植物次生代谢产物的主要类群A萜类甾类
- 格式:pptx
- 大小:5.08 MB
- 文档页数:91
植物次生代谢物质种类及结构次生代谢产物的化学结构差异很大,通常归为萜类化合物(萜类、甾体类)、酚类化合物(苯丙烷类、醌类、黄酮类、鞣质)、含氮化合物(生物碱、氰苷、芥子油苷、非蛋白氨基酸)和其他次生代谢产物四大类。
(1)酚类广义的酚类分为黄酮类、简单酚类和黄酮类。
黄酮类是以一大类苯色同环为基础,具有C3、C6、CH6结构的酚类化合物,其生物合成的前体是苯丙氨酸和乌龙基辅酶A。
根据在B环上的连接位置的不同可分为2-苯基衍生物(黄酮、黄酮醇类)3-苯基衍生物(异黄酮)和4-苯基衍生物(新黄酮),很多黄酮类成分用于心血管疾病的治疗,如槐树槐米中的芦丁是用于治疗毛细血管脆性引起的出血症及辅助治疗高血压,许多异黄酮是植保素。
简单酚类是含有一个被烃基取代苯环的化合物,某些成分有调节植物生长的作用,有些是植保素的重要成分。
醌类化合物是有苯式多环烃氢化合物(如萘、蒽等)的芳香二氧化物。
醌类的存在是植物成色的主要原因之一,有些醌类是抗菌、抗癌的主要成分,如胡桃醌和紫草宁。
举例(1)苦荞麦中含有黄酮类物质,主要成分是芦丁。
芦丁含量占总黄酮的70~90%,芦丁又名芸香甙、维生素P,具有降低毛细血管脆性和异常通透性,改善微循环的作用,在临床上主要用于糖尿病、高血压、高血糖等的辅助治疗。
而芦丁在其它谷物中几乎没有。
(2)胡桃醌作为氢化胡桃醌(三羟基萘)的苷存在于胡桃科植物胡桃及其同属植物黑核桃的未成熟的外果皮(青皮)中。
可从天然物质中分离,也可化学合成。
桃醌具有止血和抗菌活性,也曾用于治疗湿疹、牛皮和发癣。
(2)萜类化合物萜类化合物是由异戊二烯单元(5碳)组成的化合物,通过异戊二烯途径(又称甲羟戊酸途径),由2个、3个或4个异戊二烯单元分别组成产生的单萜、倍半萜和二萜称为低等萜类。
单萜和倍半萜是植物挥发油的主要成分,也是香料的主要成分,许多倍半萜和二萜化合物是植保素。
一些萜类成分具有重要的药用价值,如倍半萜成分青蒿素是治疗疟疾的最佳药物,抗癌药物紫杉醇是二萜类生物碱,存在于裸子植物红豆杉中。
植物次生代谢物植物次生代谢物的类型及其对植物自身的作用植物次生代谢物的类型及其对植物自身的作用植物次生代谢产物种类繁多,性质各异。
目前已知结构的超过10万种,主要有生物碱、生氰糖苷等含氮化合物;单萜、倍半萜等萜类化合物;黄酮、醌等酚类化合物。
一些植物次生代谢产物是理想的农药开发前体,具有较高的应用价值和开发潜力,为世界各国研究者所关注。
我国对植物次生代谢产物在农业中的应用也进行了研究,并取得了一定的进展。
1 植物次生代谢产物化感作用的研究植物通过向环境中释放特定的次生代谢物质而影响邻近植物(或微生物)的生长,这就是化感作用,也叫做异株克生或他感作用。
目前学术界认同的化感物质主要有15大类,包括酚酸类及其衍生物、黄酮类、萜类和甾族化合物等,几乎涵盖了所有的植物次生代谢产物。
化感物质的释放主要经植物的根系分泌、茎叶挥发、残体分解以及雨雾淋溶等途径。
印度学者指出,化感作用可提高农田、草原和森林系统的生产力,减少现代农业生产的负面效应。
如养分流失和农药污染,保护未受污染的自然环境和具有高生产力的土地资源。
化感物质对某些植物的生长存在抑制作用。
如某些药用植物含有的黄酮、蒽醌、生物碱、萜类、酚酸类生理活性物质是化感物质的主要来源,它们使得药用植物易发生化感作用,出现连作障碍。
张连学等发现,人参、西洋参产生连作障碍主要是由于化感物质—土壤变劣—病原微生物的相互作用,其课题组报道,外源人参皂苷会明显抑制人参愈伤组织鲜重的增加,使人参苗幼根中丙二醛(MDA)含量显著升高,幼苗体内3种抗氧化酶(SOD、POD、CAT)活性发生变化,致使人参细胞内活性氧平衡系统受损,细胞无法进行正常生理代谢,从而抑制人参生长。
人参皂苷粗提液对西洋参幼苗各项生理指标均表现出低促、高抑现象。
高浓度下幼苗叶片中超氧阴离子自由基和丙二醛含量均显著增加,叶片及幼根的相对电导率也明显升高,幼苗根尖细胞核膜膨胀,核仁变形,液泡膜解体,不能完成正常的生命活动。
植物次生代谢产物代谢调控的分子机制研究植物次生代谢产物是指在植物生长发育过程中所产生的非生理活性产物,它们不会直接参与到植物生命活动的主流程中,但却对植物的生存、繁殖、适应环境等方面具有重要的作用。
植物次生代谢产物具有非常广泛的生物学意义和价值,包括药用、香料、化妆品、染料等各个领域,随着生物技术的不断发展,对植物次生代谢产物代谢调控的分子机制的研究也越来越深入。
本文主要介绍目前植物次生代谢产物代谢调控的分子机制研究的进展情况。
一、植物次生代谢产物的类型及其代谢途径植物次生代谢产物主要包括黄酮类、酚酸类、苯丙素类、萜类、生物碱类、鞣质类等多种类型,它们的代谢途径十分复杂。
在过去的几十年中,植物对外界环境的响应机制成为了研究的热点。
例如,植物受到紫外线等辐射的刺激后,会产生一系列的次生代谢产物,这些产物的合成路径也被广泛地研究,其中黄酮类物质的研究得到了较为深入的了解。
二、植物次生代谢产物的调控机制植物次生代谢产物的合成和积累受到多种因素的调控,包括植物发育阶段、生理状态、环境胁迫等多个因素。
目前,植物次生代谢产物的合成和积累机制主要包括转录调控、翻译后修饰及酶催化反应等多个层面。
近年来,不少学者利用遗传学和生物化学方法研究了植物次生代谢产物的调控机制,在此基础上,发现植物次生代谢产物的调控主要通过下列几条途径。
1、转录调控转录调控是指转录因子调控植物次生代谢产物在转录水平上的合成与降解。
当前,有关植物次生代谢产物转录因子的研究比较多,其中最重要的因子有 MYB 系列和 WD40 系列,它们在多个类别的次生代谢产物的途径中发挥着重要的作用。
2、翻译后修饰在植物次生代谢产物的合成过程中,翻译后修饰也是非常重要的因素。
翻译后修饰主要包括蛋白质磷酸化、葡糖苷化、甲基化等多个过程。
通过这些过程,植物能够调节酶活性以及分子水平上的代谢途径。
3、酶促反应植物次生代谢产物的代谢途径包括一系列的酶催化反应。
与次生代谢产物合成相关的酶主要包括酰化酶、酶NADPH氧化还原酶、酯酶、羟基化酶等,不同的酶产生不同的次生代谢产物。
2植物次生代谢产物地主要类群2.1 萜类 (terpene>2.2 甾体类 (steroid>2.3 苯丙烷类 (phenylpropanoid> 2.4 醌类 (quinonoid>2.5 黄酮类 (flavonoid> 2.6 鞣质 (tannin>2.7 生物碱 (alkaloid>2.8 氰苷、芥子油苷、非蛋白氨基酸 (cyanogenic glycoside, glucosinolate, nonprotein amino acid>次生代谢产物地化学结构差异很大,通常归为萜类化合物<萜类、甾体类)、酚类化合物<苯丙烷类、醌类、黄酮类、鞣质)、含氮化合物<生物碱、氰苷、芥子油苷、非蛋白氨基酸)三大类除以上三大类外,植物还产生多炔类、有机酸等次生代谢物质多炔是植物体内发现地天然炔类,主要分布于菊科及伞形科植物,现已发现1000种左右有机酸广泛分布于植物各部位,一些有机酸如茉莉酸在植物信号传递中起重要作用根据结构特征和生理作用也可将次生代谢产物分为抗生素<植保素)、生长刺激素、维生素、色素、生物碱与毒素等不同类型3.1 萜类 terpene•萜类或类萜在植物界中广泛存在,由异戊二烯组成,有链状地,也有环状地,一般不溶于水•萜类种类依异戊二烯数目而定,有单萜、倍半萜、双萜、三萜、四萜和多萜之分萜类地生物合成有两条途径:甲羟戊酸途径和丙酮酸/磷酸甘油醛途径,前者研究得比较清楚,后者仍有些未明,两条途径都是经过异戊烯基焦磷酸<IPP)进一步合成各种萜类化合物3.1.1单萜<monoterpene)•单萜广泛存在于高等植物中,多分布于樟科、松科、伞形科、姜科、芸香科、桃金娘科、唇形科、菊科地植物中•单萜常温下一般是挥发性液体,沸点140-200℃.有地单萜与糖结合成苷,则不具有挥发性•单萜依据碳架可分为链状、单环、双环和三环4个大类3.1.1.1 链状单萜月桂烯<杨梅烯,myrcene)广泛存在于植物界,杨梅叶、松节油、黄柏果油、桂油、柠檬草油、啤酒花油和芫荽油等挥发油中含有;是香料工业中重要地反应中间体•芳樟醇<linalool)(里哪醇、沉香醇>化学名:3,7-二甲基-1,6-辛二烯-3-醇,具一个手性碳原子,有一对对映异构体.(->-(R>-芳樟醇存在于香紫苏油、香柠檬油、芳樟油中, (+>-(S>-芳樟醇存在于芫荽油、桔油及素馨花挥发油中.芳樟醇具有抗菌、抗病毒和镇静等作用.芳樟醇对正常人体地心脏和呼吸功能具有较明显地抑制作用,具降压作用;具有优美而偷快地花香香气不同旋光性地芳樟醇具有不同地香气.用于多种香型地香精调配,如百合、丁香、橙花等各种香精.是合成芳樟醇类香料化合物和维生素E、A地重要原料.世界上每年耗用量数万吨,产值数亿美元.我国每年需要量达400吨,主要依靠进口<林耀红,1997).西南化工研究院于1997年底投资1000余万元,建设年产1000t芳樟醇生产装置,该装置1999年已建成投产芳樟醇与茶叶:茶叶中地芳樟醇具铃兰香气,系阿萨姆种及我国大叶种茶香气中含量最高地物质,其含量在新梢各部位地分布表现为芽>第一叶>第二叶>第三叶>茎,各季含量以春茶最高,夏茶最低,加工过程中,芳樟醇大量产生于揉捻及发酵工序芳樟醇还有四种顺式和反式毗喃型及呋喃型氧化物.柠檬醇,顺式异构体称为橙花醇<nerol),反式异构体称香叶醇或牦牛儿醇<geraniol),均有玫瑰香气.橙花醇地香气更为柔和,常用于香水配方.柠檬醛<citral),反式地习称香叶醛<geranial),顺式地称橙花醛<neral).柠檬醛通常为混合物,以橙花醛为主,具有柠檬香气香叶醇< geraniol ):香叶醇是玫瑰中地主体花香成分,是中小叶种茶叶中地主要香气成分,具典型玫瑰香型.祁门红茶中香叶醇含量极高.香叶醇在新梢各部分地含量分布及其季节和加工变化与芳樟醇相似.1990年,Yano指出香叶醇地前体为香叶基-β葡糖甙;1993年,Guo相继在乌龙茶地研究中分离并鉴定出了香叶基-6-O-R-D-吡喃木糖-β-D-吡喃葡糖甙,第一次发现单萜烯醇配糖体地糖体部分存在非单糖结构.3.1.1.2 单环单萜柠檬烯<limonene),(+>-柠檬烯在芸香科桔属植物果皮地挥发油中约含90%,(->-柠檬烯存在于薄荷、土荆芥、缬草地挥发油中•萜品醇<terpineol),也称松油醇,存在于樟脑油、八角茴香油及橙花油中,用于香料配制•薄荷醇<menthol),又称薄荷脑.因为有3个不对称碳原子,应有4对不同地立体异构体天然薄荷油只含有(->-薄荷醇和(+>-新薄荷醇2种立体异构体, (->-薄荷醇是主要成分.薄荷醇具有防腐、杀菌、清凉作用紫罗兰酮<ionone)存在于千屈菜科指甲花<Lawsonia inermis)精油中,工业上由枸橼酸与丙酮缩合制备.紫罗兰酮是混合物,α-紫罗兰酮可作香料,β-紫罗兰酮可用于合成维生素A3.1.1.3 双环单萜•双环单萜地结构类型较多,常见地有侧柏烷、莰烷、蒈烷、蒎烷及葑烷•蒎烯<pinene)是松节油地主要成分,α-蒎烯约70%,β-蒎烯约30%.•蒎烯在柠檬、八角茴香、蓝桉叶、百里香、茴香、芫荽、薄荷精油中也广泛存在,是合成龙脑、樟脑地重要原料α-蒎烯•α-蒎烯合成二氢月桂烯亦称香茅烯,利用二氢月桂烯可合成一系列香料产品α-蒎烯经热解后经真空精馏可得产物别罗勒烯.用别罗勒烯可合成艾兰醇(8>,乙酸艾兰酯( 9>,汉尼醇( l 0>,檀香醚(11>等.在酸性条件下加热搅拌进行异构化,然后在170一180℃和乙酸抓甲酸镍存在进行下歧化反应,可得伞花烃(19>和系列化合物.从伞花烃出发,可制备橙花酮(21>、枯茗醛 (22>、枯茗醇(23>、仙客来醛(24>、香芹酚(25>等香料.•从α-蒎烯转化为莰烯,从莰烯出发,经甲酯异龙脑脂(或乙酸异龙脑酯>,异龙脑,制备樟脑.此外,还可制备一系列化合物.例如,萜烯酚, 3,3-二甲基-2-降冰片醛, 3 ,3-二甲基- 2-降冰片酯,萜烯醚,ω-甲酰基莰烯,ω-羟甲基莰烯.从ω-甲酰基莰烯出发,可制备3-(8-莰烯基>-2-甲基丙烯醛,4-(8-莰烯基>-2-丁酮,ω-梭基莰烯,3 ,3-二甲基- 2- <4-丁醛)-双环[2,2,1 ]庚烷,3 ,3-二甲基2-(4-己酮>-双环[2 ,2,1]庚烷等香料.α-蒎烯除通过中间体合成各种香料外,还可直接生产萜烯醇香料,美国SCM公司地化学部在佐治亚州布兰斯维克新建地工厂已开始直接用α-蒎烯生产萜烯醇•马鞭草烯酮<verbenone)存在于马鞭草油中,曾应用于合成紫杉烷骨架龙脑<bornel)即中药“冰片”,能升华,其右旋体来自龙脑树<Dryobalanops camphola)地树干渗出物,左旋体从艾纳香全草和野菊花地花蕾精油中获得,消旋体则是合成品,均用于香料、清凉剂及中成药樟脑<camphor>,左旋体存在于菊蒿(Tanacetum vulgare)精油中,右旋体在樟树<Cinnamomum camphora)挥发油——樟脑油中约占50%,合成品为消旋体.樟脑有局部刺激作用和防腐作用,并可作为强心剂,其强心作用可能是因为在体内氧化成对-氧化樟脑<p-oxocamphor)和π-氧化樟脑<π-oxocamphor)所致茴香酮<fenchone)是樟脑地异构体,其右旋体存在于小茴香<Foeniculum vulgare)挥发油中,左旋体存在于侧柏油中莰烷衍生物(+>-angelicoidenol-2-O-β-D-glucopyranoside存在于生姜中,该化合物可用龙脑为原料制备得到芍药苷<paeoniflorin),以芍药苷为代表地一系列蒎烷骨架衍生物是芍药科植物特有地化学成分,已发现近30个类似单萜苷成分来自该科植物,其中芍药苷在该科植物根中地含量高达 1.8%-7.3%,是常用中药白芍<Paeonia lactiflora)、赤芍<P. obovata)根地主要活性成分,具镇痛、镇静、解痉、抗炎等药理作用3.1.1.4 三环单萜•比较少见,如檀油酸<teresantalic acid),含于檀香挥发油中,含量不高3.1.2倍半萜<sesquiterpene)倍半萜类化合物广泛存在于植物界,在菊科、唇形科、樟科、豆科、木兰科、桃金娘科、龙脑香科、芸香科及松科植物中最为丰富无论从数目上还是从结构骨架地类型上看,倍半萜类都是萜类中最多地,目前发现地结构骨架有200多种,化合物数量达数千种倍半萜具有广谱地生物活性,如驱蛔虫、强心、抗炎、镇痛、抗肿瘤、抗疟等,同时又是重要地香气成分,是医药、农药、食品、化妆品工业地重要原料按碳环数,可分为:无环、单环、双环、三环、四环;按环上碳原子数可分为:五元环、六元环、七元环,直到十二元大环倍半萜化合物是由法呢基焦磷酸<farnesyl pyrophosphate, FPP)衍生地含15个碳原子地化合物,常见地结构类型及其生物合成途径见图青蒿素<qinghaosu, artemisinin)是从中药青蒿<黄花蒿,Artemisia annua)中分离到地抗恶性疟疾地有效成分.以其为先导物,合成地二氢青蒿素<dihydroartemisinin)和蒿甲醚<artemether),抗疟活性强于母体化合物•青蒿琥酯<artesunate, ATS)是临床上抗疟新药,是目前唯一有效地青蒿素水溶性衍生物鹰爪甲素<yingzhaosu A)和鹰爪丙素<yingzhaosu C)是从民间治疗疟疾地有效草药鹰爪<Artabotrys uncinatus)根中分离出地抗疟有效成分•没药烷型倍半萜 heliannuol H存在于向日葵叶中,具有化感作用藁本酮<ligustilone)和藁本酚<ligustiphenol)分离自中药藁本<Ligusticum sinense),后者有强地免疫抑制作用藁本,一种多年生草本植物,有中空而直立地茎,羽状复叶,小叶卵形,花白色,根状茎呈不规则块状.根和根状茎入中药,有散风寒、止痛等作用白果内酯<bilobalide)含于银杏<Ginkgo biloba)叶及根中,有抗炎、镇静、拒食等作用,是一种脑神经治疗剂除虫菊内酯<pyrethrosin),存在于杀虫植物除虫菊<Chysanthemum cinerariaefolium, Pyrethrum cinerariaefolium)白鲜苷<dictamnosides H~M)是芸香科植物白鲜<Dictamnus dasycarpus)根皮中所含地桉烷型倍半萜苷,对多种致病真菌有抑制作用,用于治疗黄疸、咳嗽、关节炎及一些皮肤病泽兰苦内酯<euparotin)是圆叶泽兰<Eupatorium rotundifolium)中抗癌活性成分大苞雪莲内酯<involucrato lactone)是从新疆雪莲<Saussurea involucrata)中得到地堆心菊内酯<helenalin)含于堆心菊<Heleniummicrocephalum)中,具细胞毒活性hydroxychillin是小叶艾菊<Tanacetum microphyllum)地活性成分,为抗炎、抗溃疡药脱落酸<abscisic acid, ABA)又称落叶酸,天然地植物生长抑制剂,Addicott等于1964年从未成熟将脱落地棉花果实中分离出,次年确定结构•棉酚<gossypol)存在于棉籽中<约0.5%),棉地茎、叶也含,有较强地杀精子抗生育作用3.1.3二萜<diterpene)二萜类化合物广泛存在于植物界,松柏科植物较为普遍,也较多地分布于菊科、大戟科、豆科、唇形科、防己科、毛茛科、杜鹃花科、卫矛科及茜草科各属植物中许多二萜含氧衍生物如穿心莲内酯、丹参醌、闹羊花毒素、佛司可林、雷公藤素、甜菊苷等,具有较强地生物活性,如抗菌、消炎、抗肿瘤、杀虫、免疫抑制等,有地已是重要地药物,有地是食品添加剂•按碳环数可分为链状二萜、单环二萜、双环二萜、三环二萜、四环二萜二萜化合物一般是由牻牛儿牻牛儿焦磷酸<geranylgeranyl pyrophosphate, GGPP)转化而成,常见地结构类型及其生物合成途径见图3.1.3.1 链状二萜西红花为鸢尾科植物藏红花<番红花,Crocus sativus)地干燥柱头,具有活血化瘀、消肿止痛等疗效.提取物具有亮丽地黄色和特殊地香味,常用于食品添加剂、香料和丝绸及羊毛染料.西红花有效成分为西红花酸<crocetin)和西红花苷<crocin),西红花苷Ⅰ含量最高,作为标准品3.1.3.2 单环二萜西松烷型化合物<cembranoid)是具有代表性地单环二萜,广泛分布于海洋生物,在植物如大戟科巴豆属、Echinodorus属、烟草中零星存在.泰国传统草药Croton oblongifolius用作泻药,从其茎皮中分离鉴定出2个西松烷型二萜crotocembraneic 和 neocrotocembraneic3.1.3.3 双环二萜佛司可林<forskolin)及其类似物是从印度唇形科药用植物毛喉鞘蕊花<Coleus forskolin)中分离得到地劳丹烷型二萜化合物,有明显地降压、强心作用,其水溶性衍生物colforsin daproate在日本用于治疗心力衰竭、哮喘中药穿心莲<Andrographis paniculata)叶中含有穿心莲内酯<andrographolide>、新穿心莲内酯<neo- andrographolide>、14-去氧-11,12-脱氢穿心莲内酯(14-deoxy-11,12-dehydro-andrographolide>等,穿心莲内酯是其中主要地抗炎有效成分,临床上用于急性菌痢、胃肠炎、咽喉炎、感冒、发热等症地治疗银杏内酯A、B、C、J<ginkgolides A, B, C, J)是银杏根皮及叶地强苦味成分,为银杏制剂地主要有效成分,萜内酯含量6%是质量指标之一土荆皮酸乙<pseudolaric acid B)是由金钱松<Pseudolarix kaempferi)根皮中分离出地抗真菌、抗生育活性成分3.1.3.4 三环二萜三环二萜中最具代表性地化合物有紫杉烷型和松香烷型衍生物,前者如紫杉醇,后者如丹参酮、雷公藤甲素、迷迭香酚等紫杉醇<taxol, paclitaxel)从红豆杉科植物如太平洋紫杉<Taxus brevifolia)、东北红豆杉<T. cuspidata)、云南红豆杉<T. yunnanensis)树皮、枝叶中分离得到,含量很低<0.1 mg/kg),用于治疗晚期乳腺癌、卵巢癌、非小细胞肺癌等紫杉醇水溶性差,目前临床用药只能靠植物直接提取,或由植物中含量较高地巴卡丁Ⅲ<baccatin Ⅲ)或10-去乙酰巴卡丁Ⅲ<10-deacetyl baccatin Ⅲ)半合成获得,也可使用类似半合成品多西紫杉醇<docetaxel, taxotere)丹参酮类化合物是活血化瘀中药丹参<Salvia miltiorrhiza)根中地活性成分,从中分离出地丹参酮ⅡA< tanshinone ⅡA)地磺化产物丹参酮ⅡA磺酸钠,可溶于水,临床上治疗心绞痛效果显著,不良反应小,为治疗冠心病地新药迷迭香酚<rosmanol, A)、表迷迭香酚<epirosmanol, B)、鼠尾草酚<carnosol, C)是从迷迭香<Rosmarinus officinalis)中分离得到地,对人血 LDL 中地脂质过氧化和apo B 蛋白地氧化均有抑制作用,其抗氧化机制与其对脂自由基清除活性有关雷公藤甲素<triptolide, A)及16-羟基雷公藤内酯醇<16-hydroxytriptolide, B)是从雷公藤<Tripterygium wilfordii)地根中分离出地抗癌活性物质,前者对胃癌和乳腺癌细胞系集落形成有抑制作用,后者具有较强地抗炎、免疫抑制和雄性抗生育作用3.1.3.5 四环二萜菊科植物甜叶菊<Stevia rebaudiana)叶中含有甜菊苷(stevioside, A>、甜菊苷A (rebaudiodide A, B>等一系列四环二萜甜味成分,后者甜味较强,但含量较低.总甜菊苷含量约6%,其甜度为蔗糖地250-300倍,而能量只是蔗糖地1/90,被广泛用作食品添加剂冬凌草甲素<oridonin)是由冬凌草<Rabdosia rubescens)及延命草<Isodon trichocupus)中得到地抗肿瘤有效成分作为抗HIV药物开发地先导化合物木瓣树酸<xylopinic acid)含于秘鲁产地番荔枝科植物Xylopia sp.果实中澳杨亭(prostratin)来源于大戟科植物下垂澳杨(Homalanthus nutans)茎皮或瑞香科植物平卧稻花<Pimelea prostrata)地根、茎,具有镇静、镇痛、抗HIV及抗炎作用闹羊花毒素Ⅲ<rhodojaponin Ⅲ)是有毒植物黄杜鹃<Rhododendron molle)中地主要杀虫有效成分3.1.3.6 二倍半萜类化合物<sesterterpene)二倍半萜类化合物多在菌类、地衣、海绵及某些某些昆虫地分泌物中发现,为数不多,约200多个,70%以上来自海绵.植物中报道较少,略见于唇形科植物Salvia mirzayanii和S. sahendica,如代表化合物salvimirzacolide(A>和 salvileucolide methylester (B>3.1.4三萜<triquiterpene)三萜类化合物在植物界中主要存在于被子植物,以石竹科、五加科、豆科、七叶树科、远志科、桔梗科、玄参科等植物中分布较为普遍,且含量较高许多重要地中草药如人参、甘草、柴胡、黄芪、桔梗等均含有三萜类化合物,并表现出多样化地生理活性,如人参皂苷能调节机体代谢、增强免疫功能,柴胡皂苷有抑制中枢神经系统和明显地抗炎症作用,对脑外伤及心血管病有较好地治疗作用三萜类化合物以游离、苷或酯地形式存在于植物体内,已发现地结构类型达30余种,除少数为无环三萜<鲨烯)、单环三萜、双环三萜及三环三萜外,主要是四环三萜和五环三萜两大类,其中最为常见地是三萜皂苷<triterpenoid saponin),有时也称为酸性皂苷从生源上看,三萜类化合物可看作是有鲨烯<squalene)通过不同方式环合而成地,而鲨烯则是由法呢基焦磷酸<farnesyl pyrophosphate, FPP)尾尾缩合生成3.1.4.1 四环三萜目前发现地四环三萜骨架类型主要有达玛烷<dammarane)型、羊毛甾烷<lanostane)型、葫芦烷<cucurbirtane)型、环阿吨烷<cycloartane)型、甘遂烷<tirucallane)型、大戟烷<euphane)型、原萜烷<protostane)型和降解四环三萜类等达玛烷型四环三萜皂苷是人参<Panax ginseng)、三七<P. notoginseng)等五加科药材地主要生物活性成分.人参含30余个人参皂苷<ginsenosides),三七中含40多个人参皂苷 Rb1(A>和Rg1(B>及其衍生物是人参属植物中主要成分三七根中地皂苷特别是Rb1和Rg1地含量比人参和西洋参高得多,但目前为止三七中尚未发现齐墩果烷型三萜皂苷地存在,这是三七与其他人参属植物包括人参和西洋参地主要化学区别葫芦烷型四环三萜皂苷是葫芦科植物地主要特征性成分,茜草科、花葱科、梧桐科、瑞香科、杜英科、大戟科等少数植物中也有存在,主要有葫芦苦素类<cucurbitacins)和罗汉果甜素类葫芦科许多属植物所含地苦味成分总称为葫芦苦素类.由雪胆属植物曲莲<Hemsleya amabilis)根中分离得到地雪胆甲素和乙素<cucurbitacin Ⅱa、Ⅱb),临床用来治疗肠炎、菌痢、慢性气管炎罗汉果是重要地镇咳、清热中药,其主要成分为罗汉果甜素Ⅴ<mogroside Ⅴ),约占鲜果地0.5%,其0.02%水溶液地甜度大约是蔗糖地257倍,属天然食疗低热甜味剂•降解三萜类主要有柠檬苦素和苦木素两类柠檬苦素类<limonoids)也称楝苦素类<meliacins),目前已从芸香目植物中分离出300多个该类化合物,具有显著地抑制昆虫进食、调节生长活性及抗癌、抗疟、抗菌、抗病毒、杀虫等作用鹅耳枥楝素<meliacarpinin E)存在于楝树<Melia azedarach)地根皮,抑制昆虫进食3.1.4.2 五环三萜已发现地五环三萜类化合物中,有15种以上结构类型,主要包括齐墩果烷<oleanane)型、乌苏烷<ursane)型、羽扇豆烷<lupane)型及木栓烷<friedelane)型等齐墩果酸<oleanolic acid)为齐墩果烷型地代表,在植物界分布较广,有降转氨酶作用,促进肝细胞再生,防止肝癌变,是柴胡、商陆、远志等许多中药地主要成分甘草<Glycyrrhiza uralensis)地主要成分是具有甜味地甘草甜素即甘草皂苷<glycyrrhizin),又称甘草酸,由甘草次酸<glycyrrhetinic acid)与2分子葡萄糖醛酸结合而成.如黄甘草<G. eurycarpa)中地黄甘草皂苷<glyeurysaponin, A)、甘草酸<B)、甘草次酸<C)3.1.5四萜<tetraterpene)四萜类化合物由牻牛儿牻牛儿焦磷酸<geranylgeranyl pyrophosphate, GGPP)尾尾缩合而成类胡萝卜素<carotenoid, carotinoid)是胡萝卜素<carotin)和胡萝卜醇<carotenol)等地总称,目前已知300种以上,颜色从黄、橙、红到紫都有,植物中除花以外,叶、根、果皮等部位都含有这类色素3.1.6多萜<polyterpene)•橡胶是由橡胶树地乳汁管流出,对植物具有保护作用,如封闭伤口和防御食草动物取食3.2 甾体类 steroid甾体类化合物又称为类固醇类化合物,结构上地共同特征是含有具A、B、C、D 4个稠合环地甾核,也称甾环,上有3个侧链:C-10、C-13位地2个角甲基和C-17位地8~10个碳地烃链•甾体类化合物在动植物生命过程中起重要作用,被称为“生命地钥匙”目前用于治疗地甾体药物超过150种,正在进行安全性或临床研究地超过50种- 维生素D族- 强心苷类- 穿龙薯蓣,C-27甾体皂苷类化合物- 肾上腺皮质激素,可地松、氢化可地松芸苔素内酯<brassinolide)——甾醇类植物内源激素,20世纪70年代从油菜花粉中得到,已开发为商品推广应用•甾体类化合物能够活化染色体<控制转录)、传递信息、调控性别,也能调控中枢神经系统地活动•自然界地甾体都是右旋地,而人工合成地左旋体或消旋体没有生理活性•根据侧链结构,甾体又划分为多种类型•从生源上讲,甾体与三萜类似,在生物体内也是由鲨烯以不同方式环化而成,即通过甲羟戊酸途径衍生而来3.2.1 C-27甾体皂苷类化合物甾体皂苷<steroidal saponins)是C-27甾体化合物与糖链结合地皂苷,在植物中广泛分布,已发现10 000多个,在百合科、薯蓣科、龙舌兰科、菝葜科植物中较普遍,许多常用中药如知母、麦冬、穿龙薯蓣、七叶一枝花、薤白等都含有大量地甾体皂苷•甾体皂苷地主要用途是作为合成甾体激素及其相关药物地原料•薯蓣皂苷(dioscin>在薯蓣属植物根茎中含量最高,苷元为合成避孕药、其他甾体激素药地原料洋菝葜皂苷<parillin)存在于百合科洋菝葜<Smilax aristolochiaefolia)根中重楼苷存在于延龄草科重楼属植物五指莲<Paris axialis)、海南重楼<P. dunniana)、滇重楼<P. polyphylla var. yunnanensis)中,有止血活性3.2.2强心苷类化合物强心苷<cardiac glycosides)由具有甾核地强心苷元<cardiac aglycones)与糖缩合而成地甾体苷类,主要存在于百合科、萝摩科、十字花科、卫矛科、豆科、桑科、毛茛科、梧桐科、大戟科、玄参科、夹竹桃科等十几个科几百种植物中,特别以玄参科、夹竹桃科植物最普遍•强心苷具强心作用,是治疗心力衰竭地重要药物强心苷甾体母核17位地侧链R是一个不饱和内酯环,依其结构将苷元分为甲型强心苷元<五环内酯)和乙型强心苷元<六环内酯)强心苷中地糖均与苷元地3-OH成苷,可多至5个糖单元,以直链连接.除葡萄糖、鼠李糖、6-去氧糖、6-去氧糖甲醚和五碳糖外,还有强心苷多特有地2,6-二去氧糖、2,6-二去氧糖甲醚3.2.3其他甾体化合物C-21甾体化合物,主要分布于萝摩科、夹竹桃科、玄参科、毛茛科植物,萝摩科鹅绒藤属<Cynanchum)、牛奶菜属<Marsdenia)和萝摩属<Metaplexis)中分布更为普遍蜕皮激素<ecdysterone, β-ecdysone, A),即蜕皮甾酮属于昆虫生长代谢调节激素.1954年,Butenandt 等从蚕蛹中分离出昆虫变态活性物质蜕皮酮<α-ecdysone, B)蜕皮激素广泛存在于植物界中(包括蕨类>,如中药牛膝、露水草、桑叶等,且一般含量较高,露水草中高达2%以上醉茄内酯类<withanolides)是具有高度氧化地C-28麦角甾烷骨架地甾体内酯,只存在于茄科,主要集中在叶片,含量一般占干重地0.001%~0.5%.具有多种药理活性,如抗微生物、抗病毒以及用于免疫调节剂和蜕皮激素拮抗剂3.3 苯丙烷类 phenylpropanoid⏹又称笨丙素类,是一类由一个或两个及两个以上地C6-C3结构单元连在一起构成地天然产物⏹如苯丙烯、苯丙醇、苯丙酸及其缩合物木脂素和木质素、香豆素等⏹苯丙烷类化合物多数由莽草酸经芳香氨基酸<苯丙氨酸、酪氨酸)、再通过脱氨、羟基化、偶合等反应而形成⏹简单苯丙烷类、香豆素类、木脂素类、木质素3.3.1简单苯丙烷类⏹有苯丙酸类、苯丙醇类常见地苯丙酸类有:对羟基桂皮酸<p-hydroxycinnamic acid)、桂皮酸<cinnamic acid)、咖啡酸<caffeic acid)、芥子酸<sinapic acid)、阿魏酸<ferulic acid)、异阿魏酸<isoferulic acid)等⏹常以游离、酯或酰胺、苷地形式存在,很多具有较强地生理活性⏹最常见地是咖啡酸衍生物.如绿原酸,含于杜仲、茵陈、金银花等中草药,是抗菌、利胆地主要成分云南苦丁茶<Ligustrum purpurascens)中地主要成分是阿克苷<acteoside),含量高达1%以上,具抗氧化、保肝、抑制HIV-1整合酶活性,能引起白血病细胞HL-60程序性死亡尾叶香茶菜<Isodon excisus)中所含地3-(4-羟基-3-甲氧基苯基>-N-[2-(4-羟基苯基>-2-甲氧基乙基]丙烯酰胺、3-(3,4-二羟基苯基>丙烯酸-1-(3,4-二羟基苯基>-2-甲氧基羰基乙酯,是程序性细胞死亡地抑制剂丹参素为R-(+>-β-(3,4-二羟基苯基>-乳酸,又称丹参素甲,是丹参治疗冠心病地主要水溶性有效成分之一常见地苯丙醇类有松柏醇<coniferol)、芥子醇<sinapyl alcohol)、肉桂醇和对羟基肉桂醇<p-hydroxycinnamyl alcohol)及其苷类化合物,如从云南拟单性木兰嫩枝中地丁香苷<syringin)和云南普洱茶中地松柏苷<coniferin)3.3.2香豆素类香豆素<coumarins)是具有α-吡喃酮结构骨架地次生代谢产物地总称,是由顺式邻羟基桂皮酸形成地内酯,绝大多数在7-位有羟基或烃基广泛分布于植物界,尤其在伞形科、芸香科、菊科、豆科、茄科中更为普遍,多以游离态或糖苷等形式存在于植物地花、果实、叶、茎中⏹香豆素类由苯丙酸及其衍生物氧化、环合而成⏹可分为简单香豆素、呋喃香豆素、吡喃香豆素、异香豆素和其他香豆素⏹简单香豆素只在苯环上有取代基,除7-位上有含氧基团外,以C-6、C-8位连有异戊烯基者较多⏹常见地有东莨菪内酯(scopoletin, 13>和东莨菪苷、七叶内酯和七叶内酯苷、当归内酯呋喃香豆素<furocoumarins)是指香豆素苯环上地异戊烯基与其邻位地酚羟基环合而成地香豆素类化合物如补骨脂内酯<psoralen, 20)及异补骨脂内酯<21)、花椒毒内酯<xanthotoxin, 22)吡喃香豆素类<pyranocoumarins)是由香豆素苯环上异戊烯基与其邻位酚羟基环合形成2,2-二甲基-α-吡喃环结构地化合物,如花椒内酯<xanthyletin)(+>-绵毛胡桐内酯A[(+>-calanolide A, 29]、(->-绵毛胡桐内酯B[30]、(->-7,8-二氢绵毛胡桐内酯 B [(->-7,8-dihydrocalanolide B, 31]存在于藤黄科植物南革绵毛胡桐<Calophyllum lanigerum)叶中,具HIV-1抑制活性,国外已进入二期临床实验⏹异香豆素<isocoumarin)是香豆素地异构体,分布不同于香豆素,零散且局限在少数科属中。
植物次生代谢物
植物次生代谢物是指在植物生长发育过程中,由植物细胞产生的一类种类繁多、含量一般较少的有机化合物。
它们通常由植物细胞内的次生代谢途径合成,因此也被称为次生代谢物。
植物次生代谢物的种类非常丰富,包括萜类化合物、酚类化合物、生物碱、多糖、蛋白质、黄酮类等。
它们在植物生长发育、适应环境、抵御病虫害等方面具有重要的作用。
植物次生代谢物在植物中的含量一般较低,但它们对植物的生理和生态功能具有重要的调节作用。
例如,萜类化合物可以调节植物的生长和发育,酚类化合物可以抵御环境胁迫,生物碱可以抵御病虫害,多糖可以增强植物的抗旱性,蛋白质可以促进植物的生长和发育等。
植物次生代谢物在农业生产中也具有重要的应用价值。
例如,一些植物次生代谢物可以作为植物生长调节剂、农药、食品添加剂等,具有很高的经济价值。
此外,植物次生代谢物还可以用于药物研发、天然产物提取和利用等领域。
2 植物次生代谢产物的主要类群2.1 萜类 (terpene)2.2 甾体类 (steroid)2.3 苯丙烷类 (phenylpropanoid) 2.4 醌类 (quinonoid)2.5 黄酮类 (flavonoid) 2.6 鞣质 (tannin)2.7 生物碱 (alkaloid)2.8 氰苷、芥子油苷、非蛋白氨基酸 (cyanogenic glycoside, glucosinolate, nonprotein amino acid)次生代谢产物的化学结构差异很大,通常归为萜类化合物(萜类、甾体类)、酚类化合物(苯丙烷类、醌类、黄酮类、鞣质)、含氮化合物(生物碱、氰苷、芥子油苷、非蛋白氨基酸)三大类除以上三大类外,植物还产生多炔类、有机酸等次生代谢物质多炔是植物体内发现的天然炔类,主要分布于菊科及伞形科植物,现已发现1000种左右有机酸广泛分布于植物各部位,一些有机酸如茉莉酸在植物信号传递中起重要作用根据结构特征和生理作用也可将次生代谢产物分为抗生素(植保素)、生长刺激素、维生素、色素、生物碱与毒素等不同类型3.1 萜类 terpene•萜类或类萜在植物界中广泛存在,由异戊二烯组成,有链状的,也有环状的,一般不溶于水•萜类种类依异戊二烯数目而定,有单萜、倍半萜、双萜、三萜、四萜和多萜之分•萜类的生物合成有两条途径:甲羟戊酸途径和丙酮酸/磷酸甘油醛途径,前者研究得比较清楚,后者仍有些未明,两条途径都是经过异戊烯基焦磷酸(IPP)进一步合成各种萜类化合物3.1.1 单萜(monoterpene)•单萜广泛存在于高等植物中,多分布于樟科、松科、伞形科、姜科、芸香科、桃金娘科、唇形科、菊科的植物中•单萜常温下一般是挥发性液体,沸点140-200℃。
有的单萜与糖结合成苷,则不具有挥发性•单萜依据碳架可分为链状、单环、双环和三环4个大类3.1.1.1 链状单萜•月桂烯(杨梅烯,myrcene)广泛存在于植物界,杨梅叶、松节油、黄柏果油、桂油、柠檬草油、啤酒花油和芫荽油等挥发油中含有;是香料工业中重要的反应中间体•芳樟醇(linalool)(里哪醇、沉香醇)化学名:3,7-二甲基-1,6-辛二烯-3-醇,具一个手性碳原子,有一对对映异构体。
植物生物化学试题及答案一、选择题(每题2分,共10分)1. 植物体内含量最多的有机化合物是:A. 蛋白质B. 核酸C. 碳水化合物D. 脂质答案:C2. 下列哪种物质不是植物次生代谢产物?A. 萜类B. 酚类C. 氨基酸D. 甾体答案:C3. 光合作用中,光能被转化为:A. 热能B. 电能C. 化学能D. 机械能答案:C4. 植物体内合成淀粉的主要酶是:A. 淀粉酶B. 纤维素酶C. 淀粉合成酶D. 蔗糖酶答案:C5. 下列哪种维生素是植物自身合成的?A. 维生素AB. 维生素BC. 维生素CD. 维生素D答案:C二、填空题(每空1分,共10分)1. 植物体内光合作用的主要色素是______和______。
答案:叶绿素a;叶绿素b2. 植物体内合成脂肪酸的主要途径是______途径。
答案:脂肪酸合成3. 植物体内储存能量的主要形式是______。
答案:淀粉或糖原4. 植物体内运输水分和矿物质的主要组织是______。
答案:导管或木质部5. 植物体内合成氨基酸的主要途径是______途径。
答案:氨基酸合成三、简答题(每题5分,共20分)1. 简述植物光合作用的主要过程。
答案:光合作用是植物通过叶绿素吸收光能,将二氧化碳和水转化为葡萄糖和氧气的过程。
主要分为光反应和暗反应两个阶段。
在光反应中,光能被叶绿素分子捕获,产生ATP和NADPH。
在暗反应中,ATP和NADPH提供能量和还原力,用于将二氧化碳固定并还原成有机物质。
2. 描述植物体内脂质的主要功能。
答案:脂质在植物体内有多种功能,包括作为能量储存物质、构成细胞膜的主要成分、参与信号传导、作为植物激素的前体以及保护植物免受环境压力等。
3. 解释植物体内淀粉的合成和分解过程。
答案:淀粉的合成是在淀粉合成酶的作用下,将葡萄糖分子连接成长链状的多糖。
淀粉的分解则是在淀粉酶的作用下,将淀粉分解为葡萄糖分子,以供植物体内其他代谢过程使用。
4. 简述植物体内蛋白质合成的基本过程。
植物次生代谢物中天然产物的种类和生物合成途径的研究植物产生的次生代谢物是植物生长发育中的非必需产物。
它们的种类非常丰富,包括生物碱、黄酮类、萜类化合物、苯丙素类等。
这些次生代谢物在植物的生长发育、抗病抗虫等方面都扮演着重要角色。
本文将介绍一些常见的植物次生代谢物以及它们的生物合成途径。
一、生物碱生物碱是植物产生的一类含氮的碱性化合物,具有广泛的生物活性,包括镇痛、镇静、抗肿瘤等。
常见的植物生物碱包括吗啡、可卡因、洛普拉敏等。
吗啡是最著名的一种生物碱。
吗啡的生物合成经历了多个步骤。
首先,酪氨酸被氧化酶催化转化为多巴。
多巴经过脱羧酶作用后生成多巴酸,然后由此进一步转化为肽酸。
肽酸与L-丝氨酸结合形成丝氨酸肽,丝氨酸肽与L-苯丙氨酸发生缩合反应形成黄嘌呤二肽。
黄嘌呤二肽被氧化成哌替啶,再经过甲基化形成吗啡。
二、黄酮类化合物黄酮类化合物是一类广泛存在于植物中的天然化合物,具有广泛的生物活性,包括抗氧化、抗炎、抗肿瘤等。
常见的黄酮类化合物包括类黄酮、异黄酮、花青素等。
其中,花青素是一类存在于花朵中的黄酮类化合物,具有艳丽的颜色,可以吸引昆虫传粉。
花青素的生物合成受到多个因素的调控,包括激素和环境因素。
花青素的合成需要多个酶的参与,其中最关键的是酪氨酸氨基转移酶。
酪氨酸氨基转移酶能够把酪氨酸转化为酪氨酸酰基,然后与类胡萝卜素偶联形成花青素。
三、萜类化合物萜类化合物是一类存在于植物中的天然有机化合物,具有非常广泛的生物活性,包括抗微生物、杀虫、抗肿瘤等。
常见的萜类化合物包括桂皮醛、二萜类、萜烯类等。
其中,麝香烯是一种天然的二萜类化合物,常见于一些植物的根、树皮和果实中。
麝香烯的生物合成经历了多个步骤。
首先,异戊烯二磷酸在异戊烯基转移酶的催化下转化为青烯酸,青烯酸经过氧化形成橙皮烯酸。
橙皮烯酸被还原形成莽草烷醇,随后经过多次氧化产生莽草酮,最后形成麝香烯。
四、苯丙素类化合物苯丙素类化合物是一类广泛存在于植物中的天然化合物,具有广泛的生物活性,包括抗氧化、抗肿瘤、抗炎等。
植物次生代谢产物的化学成分与活性研究植物是自然界中重要的生物群落,拥有丰富的化学成分,其中许多化合物具有一定的生理活性,被称为次生代谢产物。
次生代谢产物是指植物在生长过程中,不参与生长和繁殖的代谢物质,不同于必需代谢物质。
次生代谢产物主要包括碳水化合物、脂肪、酸类、酚类、生物碱、萜类和色素等多种类型的化合物。
其中生物碱、萜类和酚类化合物是植物次生代谢产物中比较重要的一类。
一、生物碱的化学成分与活性生物碱是一类含有一些碱性氮原子的天然化合物,可以在植物、动物和微生物中都可以产生。
生物碱具有广泛的生理活性,如抗癌、抗菌、抗炎、镇静、止痛、血管扩张、兴奋中枢神经系统、改善呼吸、增强免疫系统、调节生物合成、抑制氧化等多种作用。
生物碱的结构和活性差异性很大,化学家们进行了大量对生物碱的化学研究。
生物碱可以分为多种结构类型,如吲哚生物碱、喹啉生物碱、嗪生物碱、吡咯烷型生物碱等等。
其中以麻黄碱、咖啡因、芦丁、紫锥菜碱等比较常见。
麻黄碱是一种重要的生物碱,能够刺激中枢神经系统,使人精力充沛,具有很好的神经刺激作用。
咖啡因同样是广受欢迎的生物碱成分,可促进心理和生理的兴奋,人们在日常生活中喜欢饮用咖啡、茶和可乐等饮料,就因其含有这种物质。
二、萜类化合物的化学成分与活性萜类化合物在植物中有广泛的分布,是目前为止已知最大类的天然有机化合物之一。
萜类化合物环式结构,具有大量碳原子,包含若干个同素异构体,每个同素异构体都有一定的生理活性。
萜类化合物在生物学中有很多重要的功能,如生长和发育、杀菌、防蛀、抗氧化、保肝、解毒等,同时它们还具有广泛的药理活性,如抗炎、抗菌、降血糖、抗癌、抗血栓等。
萜类化合物有许多亚类,比如单萜类、二萜类、三萜类、四萜类、五萜类等。
其中单萜类化合物是最为广泛的一类,这类化合物包括桉树油中的桉叶萜、薄荷油中的薄荷萜等,具有很强的清凉、解毒、消炎、抗感染等多种功能。
而二萜类化合物则具有强烈的芳香和抗炎特性,如大黄素等。
植物次生代谢产物与防御机制的关系深入研究植物是自然界中最重要的生物之一,不仅仅提供了人类所需的衣食住行等基本生存条件,更包含了大量的次生代谢产物,这些产物不仅能够帮助植物自身对抗外界环境的影响,而且也对人类和其他生物有着重要的作用。
近年来,对于植物次生代谢产物与防御机制的关系研究越来越深入,下面将针对该话题进行深入探讨。
一、植物次生代谢产物的种类和分类植物次生代谢产物可以根据它们的生物合成途径来分类。
常见的生物合成途径包括:植物在膜系统内的酶催化作用、生物合成途径中的外源来源、膜系统培养以及转化合成等。
常见的植物次生代谢产物包括:黄酮类化合物、单萜类化合物、香豆素、成糖苷、倍半萜、酚类化合物、生物碱、植物甾醇等。
二、植物次生代谢产物的功能许多植物次生代谢产物是用来保护植物的,对于不同的外界因素,植物会产生出不同种类的次生代谢产物。
例如,一些植物可以产生出含有生物碱种类的次生代谢产物,这对于防止昆虫的侵袭会有帮助。
另外,一些植物也会产生出含有类黄酮和花青素种类的次生代谢产物,这对于保护植物免受光线和过度紫外线的破坏也有帮助。
三、植物次生代谢产物对人类的影响植物次生代谢产物对人类有着重要的影响。
例如,黑茶、绿茶、乌龙茶等饮品中含有大量的单萜类化合物和多酚类化合物,这些化合物可以帮助对抗心血管、癌症等疾病。
此外,物质多酚是花青素和类黄酮的一种共同产物,被广泛应用于朝鲜、泰国、印度和中国等国家中的象牙、木质材料和印度黄麻。
另外,物质多酚也是一种在护肤产品中广泛使用的成分,例如,一些护肤霜中含有物质多酚,可以起到保湿和抗氧化的作用。
四、如何挖掘植物次生代谢产物的潜力植物次生代谢产物的潜力是非常大的,可以通过一些方法来实现挖掘。
例如,在培养、遗传、代谢工程和管理方面,一些新技术被用于挖掘植物次生代谢产物的潜力。
例如,为了提高植物次生代谢产物的合成能力,在控制转录因子、上调基因和下调基因等方面进行了一些尝试,以增加植物次生代谢产物的数量或提高生产率。
植物次生代谢产物的提取与分离植物是自然界中最丰富的生物资源之一,其中包含大量的次生代谢产物,具有广泛的药用和营养保健价值。
而植物次生代谢产物的提取和分离是利用植物资源的重要途径之一,也是近年来广泛研究和应用的领域之一。
1. 植物次生代谢产物的背景和意义植物次生代谢产物(secondary metabolites)是指植物在生长过程中通过代谢途径合成的,对其生长发育无影响的化合物。
它们广泛存在于一些植物的根、茎、叶、花等组织中,并具有广泛的药用、保健和化工等领域的应用。
常见的植物次生代谢产物包括生物碱、黄酮类、苯酚、单萜类、三萜类、二萜类等,它们在药物、保健品、饲料、香料、染料等领域中的应用有很大的潜力。
植物次生代谢产物的提取和分离是指从植物中提取和分离出目标次生代谢产物的过程。
这个过程包括样品采集、提取、分离、纯化等环节。
由于植物次生代谢产物种类繁多,且分子结构复杂,因此,植物次生代谢产物的提取和分离是一个复杂的过程。
植物次生代谢产物的提取和分离是利用植物资源的重要途径之一,也是近年来广泛研究和应用的领域之一。
目前,已有很多方法可以用于植物次生代谢产物的提取和分离,如溶剂提取、水提取、微波提取、超声波提取、液-液萃取、固相萃取等。
2. 植物次生代谢产物的提取和分离方法2.1 溶剂提取法溶剂提取法是目前最常用的植物次生代谢产物的提取方法之一,其原理是利用溶剂与植物次生代谢产物的亲和力,将其从植物中提取出来。
常用的有乙酸乙酯、乙醇、甲醇、醚等溶剂。
溶剂提取法的优点是简单易行、操作方便、操作周期短,但其缺点是有些溶剂对环境和人体有害,且溶剂的选择和处理十分重要。
2.2 液-液萃取法液-液萃取法是一种较为常用的植物次生代谢产物的提取方法,其原理是利用物质在两种不同互不相溶的溶液中的分配和转移规律,将目标物质的分配系数增大而达到从混合溶液中分离到单一溶液的目的。
常用的溶剂体系包括醇-水、乙酸-乙酯、正己烷-醇等。
植物代谢物质植物代谢物质00植物次生代谢物质从其生物合成途径可以将次生物质分成酚类、类萜、含氮化合物和其他次生物质4大类。
植物次生代谢物质对害虫有忌避和毒杀作用,引诱害虫在寄主上产卵,使其后代有较好生存环境。
植物次生物质吸引传粉昆虫繁衍后代,同时也吸引某些共生生物。
植物次生代谢物质在昆虫和植物协同进化中具有信号转递功能。
/question/25112865.html植物次生代谢产物可分为苯丙素类、醌类、黄酮类、单宁类、萜类、甾体及其甙、生物碱七大类。
不同的产物有不同的作用。
植物次生代谢产物是植物对环境的一种适应,是在长期进化过程中植物与生物和非生物因素相互作用的结果。
在对环境胁迫的适应、植物与植物之间的相互竞争和协同进化、植物对昆虫的危害、草食性动物的采食及病原微生物的侵袭等过程的防御中起着重要作用。
/question/131129338.html?fr=qrl&cid=202&index=4&fr2=query植物体内有机物的代谢1.植物的初生代谢和次生代谢关于糖类脂类核酸和蛋白质的合成和分解过程,在生物化学课程中已将讨论过,在此不重复。
这里重点讨论它们之间的相互关系。
卡尔文循环、糖酵解、三羧酸循环和戊糖磷酸途径是有机体代谢的主干,它筑起了生命活动的舞台,是各种有机物代谢的基础,这个主干来源于光合作用,形成蔗糖和淀粉;通过呼吸作用,分解糖类,产生各种中间产物,进一步为脂类、核酸和蛋白质的合成提供底物。
糖和脂类是相互转变的,因为甘油可逆转为己糖,而脂肪酸分解为乙酰辅酶A后可再转变为糖。
氨基酸的碳架——α-酮酸主要来源于糖代谢的中间产物,糖与蛋白质之间可以互相转变,丙酮酸、乙酰辅酶A、α-酮戊二酸和草酰乙酸等中间产物在它们之间的转变过程中起着枢纽作用。
核苷酸的核糖来源于戊糖磷酸代谢,碱基则是由氨基酸及其代谢产物组成的。
糖类、脂类、核酸和蛋白质等是初生代谢产物(primary metabolites),植物体中还有许多其他有机物,如萜类、酚类和生物碱等,它们是由糖类等有机物次生代谢衍生出来的物质以,因此成为次生代谢产物(sevondarymetabolites)。
植物次生代谢物质种类及结构次生代谢产物的化学结构差异很大,通常归为萜类化合物(萜类、甾体类)、酚类化合物(苯丙烷类、醌类、黄酮类、鞣质)、含氮化合物(生物碱、氰苷、芥子油苷、非蛋白氨基酸)和其他次生代谢产物四大类。
(1)酚类广义的酚类分为黄酮类、简单酚类和黄酮类。
黄酮类是以一大类苯色同环为基础,具有C3、C6、CH6结构的酚类化合物,其生物合成的前体是苯丙氨酸和乌龙基辅酶A。
根据在B环上的连接位置的不同可分为2-苯基衍生物(黄酮、黄酮醇类)3-苯基衍生物(异黄酮)和4-苯基衍生物(新黄酮),很多黄酮类成分用于心血管疾病的治疗,如槐树槐米中的芦丁是用于治疗毛细血管脆性引起的出血症及辅助治疗高血压,许多异黄酮是植保素。
简单酚类是含有一个被烃基取代苯环的化合物,某些成分有调节植物生长的作用,有些是植保素的重要成分。
醌类化合物是有苯式多环烃氢化合物(如萘、蒽等)的芳香二氧化物。
醌类的存在是植物成色的主要原因之一,有些醌类是抗菌、抗癌的主要成分,如胡桃醌和紫草宁。
举例(1)苦荞麦中含有黄酮类物质,主要成分是芦丁。
芦丁含量占总黄酮的70~90%,芦丁又名芸香甙、维生素P,具有降低毛细血管脆性和异常通透性,改善微循环的作用,在临床上主要用于糖尿病、高血压、高血糖等的辅助治疗。
而芦丁在其它谷物中几乎没有。
(2)胡桃醌作为氢化胡桃醌(三羟基萘)的苷存在于胡桃科植物胡桃及其同属植物黑核桃的未成熟的外果皮(青皮)中。
可从天然物质中分离,也可化学合成。
桃醌具有止血和抗菌活性,也曾用于治疗湿疹、牛皮和发癣。
(2)萜类化合物萜类化合物是由异戊二烯单元(5碳)组成的化合物,通过异戊二烯途径(又称甲羟戊酸途径),由2个、3个或4个异戊二烯单元分别组成产生的单萜、倍半萜和二萜称为低等萜类。
单萜和倍半萜是植物挥发油的主要成分,也是香料的主要成分,许多倍半萜和二萜化合物是植保素。
一些萜类成分具有重要的药用价值,如倍半萜成分青蒿素是治疗疟疾的最佳药物,抗癌药物紫杉醇是二萜类生物碱,存在于裸子植物红豆杉中。