微波介质特性的测量实验报告
- 格式:doc
- 大小:81.50 KB
- 文档页数:6
南京大学实验报告实验名称:微波测量XXX 161120xxx 物理学院一、引言微波检测根据接收到的电磁波回波信号来判断、获取需要的信息。
介电常数是表征地物介质内部特征最重要的参数,回波信号的参数大小完全取决于介电常数。
因此,对微波技术检测介电常数的方法进行研究具有十分重要的意义。
二、实验目的1、了解和掌握微波开路和短路的含意和实现方法。
2、掌握测量材料微波介电常数和磁导率的原理和方法。
3、了解微波测试系统元部件的作用。
三、实验原理1) 微波技术是近代发展起来的一门尖端科学技术,它在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用。
微波的研究方法和测试设备都与无线电波的不同。
从下图可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。
与无线电波相比,微波有下述几个主要特点:1、波长短(1m—1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。
2.频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。
(规范版)微波测量实验报告微波测量实验报告引言:微的用途极为广泛,已经成为我们日常生活中不可缺少的一项技术。
微通常是指波长从1米(300MHZ)到1毫米(300GHZ)范围内的电磁波,其低频段与超短波波段相衔接,高频端与远红外相邻,由于它比一般无线电波的波长要短的多,故把这一波段的无线电波称为微,可划分为分米波、厘米波和毫米波。
微的基本特性明显,如波长极短、频率极高、具有穿透性、似光性等。
基本特性明显使得微被广泛应用于各类领域。
微技术不仅在国防、通讯、工农业生产的各个方面有着广泛的应用,而且在当代尖端科学研究中也是一种重要手段,如高能粒子加速器、受控热核反应、射电天文与气象观测、分子生物学研究、等离子体参量测量、遥感技术等方面。
近年来,微技术与各类学科交叉衍生出各类微边缘学科,如微超导、微化学、微生物学、微医学等,在各自领域都得到了长足的发展。
微技术是一门独特的现代科学技术,其重要地位不言而喻,因此掌握它的基本知识和实验方法变得尤为重要。
一、实验目的:1、了解微传输系统的组成部分2、了解微工作状态及传输特性3、掌握微的基本测量:频率、功率、驻波比和波导波长二、实验原理:1.微的传输特性.在微波段中,为了避免导线辐射损耗和趋肤效应等的影响,一般采用波导作为微传输线。
微在波导中传输具有横电波(TE波)、横磁波(TM 波)和横电波与横磁波的混合波三种形式。
微实验中使用的标准矩形波导管,通常采用的传输波型是TE10波。
波导中存在入射波和反射波,描述波导管中匹配和反射程度的物理量是驻波比或反射系数。
依据终端负载的不同,波导管具有三种工作状态:(1)当终端接"匹配负载"时,反射波不存在,波导中呈行波状态;(2)当终端接"短路片"、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波状态;(3)一般情况下,终端是部分反射,波导中传输的既不是行波,也不是纯驻波,而是呈混波状态。
微波测量实验报告班级:2012211xxx姓名:xxxx学号:201221xxxx《微波测量》课程实验实验一熟悉微波同轴测量系统一、实验目的1、了解常用微波同轴测量系统的组成,熟悉其操作和特性。
2、熟悉矢量网络分析仪的操作以及测量方法。
二、实验内容1、常用微波同轴测量系统的认识,简要了解其工作原理。
微波同轴测量系统包括三个主要部分:矢量网络分析仪、同轴线和校准元件或测量元件。
各部分功能如下:1)矢量网络分析仪:对RF领域的放大器、衰减器、天线、同轴电缆、滤波器、分支分配器、功分器、耦合器、隔离器、环形器等RF器件进行幅频特性、反射特性和相频特性测量。
2)同轴线:连接矢量网络分析仪和校准元件或测量元件。
3)校准元件:对微波同轴侧量系统进行使用前校准,以尽量减小系统误差。
测量元件:待测量的原件(如天线、滤波器等),可方便地通过同轴线和矢量网络分析仪连起来。
2、掌握矢量网络分析仪的操作以及测量方法。
注意在实验报告中给出仪器使用报告包括下列内容:a)矢量网络分析仪的面板组成以及各部分功能b) S 参数测量步骤1、将一个待测的二端口网络通过同轴线接入矢量网络分析仪,组成一个微波同轴测量系统,如下图所示:2、在矢量网络分析仪上【measure 】键选择测量参数,按下后显示屏的软键菜单会显示[S11]、[S12]、[S21]、[S22]四个待选测试参数,通过按下相应软键来选择要测量的S 参数。
利用光标读取测量结果:按下【marker 】键就会在显示屏上的测试曲线上显示光标,对应显示屏的软键菜单处会显示光标编号[1]、[2]、[3]、[4]、[5],按下相应软键会显示对应编号的光标,默认会显示1号光标。
通过旋转旋钮键就会移动光标的位置,而在显示屏右上角会显示光标对应位置的频率和测量值。
而通过数字键输入频率值也可以确定光标的位置。
3、然后经过SOLT 校准,消除系统误差;4、在矢量网络分析仪上调处S 参数测量曲线,读出相应的二端口网络的S 参量,保存为s2p 数据格式和cst 数据格式的文件。
微波基本参数测量实验报告摘要:微波系统中最基本的参数有频率,驻波比,功率等。
本实验通过了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,运用微波测量的基本技术,对微波的频率,驻波比,功率进行测量。
关键词:频率驻波比功率实验仪器引言:微波是一种用途极为广泛,也是我们日常生活必不可少的技术。
微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
微波能通常由直流电或50Hz交流电通过一特殊的器件来获得。
可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。
电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。
在电真空器件中能产生大功率微波能量的有磁控器、多腔速调器、微波三、四极管、行波器等。
在目前微波加热领域特别是工业应用中使用的主要是磁控管及速调管。
微波技术是一门独特的现代科学技术,其重要地位不言而喻,因此掌握它的基本知识和实验方法变得尤为重要。
1.实验目的1.了解各种微波器件;2.了解微波工作状态机传输特性;3.熟悉驻波、衰减、波长(频率)和功率的测量;2实验原理1.1微波频率的测量频率是微波设备的重要参数,微波仪器通过测量其工作频率来检测其是否正常运行。
由于受到器件最高运行速度的限制(目前,高速计数器件PECL计数器的最高输入频率为2.2GHz),直接利用计数器测量频率,其测量范围有限。
不过在本实验中,我们将采用直接测量法。
使用外差式频率计或是数字频率计就能直接读出频率的数值。
微波实验报告微波实验报告引言:微波是一种电磁波,波长在1mm到1m之间,频率范围为300MHz到300GHz。
微波在通信、雷达、医学、食品加热等领域有着广泛的应用。
本实验旨在通过实际操作和观察,了解微波的特性和应用。
实验一:微波传播特性实验目的:观察微波在不同介质中的传播特性。
实验器材:微波发生器、微波接收器、不同介质样品(如玻璃、木头、金属等)。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将不同介质样品放置在微波传播路径上,观察微波的传播情况。
实验结果:观察到微波在不同介质中的传播情况不同。
在玻璃中,微波能够较好地传播,而在金属中,微波会被完全反射或吸收。
实验二:微波反射和折射实验目的:观察微波在不同介质间的反射和折射现象。
实验器材:微波发生器、微波接收器、反射板、折射板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将反射板放置在微波传播路径上,观察微波的反射情况。
3. 将折射板放置在微波传播路径上,观察微波的折射情况。
实验结果:观察到微波在反射板上会发生反射,反射角等于入射角。
在折射板上,微波会发生折射,根据折射定律,入射角和折射角之间存在一定的关系。
实验三:微波干涉实验目的:观察微波的干涉现象。
实验器材:微波发生器、微波接收器、干涉板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将干涉板放置在微波传播路径上,观察微波的干涉情况。
实验结果:观察到微波在干涉板上会出现明暗相间的干涉条纹。
根据干涉现象的特点,可以推测微波是一种具有波动性质的电磁波。
实验四:微波加热实验目的:观察微波对物体的加热效果。
实验器材:微波发生器、微波接收器、食物样品。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将食物样品放置在微波传播路径上,观察微波对食物的加热效果。
实验结果:观察到微波对食物样品有较好的加热效果,食物在微波的作用下能够迅速加热。
微波光学实验报告微波光学实验报告引言:微波光学是研究微波在物质中的传播和相互作用的学科。
通过实验,我们可以深入了解微波在不同材料中的行为,探索微波的传播规律和相互作用机制。
本实验旨在通过一系列实验,探索微波在不同介质中的传播特性和衍射现象。
实验一:微波在不同介质中的传播特性我们首先进行了一项实验,研究微波在不同介质中的传播特性。
我们准备了几个不同介质的样品,包括空气、水和玻璃。
我们将微波源放置在一个固定的位置,然后在不同介质中测量微波的传播速度。
实验结果显示,在空气中,微波的传播速度最快;而在水和玻璃中,微波的传播速度较慢。
这说明微波在不同介质中的传播速度与介质的性质有关。
实验二:微波的衍射现象接下来,我们进行了微波的衍射实验。
我们使用了一块有孔的金属板作为衍射物,将微波源放置在一定距离外的位置,并在屏幕上观察到达的微波图案。
实验结果显示,当微波通过孔洞时,会发生衍射现象,形成一系列明暗相间的条纹。
这是因为微波在通过孔洞时会发生弯曲和扩散,导致波前的干涉和相消干涉。
通过观察衍射图案,我们可以了解微波的传播特性和波动性质。
实验三:微波与介质的相互作用最后,我们进行了微波与介质的相互作用实验。
我们选择了一块金属板和一块塑料板作为样品,将它们分别放置在微波源的前方,并测量微波通过样品后的强度变化。
实验结果显示,金属板会完全反射微波,导致后方几乎没有微波信号;而塑料板则会部分吸收微波,导致后方微波的强度减弱。
这表明微波与不同材料之间存在着不同的相互作用机制,这对于微波的应用具有重要意义。
结论:通过以上实验,我们深入了解了微波在不同介质中的传播特性和相互作用机制。
微波光学的研究对于无线通信、雷达技术等领域具有重要意义。
通过进一步的研究和实验,我们可以进一步探索微波的性质和应用,为相关领域的发展做出贡献。
总结:微波光学实验是研究微波在物质中传播和相互作用的重要手段。
通过实验,我们可以了解微波在不同介质中的传播特性、衍射现象和与介质的相互作用。
第1篇一、实验目的1. 了解微波的基本特性和传播规律。
2. 掌握微波在波导和自由空间中的传播特性。
3. 研究微波与材料的相互作用,如反射、吸收和穿透。
4. 掌握微波测量技术,包括驻波比、衰减和功率测量等。
二、实验原理微波是一种电磁波,其频率范围在300MHz到300GHz之间。
微波具有以下特性:1. 频率高、波长短:微波的频率远高于无线电波,波长较短,因此其衍射和穿透能力较弱。
2. 方向性好:微波传播时,能量主要集中在传播方向上,因此具有较好的方向性。
3. 穿透力强:微波可以穿透某些材料,如纸张、木材和塑料等,但被金属等导电材料反射。
4. 衰减快:微波在传播过程中,会受到大气、水分和杂质等因素的影响,导致能量衰减。
三、实验仪器与设备1. 微波发射器:用于产生微波信号。
2. 微波接收器:用于接收微波信号。
3. 波导:用于传输微波信号。
4. 波导窗:用于连接波导和自由空间。
5. 驻波测量线:用于测量驻波比。
6. 衰减器:用于调节微波功率。
7. 功率计:用于测量微波功率。
四、实验步骤1. 设置实验装置:将微波发射器、波导、波导窗和微波接收器连接好,并调整好实验参数。
2. 测量驻波比:调整微波发射器的频率和功率,观察驻波测量线上的电压分布,记录驻波比。
3. 测量衰减:在波导中插入衰减器,调整衰减量,测量微波功率,记录衰减值。
4. 研究微波与材料的相互作用:将不同材料放置在波导和自由空间之间,观察微波的反射、吸收和穿透情况,记录相关数据。
5. 分析实验数据:根据实验数据,分析微波的特性,如频率、波长、方向性、穿透力和衰减等。
五、实验结果与分析1. 驻波比测量:实验结果显示,驻波比随频率变化而变化,在谐振频率附近驻波比最小。
2. 衰减测量:实验结果显示,微波在波导中传播时,衰减随衰减器插入深度增加而增加。
3. 微波与材料的相互作用:实验结果显示,微波被金属等导电材料反射,被非导电材料吸收或穿透。
六、结论通过本次实验,我们了解了微波的基本特性和传播规律,掌握了微波测量技术,研究了微波与材料的相互作用。
(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。
微波成为一门技术科学,开始于20世纪30年代。
微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。
在第二次世界大战中,微波技术得到飞跃发展。
因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。
至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。
【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。
2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。
3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。
微波介质特性的测量实验报告实验目的:1.了解微波介质的特性。
2.掌握微波介质特性测量的实验方法。
3.分析和讨论不同微波介质的特性差异。
实验器材:1.微波源2.吸收系统3.驻波系统4.反射凸面镜5.半波片6.波导过渡件7.参数测量平台8.反射器板实验原理:微波介质是指在微波频段(300MHz-300GHz)内对电磁波具有一定的传播和反射特性的物质。
微波介质的特性主要包括介电常数、导电率、磁导率等。
本实验通过测量微波在不同介质中的传播和反射特性,来分析不同介质的特性差异。
实验步骤:1.首先,将微波源的输出接到吸收系统中,保证接口的连接稳定。
2.将驻波系统的进射口与吸收系统连接起来,确保连接紧密。
3.选择不同的介质,如水、巴铁、木块等,将介质放入吸收系统中。
每次测量前都要确保吸收材料的尺寸与吸收系统的要求相匹配。
4.调节微波源的频率和功率,记录下读数。
5.将反射凸面镜放在驻波系统的反射位置,调整角度使得反射的微波尽可能衰减。
6.在实验过程中,可以根据需要采用半波片来调节微波的偏振态。
7.将波导过渡件连接到驻波系统的出射口,并将其与参数测量平台相连。
8.通过参数测量平台,测量微波的传播特性和反射特性。
9.将测得的数据记录下来,并进行数据分析和讨论。
实验结果:通过实验测量,我们可以得到不同介质的微波传播和反射特性。
例如,我们可以观察到在一些介质中微波的传播速度较快,而在另一些介质中传播速度较慢。
此外,我们还可以观察到在一些介质中微波的反射较强,而在另一些介质中反射较弱。
实验讨论:1.根据测得的数据,我们可以计算出不同介质的介电常数和导电率,并与已知的理论值进行比较,从而分析实验结果的准确性和可靠性。
2.在实验过程中,我们可能会遇到一些误差,如连接不紧密、测量仪器误差等。
可以通过合理安排实验步骤和提高测量仪器的精度来减小误差。
3.实验中使用的不同介质可能具有不同的微波特性,例如对微波的吸收、反射和散射等。
可以通过进一步研究不同介质的物理特性,来分析介质对微波的响应机制。
北京邮电大学电磁场与微波测量实验学院:电子工程学院班级:2013211203组员:组号:第九组实验六 用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。
微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。
一、 实验目的1. 了解谐振腔的基本知识。
2. 学习用谐振腔法测量介质特性的原理和方法二、 实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。
反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。
谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。
谐振腔的有载品质因数QL 由下式确定:210f f f Q L -=式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。
谐振腔的Q 值越高,谐振曲线越窄,因此Q 值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。
如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。
图1 反射式谐振腔谐振曲线 图2 微找法TE10n 模式矩形腔示意图电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tan δ可由下列关系式表示:εεε''-'=j , εεδ'''=tan ,其中:ε,和ε,,分别表示ε的实部和虚部。
选择TE10n ,(n 为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x =α/2,z =l /2处,且样品棒的轴向与y 轴平行,如图2所示。
假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d /h<1/10),y 方向的退磁场可以忽略。
实验 微波的传输特性和基本测量实验目的1、 了解电磁波在矩形波导中传播的特点,学会用驻波测量线测量波的纵向分布。
2、 掌握一些微波基本量的测量基本技术,学会测量驻波比、波导波长、检测信号频率等。
3、 学会阻抗调配。
实验仪器微波窄带扫频信号源、衰减器、频率计(波长计)、驻波测量线等。
一、实验原理微波是指波长范围在11mm m ,即频率范围在300300MHz GHz 的电磁波。
微波信号系统中最基本参数有频率、驻波比、功率等。
1. 矩形波导及其中的10TE 波:矩形波导是一个横截面为a b ⨯矩形的均匀、无损耗的波导管。
如下图1。
本实验室使用的是国际通用的标准波导,其内壁尺寸为:22.86,10.16a mm b mm ==。
波导中传播的电磁波被完全局限在波导管内。
假设矩形波导管内壁为理想导体且波导沿z 轴方向为无限长,由麦克斯韦电磁理论可求得矩形波导中10TE 波的各电磁场分量为:0x E =()0s i n j t z y x E E e a ωβπ-⎛⎫= ⎪⎝⎭图1 矩形波导结构图0z E =()0s i n j t z x x H E e a ωββπωμ--⎛⎫= ⎪⎝⎭ 0y H =()02s j t z z x H j E c o e a a ωβππωμ-⎛⎫= ⎪⎝⎭波导中电磁场的电场强度分布如图2所示。
电磁场的结构具有以下特性:⑴0,0z E H =≠,电场在z 方向无分量,为横电波;⑵电磁场沿x 方向为一个驻立半波,沿y 方向为均匀分布;⑶电磁场沿z 方向为行波状态,在该方向,电磁场分量y E 与x H 的分布规律相同。
2.实验装置其它元件:xE 图2 10TE 波的电场分量分布图标准短路片待测阻抗 匹配负载 阻抗调配器3.传输线的特性参量与工作状态:在波导中常用相移常数、波导波长、驻波系数等特性参量来描述波导中的传输特征,对于矩形波导中的10TE 波: 自由空间波长:c f λ=截止波长:2c a λ=波导波长:g λ= 相移常量:2g βπλ=反射系数:E E Γ=入反驻波比: m i n M a x E E ρ=由此可见,微波在波导中传输时,存在着一个截止波长c λ,波导中只能传输c λλ<的电磁波。
一、实验背景微波技术是一门涉及电磁场、微波电路、微波系统等方面的综合性学科。
在当今信息时代,微波技术已经广泛应用于通信、雷达、遥感、医学等领域。
为了更好地掌握微波技术的基本原理和应用,我们进行了微波实验,通过实际操作加深对微波技术的理解和认识。
二、实验目的1. 理解微波的基本原理,掌握微波传播、传输和辐射的特性。
2. 掌握微波测量技术,包括S参数测量、阻抗测量、衰减测量等。
3. 学习微波元件和微波系统的设计方法,提高动手能力。
4. 培养团队协作精神,提高沟通与交流能力。
三、实验内容1. 微波基本原理实验通过实验,我们学习了微波传播、传输和辐射的基本原理。
实验中,我们观察了微波在介质中的传播特性,掌握了微波在传输线中的传输特性,了解了微波在空间中的辐射特性。
2. 微波测量技术实验在微波测量技术实验中,我们学习了S参数测量、阻抗测量、衰减测量等基本方法。
通过实验,我们掌握了使用矢量网络分析仪进行S参数测量的操作步骤,了解了S参数在不同频率下的变化规律;同时,我们还学会了使用阻抗测量仪和衰减测量仪进行阻抗和衰减测量,为后续的微波元件和微波系统设计奠定了基础。
3. 微波元件和微波系统设计实验在微波元件和微波系统设计实验中,我们学习了微波元件的设计方法,包括阻抗匹配、滤波器设计、耦合器设计等。
通过实验,我们掌握了使用阻抗匹配器实现负载匹配的方法,了解了滤波器、耦合器等微波元件的基本原理和设计方法。
四、实验心得1. 理论与实践相结合通过本次微波实验,我深刻体会到理论与实践相结合的重要性。
在实验过程中,我们将理论知识应用于实际操作,不仅加深了对微波技术的理解,还提高了动手能力。
2. 团队协作与沟通实验过程中,我们分成小组进行操作,相互协作,共同完成实验任务。
在这个过程中,我们学会了如何与他人沟通、协调,提高了团队协作能力。
3. 严谨的实验态度实验过程中,我们严格按照实验步骤进行操作,认真记录实验数据,对实验结果进行分析和总结。
实验⼆_微波元件特性参数测量实验报告微波技术基础实验实验名称:微波元件特性参数测量班级:通信学号:姓名:2016年3⽉31⽇⼀实验⽬的1、掌握利⽤⽮量⽹络分析仪扫频测量微带谐振器Q 值的⽅法。
2、学会使⽤⽮量⽹络分析仪测量微波定向耦合器的特性参数。
3、掌握使⽤⽮量⽹络分析仪测试微波功率分配器传输特性的⽅法。
⼆实验原理1. 微波谐振腔Q 值的测量品质因数Q 是表征微波谐振系统的⼀个重要的技术参量,品质因素Q 描述了谐振系统频率选择性的优劣及电磁能量损耗程度。
它定义为0022T ll W W W Q W PT P ππω=== 其中l P 为腔的平均损耗功率,W 为腔内的储能。
品质因素Q 的测量⽅法很多,例如:功率传输法、功率反射法、阻抗法等等,通常可根据待测谐振腔Q 值的⼤⼩、外界电路耦合的程度及要求的精度等,选⽤不同的测量⽅法。
本实验主要运⽤扫频功率传输法来测量微带谐振器的Q 值。
功率传输法是根据谐振腔的功率传输特性来确定它的Q 值。
图2-1表⽰测量谐振腔功率特性的⽅框图。
图2-1 测量谐振腔功率传输特性的⽅框图当微波振荡源的频率逐渐改变时,由于谐振腔的特性,传输到负载的功率将随着改变,它与频率的关系曲线如图2-2所⽰。
图2-2 谐振腔传输功率与频率的关系曲线根据功率传输法测量谐振腔的等效电路可推得,谐振腔两端同时接有匹配微波源和匹配负载时的有载品质因数为0021L f f Q f f f==-? (2-1)式(2-1)中0f 为谐振腔的谐振频率,1f 、2f 是传输功率2P ⾃最⼤值下降到⼀半时的“半功率点”的频率。
2f 与1f 之间的差值f ?为谐振频率的通频带。
2. 微波定向耦合器2.1 ⼯作原理与特性参数定向耦合器是⼀种有⽅向性的微波功率分配器件,通常有波导、同轴线、带状线及微带线等⼏种类型。
理想的定向耦合器⼀般为互易⽆损四⼝⽹络,如图2-3所⽰。
定向耦合器包含主线和副线两部分,在主线中传输的微波功率经过⼩孔或间隙等耦合机构,将⼀部分功率耦合到副线中去,由于波的⼲涉和叠加,使功率仅沿副线中的⼀个⽅向传输(称正⽅向),⽽在另⼀个⽅向⼏乎没有或极少功率传输(称反⽅向)。
微波基本参数的测量【目的要求】1.学习微波的基本知识,了解波导测量系统,熟悉基本微波元件的作用;2.了解微波在波导中传播的特点,掌握微波基本测量技术;3.掌握驻波测量线的正确使用方法;4.掌握电压驻波系数的测量原理和方法。
【仪器用具】微波参数测试系统,包括:三厘米固态信号源,三厘米驻波测量线,选频放大器,精密衰减器,隔离器,谐振式频率计(波长表),匹配负载,晶体检波器,单螺调配器等。
【原理】微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。
从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。
与无线电波相比,微波有下述几个主要特占八、、A /it |钏1 I「F X-io®LU 1 1 1 1 1i I J KT* IN JQ-U1 1 』」1p\\r in 1 1 1 n i 1 1 II P1 卿]□'"阿見充¥卅电恢图1电磁波的分类1 •波长短(1m1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。
2 •频率高:微波的电磁振荡周期(10-9—10-12s)很短,已经和电子管中电子在电极间-9器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
(实验报告)微波基本参量测量【摘要】微波技术是一门独特的现代科学技术,我们应掌握它的基本知识和测量的方法。
对微波测试系统的工作原理的分析研究与基本参量的测量,能使我们掌握微波的基本知识,了解其传播的特点,并且我们还能学会对功率、驻波比和频率等量的测量方法。
另外,在实验过程中我们还能熟悉功率计等实验器材的工作原理和物理学中对有关物理量的测量的思想方法。
【关键词】微波、功率、驻波比、频率、测量【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
微波的特点有以下几点:第一.微波波长很短。
具有直线传播的性质,能在微波波段制成方向性极强的无线系统,也可以接收到地面和宇宙空间各种物体发射回来的微弱回波,从而确定物体的方向和距离。
这使微波技术广泛的应用于雷达中。
第二.微波的频率很高 ,电磁振荡周期很短。
比电子管中电子在电极经历的时间还要小。
普通电子管不能用作微波振荡器、放大器和检波器,而必须用原理上完全不同的微波电子管来代替。
第三.许多原子和分子发射和吸收的电磁波的波长正好处在微波波内。
用这特点研究分子和原子的结构,发展了微波波谱学和量子无线电物理学等尖端学科, 还研制了低噪音的量子放大器和极为准确的分子钟与原子钟。
第四.微波可以畅通无阻的穿过地球上空的电离层。
微波波段为宇宙通讯、导航、定位及射电天文学的研究和发展提供了广阔的前景。
【正文】本实验中,我们首先要引入两个基本概念:反射系数与驻波比。
反射系数的定义:波导出某横截面出的电场反射波与入射波的复数比。
嘉应学院物理学院近代物理实验实验报告实验项目:实验地点:班级:姓名:座号:实验时间:年月日一、实验目的:1.对微波材料的介质特性的测量,有助于获得材料的结构信息;2.研究了的微波特性和设计微波器件。
3.本实验采用谐振腔微扰法测量介质材料的特性参量,学习反射式腔测量微波材料的介电常数ε'和介电损耗角tgδ的原理和方法。
二、实验仪器和用具:介质材料:半径0.7 mm 长度10.16 mm白色样品:聚四氟乙烯;透明样品:有机玻璃;褐色样品:黑焦木三、实验原理:谐振腔是两端封闭的金属导体空腔,具有储能、选频等特性,常见的谐振腔有矩形和圆柱形两种,本实验采用反射式矩形谐振腔,谐振腔有载品质因数可由210f f f Q -=测定,其中0f 为谐振腔振频率,1f ,2f 分别为半功率点频率。
图8.2.1所示是使用平方律检波的晶体管观测谐振曲线0f ,1f 和2f 的示意图。
如果在矩形谐振腔内插入一圆柱形的样品棒,样品在腔中电场的作用下就会被极化,并在极化的过程中产生的能量损失。
因此,谐振腔的谐振频率和品质因数将会变化。
根据电磁场理论,电介质在交变电场的作用下,存在转向极化,且在极化时存在驰豫,因此它的介电常量为复数:ε)( '''00εεεεεj r -==式中ε为复电常量,0ε为真空介电常量,r ε为介质材料的复相对介电常量,'ε、''ε分别为复介电常量的实部和虚部。
由于存在驰豫,电介质在交变电场的作用下产生的电位移滞后电场一个相位角δ,且有tg δ=''ε/'ε因为电介质的能量损耗与tg δ成正比,因此tg δ也称为损耗因子或损耗角正切。
如果所用的样品体积远小于谐振腔体积,则可认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可用微扰法处理。
选择p TE 10(p 为奇数)的谐振腔,将样品置于谐振腔内的微波电场最强而磁场最弱处,即x=a/2,z=l/2处,且样品棒的轴向与y 轴平行。
年级班号实验日期:姓名:老师评定:实验题目:微波传输特性和基本测量一.实验目的:1.学会使用基本微波器件。
2.了解微波振荡源的基本工作特性和微波的传输特性。
掌握频率、功率以及驻波比等基本量的测量。
二.实验仪器:YM123标准信号发生器,GX2C小功率计,YM3892选频放大器,TC26波导型测量线,(TS7厘米波导精密衰减器,PX16直读式频率计),BD20三厘米波导系统,探头若干三、实验原理:1.微波的传输特性为了避免导线辐射损耗和趋肤效应等的影响,采用标准矩形波导管为微波传输线,并用TE10波型。
波导管具有三种工作状态:①当终端接“匹配负载”时,反射波不存在,波导中呈行波状态;②当终端接“短路片”、开路或接纯电抗性负载时,终端全反射,波导中呈纯驻波状态;③一般情况下,终端是部分反射,波导中传输的既不是行波,也不是纯驻波,而是呈行驻波状态。
2.微波频率的测量用吸收式频率计PX16(直读式),测量范围8.2GHZ-12.4GHZ,误差≤±0.3%,当传输线中相当一部分功率进入频率计谐振腔内,而另一部分从耦合元件处反射回去。
当调节频率计,使其自身空腔的固有频率与微波信号频率相同时产生谐振,用选频放大器测量,年级 班 号 实验日期:姓名: 老师评定:信号源须用内方波,重复频率为1KHZ 左右,谐振时可从选放上观察到信号幅度明显减少,以减幅最大位置为判断频率测量值的论据。
3. 微波功率的测量用GX2C 小功率计配小功率探头直接测量连续或脉冲调制的射频平均功率。
GX2C 属于热电偶型,热电偶膜片既是传输线终端负载电阻,又见电磁场能→热能→直流电动势的转换器件。
4. 波导波长λg 的测量λg 在数值上为相邻两个驻波极值点(波腹或波节)距离的两倍,常采用测定驻波极小点的位置来求出λg 。
(1)用平均值法。
找出两个相邻最小点的位置 D 1和D 2,移动探针在驻波最小点D 1左右找出两个具有相同幅度(由选放读出)的位置d 1和d 2,同样找出D 2点左右的 d 3和d 4,则2211d d D += 2432d d D += )()(2214312d d d d D D g +-+=-=λD 1 、D 2的位置在测量线上通过标尺读出。
嘉应学院物理学院近代物理实验
实验报告
实验项目:
实验地点:
班级:
姓名:
座号:
实验时间:年月日
一、实验目的:
1.对微波材料的介质特性的测量,有助于获得材料的结构信息;
2.研究了的微波特性和设计微波器件。
3.本实验采用谐振腔微扰法测量介质材料的特性参量,学习反射式腔测量微
波材料的介电常数ε'和介电损耗角tgδ的原理和方法。
二、实验仪器和用具:
介质材料:半径0.7 mm 长度10.16 mm
白色样品:聚四氟乙烯;
透明样品:有机玻璃;
褐色样品:黑焦木
三、实验原理:
谐振腔是两端封闭的金属导体空腔,具有储能、选频等特性,常见的谐振腔有矩形和圆柱形两种,本实验采用反射式矩形谐振腔,谐振腔有载品质因数可由
210
f f f Q -=
测定,其中0f 为谐振腔振频率,1f ,2f 分别为半功率点频率。
图8.2.1所示是使用平方律检波的晶体管观测谐振曲线0f ,1f 和2f 的示意图。
如果在矩形谐振腔内插入一圆柱形的样品棒,样品在腔中电场的作用下就会被极化,并在极化的过程中产生的能量损失。
因此,谐振腔的谐振频率和品质因数将会变化。
根据电磁场理论,电介质在交变电场的作用下,存在转向极化,且在极化时存在驰豫,因此它的介电常量为复数:
ε)( '''00εεεεεj r -==
式中ε为复电常量,0ε为真空介电常量,r ε为介质材料的复相对介电常量,'ε、''ε分别为复介电常量的实部和虚部。
由于存在驰豫,电介质在交变电场的作用下产生的电位移滞后电场一个相位角δ,且有
tg δ=''ε/'ε
因为电介质的能量损耗与tg δ成正比,因此tg δ也称为损耗因子或损耗角正切。
如果所用的样品体积远小于谐振腔体积,则可认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可用微扰法处理。
选择p TE 10(p 为奇数)的谐振腔,将样品置于谐振腔内的微波电场最强而磁场最弱处,即x=a/2,z=l/2处,且样品棒的轴向与y 轴平行。
假设介质棒实均匀的,而谐振腔的品质因数又较高,根据谐振腔的微扰理论可得下列关系式
()
.41,120
''0'00V V Q V V f f f S L S S εε=∆
--=- 如此可求得 (),/4/1,1/20''0
00'V V Q V V f f f S L S S ∆=+-=εε
其中0f ,S f 分别为谐振腔放入样品前后的谐振频率,S V ,0V 分别为谐振腔体积和样品体积,()L Q /1∆为样品放入前后谐振腔又载品质因数的变化,即
.1110L LS L Q Q Q -=⎪⎪⎭
⎫ ⎝⎛∆ LS Q ,0L Q 分别为样品放入前后的谐振腔有载品质因数。
四、实验步骤:
一、 准备
按照要求顺序连接实验装置,用固态源作微波源。
打开固态源电源开关,选择等幅、扫频方式,扫描输出接至示波器CH1,晶体检波器输出接至示波器CH2,示波器显示方式选择双路同时显示。
二、 测定介电常量'ε和介电损耗角正切tg δ。
1. 放入样品前,调节频率调节旋钮、可变衰减器、晶体检波器,使谐振腔
谐振,调节单螺调配器,使谐振曲线两边等高。
调节波长表,测量谐振腔谐振频率0f 和半功率点频率1f 和2f 。
(注意:波长表的出厂序号与波长表频率-刻度对照表序号要对应)
2.放入样品后,测量谐振腔谐振频率'0f 和半功率点频率'1f 和'2f 。
3.从谐振腔标签上记下谐振腔的长、宽、高,计算其体积0V ;记下样品半
径、长度,计算体积S V 。
4.计算样品的介电常量'ε和介电损耗角正切tg δ
五、实验数据记录
:
六、实验数据处理:
实验总结部分
七、实验结论与分析及思考题解答
1、对实验进行总结,写出结论:
2、思考题解答:。