 光纤传输的优势光纤传输具有带宽高、线路直径小且重量轻、传输质量高和成本低等优势。
如今光纤的带宽理论上已经超过10GHz,每公里衰减小于0.3db,随着技术的发展,未来10~100Gb/s的传输也将成为可能;光纤即便包裹着保护套,也比同等的铜线尺寸小重量轻;更为突出的是,光纤传输抗干扰能力强,几乎可以忽略附近各种电子噪声源的干扰;此外,传输途中的低损耗可以增加中继器间的距离,因此减少了外部设备的成本,降低了维护运行费用。
2 无源光网络(PON)的组成与分类无源光网络(PON)系统由局端设备(OLT)、用户端设备(ONU/ONT)和光分配网(ODN)组成。
所谓“无源”,是指ODN 全部由无源光分路器和光纤等无源器件组成,不包括任何有源器件。
PON技术采用点到多点的拓扑结构,下行和上行分别采用时分复用(TDM)的广播方式和时分多址(TDMA)方式传输数据。
PON技术可以细分为很多种,目前常见的有APON(ATM PON)、EPON(Ethernet PON)和GPON(Gigabit PON),它们的主要区别体现在数据链路层和物理层的不同。
其中,APON以ATM作为数据链路层;EPON使用以太网作为数据链路层,并扩充以太网使之具有点到多点的通信能力;GPON则结合了APON和EPON的优点,使用ATM/GEM作为数据链路层,能够对多种业务提供良好支持,同时引入了更多的来自电信业的网络管理和运行维护思想。
目前,APON技术由于成本高,宽带低,已经基本被市场淘汰,主流代表技术为EPON 和GPON。
PON技术介绍一、什么是pon无源光网络(PON)技术是一种点到多点的光纤接入技术,它由局侧的OLT(光线路终端)、用户侧的ONU(光网络单元)以及ODN(光分配网络)组成。
一般其下行采用TDM 广播方式、上行采用TDMA(时分多址接入)方式,而且可以灵活地组成树型、星型、总线型等拓扑结构(典型结构为树形结构)。
所谓“无源”,是指ODN 中不含有任何有源电子器件及电子电源,全部由光分路器(Splitter)等无源器件组成,因此其管理维护的成本较低。
EPON 的标准化工作主要由IEEE 的802.3ah即EFM(EthernetFortheFirst Mile,第一英里以太网)工作组来完成,其制定EPON 标准的基本原则是尽量在802.3 体系结构内进行EPON 的标准化工作,工作重点放在EPON 的MAC 协议上,最小程度地扩充以太网MAC 协议。
该标准目前还是草案,EFM 计划在2004 年正式发布EPON 的相关标准。
我国目前正在积极进行EPON 的标准化工作,通信行业标准《接入网技术要求-基于Ethernet 的无源光网络(EPON)》正在制订中。
GPON 是ITU 提出的G比特级的无源光网络。
ITU 在2003 年正式通过并颁布了GPON 标准系列中的三个标准:G.984.1、G.984.2 和G.984.3。
由于GPON 标准是ITU 在APON 标准之后推出的,因此G.984 标准系列不可避免的沿用了G.983 标准的很多思路。
GPON 与EPON 都是千兆比特级的PON 系统,与EPON 力求简单的原则相比,GPON 更注重多业务和QoS保证,因此更受运营商的青睐。
但由于GPON 标准复杂且开发较晚,技术尚不成熟,因此目前GPON 产品还未到商品化阶段。
目前IEEE提出的EPON 实现方案是:在与APON 类似的结构和G.983 的基础上,设法保留APON 的物理层PON,而以Ethernet 技术代替ATM技术作为数据链路层协议,构成一个可以提供更大带宽、更低成本和更强业务能力的新的结合体EPON。
无源光网络(PON)系统概述2008年12月12日 23:38 中电网述PON技术沿革第一代的PON采用TDM信号,例如DS1/E1信号等。
其下行帧(downstream frame)是一个TDM帧,其时间槽是被指派给每一ONT之数据资料。
对任何TDMA协定来说,上传的数据资料必需被分割成几个区块,以脉冲的方式传输。
这些早期的PON从它们的上传TDM时间槽收集数据资料,并在所指定的上传脉冲时间槽中以较高的速度传送。
对语音信号来说,这样可反应出许多语音样品。
对封包数据资料来说,在一个对应的点对点信号中,就只是包在帧里要传输的一堆封包字节。
第二代的PON采用ATM,在将上传资料分割成区块做上传脉冲时提供了一个方便的协议。
ATM则提供一个运载TDM流量和封包的机制来支持QoS。
此时的ATM被认为是下一代网路的基础,并已经被用在DSL系统中的宽带接入。
由OLT分配给ONT的上传脉冲时间槽主要是所允许传送的ATM信元数目。
ITU-T G.983 Broadband PON (B-PON) 系列定义了一个由Full-Service Access Network (FSAN) 联盟所发展出的ATM PON (APON) 系统和协定。
由於IP封包包括更多的用户数据资料,同时IP封包一般都是在以太网帧中,因此在路由的过程中采用封包技术是有道理的。
所以為了避免复杂性以及和ATM相关的高带宽用量,第三代的PON系统就采用了以太网帧。
两个主要的高速PON标准包括了ITU-T(G.984 系列)的Gigabit PON(GPON)和 IEEE(802.3ah)的Ethernet PON (EPON)。
一、B-PON目前大部份在北美和欧洲所采用的PON系统包括了Verizon的雄心勃勃的FiOS专案,它采用ITU-T G.983系列的B-PON。
此G.983系列包括ONT和OLT功能区块的规格、上行和下行帧率及格式、TDMA上行接入协议、实体接口、ONT管理以及控制接口、存活度之强化、以及DBA。
表一是B-PON功能特性之摘要。
下行传输是一串ATM信元的传输,对于155Mbit/s的下行速率,一个下行帧包含56个单元槽,每个单元槽发送53个字节;对于622 Mbit/s 的下行速率,下行帧含有4 x 56=224个单元槽。
每28个单元槽中有一个物理层OAM(PLOAM)信元。
PLOAM包含一个帧定位比特(framing bit)以找出PLOAM 信元。
此外,PLOAM信元是可程控的,并包括一些资讯,例如上行带宽以及OAM消息。
这些ONT使用ATM VPI/VCI地址在下行信号中找出它们的数据资料。
上行帧包含53个时间槽,每个时间槽发送56个字节。
每一个时间槽包含一个ATM/PLOAM信元和24比特(3字节)的其他用量。
该用量包括了防护时间(guard time)、一个前导码(preamble)好让OLT来复原计时以及信号水平,还有一个分隔符号来指示此资料的终点。
该资料群之长度及内容可由OLT来程控。
ONT会根据OLT的要求定时传送PLOAM信元。
从OLT分配的带宽资料会告知每一ONT会使用哪一个上行时间槽(upstream time slots)来传送它的上行资料。
B-PON DBA 协定可让OLT 知道ONT带宽的需求,方式是经由ONT明确的报告或观察ONT传送出来的ATM 空闲信元数目。
在ONT传送空闲信元时OLT会减少其分配带宽,在ONT的上行时间槽中充满了数据资料时,OLT则会增加其带宽。
OLT会定期中止上传,因此可以请任何新的ONT来宣告自己。
新的ONT在此期间传来一个反应,如果有多个新ONT时,会使用随机时间延迟以降低碰撞的风险。
该OLT会给新的ONT发送一个范围的讯息并测量接到此反应之时间,来确定至每一新ONT的距离。
然后该OLT会发送给该ONT一个等化的延迟时间值,让每一个 ONT都会有相同的来回和等化延迟。
如此可使从各ONT出来的上行传输译最小的防护时间到达OLT。
表1 – B-PON、GPON和EPON之特性比较二、EPONIEEE 802.3ah EPON的发展原先是为了发挥以太网技术优势使其成为下一个主要可标准化的TDMA PON协议。
表一为EPON特性摘要。
下行传输是一串以太网络帧。
在点对点的Gigabit以太网连接中,这些帧都是相同的,只有前导码和分隔符号是被修改过的,这样便于搭载逻辑链路标示(logical_link_id field, LLID),而只有LLID才能识别ONU对应的MAC。
在上传的方向中,ONU会在OLT所分配的时间槽中传送以太网络帧的脉冲。
多点控制协议(Multi-Point Control Protocol PDUs, MPCPDUs)是基本的802.3 MAC控制帧,由ONU发送Report消息来请求带宽,OLT 则发送Gate消息分配带宽。
OLT会定期传送Gate讯息至ONU让它们有机会报告它们的带宽需求。
这些ONU亦可将它们的Reports和一个上传数据资料一起传送。
Gate讯息中包括ONU所需的传送开始时间和期间。
带宽请求和分配包括帧间间隔(inter-frame gap)和前向纠(Forward Error Correction)所需的任何带宽。
EPON亦可执行DBA。
EPON之上传时间槽和范围协定和B-PON与GPON不同,因为它没有一个正规的下行和上行帧架构。
OLT和各ONU分别有自己的计数器,每16 ns计数一次。
每一MPCPDU搭载一个时间戳(timestamp),它是发送者计数器之值。
而ONU会将其计数器设至接收到的timestamp值。
OLT通过比较接收到的值和自己的计数器值以决定来回之延迟。
当OLT指派ONU上传开始时间会将此来回延迟列入考虑。
关於ranging和 activation则和B-PON类似,只是当地计数器会帮助OLT不需要将等化延迟时间传送至ONU。
三、GPON第二个FSAN TDMA PON协定是ITU-T G.984系列GPON,是根据B-PON和EPON的经验所建构的。
如同EPON一般,GPON被最优化以搭载以太网帧。
表一为GPON特性摘要。
虽然GPON支援ATM 负载,它亦引入一个新的负载机制,称之为GPON Encapsulation Method (GEM),同时被最优化以便搭载以太网帧。
GEM是采用G.7041 通用成帧规程(Generic Framing Procedure, GFP),不同处是GEM为PON的应用作了帧开销(Frame Overhead)的最佳化,让映射片段(mapping fragments)和整个以太网帧进入GEM 负载,并支持TDM映射。
一般ONT都会提供给用户一个POTS接口和一个高速接口,可能是以太网或DSL接口。
该OLT包括许多PON接口单位,一个给数据业务使用的交换结构(switchfabric)(也可以是一个简单的光纤或语音频道的多路复用器),以及一个网元(NE)控制器。
这些ONT最终还是由NE 控制器来管理,此控制器负责所有的ONT和OAM&P报告。
OLT和ONT共同构成PON系统,其功能就如同一个网元(NE)一般。
光纤的互连可被看成是一个扩展的背板。
在下行方向,OLT将数据资料传输给所有的ONU。
此下行信号包含了所有ONT的下行数据资料、OAM功能的开销字节,以及上行传输所需之同步资讯。
这些ONT在接收它们的下行数据资料时,所依据的是时间槽(timeslots)、信元/封包地址、波长、或者CDMA码。
在上行的方向,这些ONU需要一个媒体访问控制协议(mediumaccesscontrol,MAC) 协议来分用这个无源光网络。
最普遍的MAC协议是时分多址(TDMA),在此协议中每一个ONT都被分配一个时间槽(time slot)用来传输它们的上行数据资料。
在各个ONT上行脉冲传输之间需要一个防护带宽时间(guardbandtime),因此它们的传输不会在OLU接收器上互相重叠。
各ONT信号以光速除以光纤折射指数(约为2m/s)的速率进行传输。
大部份现今的PON系统都通过测距协议(rangingprotocol)来测量此延迟,因此当ONT脉冲以最小的防护时间到达OLT时可以被调整。
基本的TDMAPON系统会预先指定上行带宽的一个固定部份给每一ONT,不管所要传送的资料有多少。
动态带宽分配(DBA)可让上行带宽使用起来更有效率。
在采取DBA的情况下,每一ONT会将所需之带宽通知给OLT,其中包含不同业务等级的带宽请求。
OLT会评估ONT 的需求,分配相应的带宽给下一次上行传输。
此OLT可能包括在DBA运算机制中与数据传输相关的服务等级协议(servicelevelagreement, SLA)资料。
这些带宽的分配都被传送到下游,一般都代表一个共同参考点的传送开始和停止/区间。
在某些系统中,ONT必须在所分配的上行传输槽中决定传输资料之优先次序。
一般PON系统都以同一光纤同时传送上行和下行数据资料。
而方向性之客户有时习惯於在两个方向都用相同的波长,较高速的系统一般都在各方向使用不同的波长。
最普遍的是采用粗波分复用(Coarsewavedivision multiplexing, CWDM),其中使用1490或1550 nm 做下行方向,1310 nm 做上行方向,可将比较廉价的1310 nm激光安装在ONT。
值得注意的是某些PON系统采用1490nm作为下行PON信号传输,而视视频以1550nm的波长作为下行传输。
以WDM做视频重叠对现有的配置提供一简单的升级,并增加下行的容量。
类比视频传输则没有这些问题,因为缺乏数字内容,以及没有包含内数字容的规定。