积分变换第6讲
- 格式:ppt
- 大小:515.00 KB
- 文档页数:35
第一章 傅里叶积分变换所谓积分变换,实际上就是通过积分运算,把一个函数变成另一个函数的一种 变换.这类积分一般要含有参变量,具体形式可写为:()()ττF dt t f t k ba−−→−⎰记为),(这里()t f 是要变换的函数,称为原像函数;()τF 是变换后的函数,称为像函数;()τ,t k 是一个二元函数,称为积分变换核 .数学中经常利用某种运算先把复杂问题变为比较简单的问题,求解后,再求其逆运算就可得到原问题的解. 如,初等数学中,曾经利用取对数将数的积、商运算化为较简单的和、差运算; 再如,高等数学中的代数变换,解析几何中的坐标变换,复变函数中的保角变换, 其解决问题的思路都属于这种情况.基于这种思想,便产生了积分变换.其主要体现在: 数学上:求解方程的重要工具; 能实现卷积与普通乘积之间的互相转化. 工程上:是频谱分析、信号分析、线性系统分析的重要工具.1.傅里叶级数的指数形式在《高等数学》中有下列定理:定理1.1 设()t f T 是以()0T T <<∞为周期的实函数,且在,22T T ⎛⎫-⎪⎝⎭上满足狄利克雷条件,即()t f T 在一个周期上满足:(1)连续或只有有限个第一类间断点; (2)只有有限个极值点. 则在连续点处,有()()∑∞=++=10sin cos 2n n n T t n b t n a a t f ωω (1)其中()dt t f T a TT T ⎰-=2201,()() ,2,1cos 122==⎰-n tdt n t f T a TT T n ω,()() .2,1sin 122==⎰-n tdt n t f T b T T T n ω,在间断点0t 处,(1)式右端级数收敛于()()20000-++t f t f T T .又2cos φφφi i e e -+=,ie e i i 2sin φφφ--=,.于是()∑∞=--⎪⎪⎭⎫⎝⎛-+++=10222n t in t in nt in t in n T i e e b e e a a t f ωωωω∑∞=-⎪⎭⎫⎝⎛++-+=10222n t in n n t in n n e ib a e ib a a ωω 令,200a c =2n nn ib a c -=, 2n n n ib a c +=-, ,,3,2,1 -n 则 ()∑∞-∞==n tin nT ec t f ω()()2201212i t i t in t i t i t in t n n c c e c e c e c e c e c e ωωωωωω------=+++⋅⋅⋅++⋅⋅⋅+++⋅⋅⋅++⋅⋅⋅(2)(2)式称为傅里叶级数的复指数形式,具有明显的物理意义. 容易证明n c 可以合写成一个式子 ,即()() ,2,1,0122±±==--⎰n dt e t f T c t in TT T n ω. (3)2.傅里叶积分任何一个非周期函数 ()t f , 都可看成是由某个周期函数()t f T 当T →+∞时转化而来的. 即()t f T T ∞→=lim ()t f =.由公式(2) 、(3)得()()t in n TT in T T e d e f T t f ωωτττ∑⎰∞-∞=--⎥⎦⎤⎢⎣⎡=221,可知()()t in n TT in T T e d e f T t f ωωτττ∑⎰∞-∞=--+∞→⎥⎦⎤⎢⎣⎡=221lim , 令1,--=∆=n n n n n ωωωωω,则T πω2=或nT ωπ∆=2 .于是()()t i n TT i TT n n e d e f T t f ωτωττ∑⎰∞-∞=--+∞→⎥⎦⎤⎢⎣⎡=221lim ()n t i n T T i T n n n e d e f ωττπωτωω∆⎥⎦⎤⎢⎣⎡=∑⎰∞-∞=--→∆22021lim , 令()()t i i TT T n T n n e d e f ωτωττπωφ][2122--⎰=,故()t f ()nn nTn ωωφω∆=∑∞-∞=→∆0lim. (4)注意到当,0→∆n ω即∞→T 时,()()t i i n n T n n e d e f ωτωττπωφωφ][21)(-+∞∞-⎰=→. 从而按照积分的定义,(4)可以写为:()t f ()⎰+∞∞-=ωωφd ,或者()()ωττπωωτd e d e f t f t i i ⎰⎰+∞∞-+∞∞--=][21. (5)公式(5)称为函数()t f 的傅氏积分公式.定理1.2 若()t f 在(-∞, +∞)上满足条件:(1) ()t f 在任一有限区间上满足狄氏条件; (2) ()t f 在无限区间(-∞, +∞)上绝对可积,即()dt t f ⎰+∞∞-收敛, 则(5)在()t f 的连续点成里; 而在()t f 的间断点0t 处应以()()20000-++t f t f 来代替.上述定理称为傅氏积分定理. 可以证明,当()t f 满足傅氏积分定理条件时,公式(5) 可以写为三角形式,即()()()()()()⎪⎩⎪⎨⎧-++=-⎰⎰∞+∞+∞-.,200,]cos [1其它连续点处,在t f t f t f t f d d t f ωττωτπ(6)上一节介绍了:当()t f 满足一定条件时,在()t f 的连续点处有:()()ωττπωωτd e d e f t f t i i ⎰⎰+∞∞-+∞∞--=][21.从上式出发,设()()dt e t f F t i ωω-+∞∞-⎰= (1)则()t f ()ωωπωd e F t i ⎰+∞∞-=21 (2)称(1)式,即()()dt e t f F t i ωω-+∞∞-⎰=为()t f 的傅里叶变换简称傅氏变换,记为()=ωF F ()}{t f .称(2)式,即()t f ()ωωπωd e F t i ⎰+∞∞-=21为傅里叶逆变换简称傅氏逆变换,记为()t f =F 1-[()t f ].(1)式和(2)式,定义了一个变换对()ωF 和()t f 也称()ωF 为()t f 的像函数;()t f 为的原像函数 ,还可以将()t f 和()ωF 用箭头连接: ()t f ↔()ωF .例 1 求函数()t f ⎩⎨⎧≥<=-0,0,0t e t t β的傅氏变换及其积分表达式其中 0>β.这个函数称为指数衰减函数,在工程中常遇到.解:根据定义, 有()()dt e t f F t i ωω-+∞∞-⎰==dt e e t i t ωβ-+∞-⎰0=dt e t i ⎰+∞+-0)(ωβ=ωβi +1=22ωβωβ+-i . 这就是指数衰减函数的傅氏变换.根据积分表达式的定义,有()t f ()ωωπωd e F t i ⎰+∞∞-=21ωωβωβπωd e i ti ⎰+∞∞-+-=2221注意到t t eti ωωωsin cos +=, 上式可得()t f ()ωωωωβωβπd t i t i sin cos 2122++-=⎰+∞∞-=ωωβωωβπd tt ⎰+∞++022sin cos 1. 因此⎪⎩⎪⎨⎧>=<=++-∞+⎰.0,,0,2,0,0sin cos 022t e t t d t t t βππωωβωωβ 例2 求()t f =2t Ae β-的傅氏变换其中 0,>βA ---钟形脉冲函数.解: 根据定义, 有()()dt et f F ti ωω-+∞∞-⎰==dt e Ae t i t ωβ-+∞∞--⎰2,=βω42-Aedt Aei t ⎰∞+∞-⎪⎪⎭⎫ ⎝⎛+-22βωββωβπ42-=Ae .这里利用了以下 结果:()02>=⎰∞+∞--βωπβdx e x . 2.傅里叶变换的物理意义如果仔细分析周期函数和非周期函数的傅氏积分表达式()∑∞-∞==n t in n T e c t f ω,()t f ()ωωπωd e F t i ⎰+∞∞-=21,以及n c 和()ωF 的表达式()() ,2,1,0122±±==--⎰n dt e t f T c tin TT T n ω,()()dt e t f F t i ωω-+∞∞-⎰=,由此引出以下术语: 在频谱分析中, 傅氏变换()ωF 又称为()t f 的频谱函数, 而它的模()||ωF 称为()t f 的振幅频谱(亦简称为谱). 由于ω是连续变化的, 我们称之为连续频谱,因此对一个时间函数作傅氏变换, 就是求这个时间函数的频谱. 显然,振幅函数()||ωF 是角频率ω的偶函数, 即()||ωF ()||ω-=F ,()||ωF 的辐角()ωF arg 称为相角频谱, 显然()ωF arg ()()⎰⎰∞+∞-+∞∞-=tdtt f tdt t f ωωcos sin arctan ,相角频谱()ωF arg 是ω的奇函数.例3 求单个矩形脉冲函数()t f =⎪⎪⎩⎪⎪⎨⎧>≤,2,0,2,a t a t E 的频谱图.解:()()dt e t f F t i ωω-+∞∞-⎰=dte E t i a a ω--⎰=222sin222ωωωωa Ea a e i E ti =--, 频谱为()||ωF =|2sin2|ωωa E. 请画出其频谱图.以上术语初步揭示了傅氏变换在频谱分析中的应用,更深入详细的理论会在有关专业课中详细介绍!在物理和工程技术中, 有许多物理、力学现象具有脉冲性质. 它反映出除了连续分布的量以外,还有集中于一点或一瞬时的量,例如冲力、脉冲电压、点电荷、质点的质量等等. 研究此类问题需要引入一个新的函数,把这种集中的量与连续分布的量来统一处理。