基于数字振荡器算法的任意波形发生器设计
- 格式:pdf
- 大小:398.82 KB
- 文档页数:6
基于DDS技术的任意波形发生器的设计1.设计思路信号发生器广泛应用于电子电路、自动控制和科学试验等领域。
是一种为电子测量和计量工作提供符合严格技术要求的电信号设备,也是应用最广泛的电子仪器之一,几乎所有的电参量的测量都需要用到信号发生器。
本设计研究的信号发生器的基本思路是:基于DDS芯片AD9850基础的任意波形发生器。
系统是基于AD9850芯片产生的波形。
它是由相位累加器、正弦查询表、D/A转换器组成的集成芯片。
其中相位累加器的位数N=32位,寻址RAM用14位,舍去18位,采用高速10位数模转换,DDS的时钟频率为125MHz,输出信号频率分辨率可达0.0291Hz;系统的微处理器采用8051,外围电路主要是接口电路、调幅电路、滤波电路和积分电路的设计。
同时还包括键盘接口。
系统的软件主要是启动和初始化8051,然后处理键盘输入的频率控制字和相位控制字,并将其转换为32位的二进制数的控制字,最后并行递交给AD9850并启动AD9850,让它实现从正弦查询表中取数产生波形再输出。
2.方案设计2.1 DDS的基本原理1971年,美国学者J. Tierncy, C. M. Rader和B. Gold提出了以全数字技术,从相位概念出发直接合成所需波形的一种新的频率合成原理。
限于当时的技术和器件水平,它的性能指标尚不能与已有的技术相比,故未受到重视。
近20年间,随着技术和器件水平的提高,一种新的频率合成技术——直接数字合成频率合成(DDS)得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的佼佼者。
DDS基本原理图如图1所示,DDS由相位累加器,只读存储器,数模转换器DAC及低通滤波器组成。
以合成正弦波为例,幅值表ROM中存有正弦波的幅值码,相位累加器在时钟f c的触发下,对频率控制字K进行累加,相位累加器输出的相位序列(即相码)作为地址去寻址ROM,得到一系列离散的幅度编码(即幅码)。
DDS任意波形发生器的设计与实现近年来,随着电子技术的飞速进步,任意波形发生器在信号发生、测试、测量等领域扮演着重要的角色。
而Direct Digital Synthesis(DDS)任意波形发生器作为一种数字信号处理技术,由于其高精度、低失真、灵活性强等优点,成为了目前最为常用的任意波形发生器技术之一。
DDS任意波形发生器工作原理基于数字信号处理与相位累加器。
其主要组成部分包括振荡器、相位累加器、数字控制模块和DAC(数模转换器)模块。
其中,相位累加器用于产生一个累加的相位值,该相位值会被数字控制模块处理后再输入DAC模块进行数模转换,并输出到外部电路。
而该外部电路毗连到输出端口,可以控制输出的幅值以及频率,从而生成所需的任意波形。
在过程中,需要思量多个关键因素。
起首,选择合适的振荡器型号以及参考时钟。
振荡器的质量和稳定性直接影响到输出信号的频率稳定性。
而参考时钟的准确性则决定了相位累加器的性能。
其次,在相位累加器的设计中,需要合理选择累加的相位步进值以及相位累加位数。
过大的步进值可能导致相位区分率降低,而过小的步进值会增加累加器的位数,增加系统的复杂度。
另外,数字控制模块的设计需要思量到输入的频率、相位和幅度的变化。
最后,需要合理选择DAC模块以及输出电路,以确保输出信号的质量和稳定性。
在实际实现过程中,可以使用FPGA(Field-Programmable Gate Array)作为主要硬件实现平台,并利用VHDL(VHSIC Hardware Description Language)进行硬件描述,从而构建DDS任意波形发生器。
FPGA的高度灵活性使得其适用于DDS任意波形发生器的实现,并且其可重构的特点使得系统可以依据需要进行扩展和改进。
在软件方面,可以使用C语言编写相应的控制程序,以实现对DDS任意波形发生器的控制和调整。
是一个综合性的工程项目,需要对电路设计、硬件描述语言、数字信号处理等方面有深度的了解和精通。
课程设计任务书学生姓名:侯康专业班级:电子科学与技术0802班指导教师:梁小宇工作单位:信息工程学院题目: 任意波形发生器的设计初始条件:本设计既可以使用集成计数器、存储器、D/A转换器、运放、555定时器、必要的门电路等;电阻、电容、二极管、开关等分立元件若干。
本设计也可以使用单片机系统构建任意波形发生器。
自行设计所需电源。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、课程设计工作量:1周。
2、技术要求:①可产生三种以上波形,如:三角波,方波和正弦波,由开关进行切换选择。
②波形数据存放于EPROM中。
③可通过改变CP信号的周期改变输出波形的频率,频率范围:100~9999Hz。
④产生的波形信号幅值:0.5~5V。
⑤确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。
3、查阅至少5篇参考文献。
按《武汉理工大学课程设计工作规范》要求撰写设计报告书。
全文用A4纸打印,图纸应符合绘图规范。
时间安排:1、2010 年6 月25 日集中,作课设具体实施计划与课程设计报告格式的要求说明。
2、2010 年6 月26 日,查阅相关资料,学习电路的工作原理。
2、2010 年6 月27 日至2010 年 6 月30 日,方案选择和电路设计。
2、2010 年6 月30 日至2010 年7 月1 日,电路调试和设计说明书撰写。
3、2010 年7 月2 日上交课程设计成果及报告,同时进行答辩。
课设答疑地点:鉴主13楼电子科学与技术实验室。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)Abstract (II)1. 绪论 (1)2.设计内容及要求 (2)2.1设计任务及目的 (2)2.1.1设计目的 (2)2.2.2 设计内容及技术要求 (2)2.2 设计思想及方案选择 (2)3.设计原理及单元模块设计 (4)3.1 设计原理及方法 (4)3.2 单元模块设计 (4)3.2.1 MCU微控制器 (4)3.2.2 LCD显示器 (5)3.3.3 键盘电路 (5)3.3.4 DDS波形产生电路 (6)3.3.5 功率放大电路 (8)4.程序设计 (8)5.总结 (9)参考文献: (10)附录I:整体电路原理图 (11)附录II:C语言源程序........................... 错误!未定义书签。
目录1.1 DDS的基本结构 (2)1.2 DDS的工作特点 (4)1.3 DDS的技术指标 (5)1.4实现方案 (7)1.5硬件结构说明 (7)1.6设计过程 (8)1.7频率测量 (18)1.8误差与杂散分析 (19)DDS(Direct Digital Synthesis)的概念首先由美国学者J.Tierncy,C.M.Radar和B.Gold在1971年提出,但限于当时的技术和工艺水平,DDS技术仅仅限于理论研究,而没有应用到实际中去。
近20年来,随着VLSI(Very Large Scale Integration),FPGA(Field Programmable Gates Array)以及DSP(Digital Signal Processing)的发展,这种结构独特的频率合成技术得到了飞速发展。
目前该技术已经被广泛用于接收机本振、信号发生器、通信系统、雷达系统等相关领域中。
1.1 DDS的基本结构DDS(Direct Digital Synthesis)技术设计思想是基于数值计算信号波形的抽样值来实现频率合成的。
它包括数字器件与模拟器件两部分,主要有相位累加器、ROM波形查询表、数模转换器组成。
其基本框图如下。
(1)相位累加器是DDS的核心部分。
一般是由数字全加器和数字寄存器组成,实现相位累加。
如下图所示。
一般DDS的累加器都采用二进制,线性数字信号通过相位累加器实现逐级的累加。
假设累加器字长为N,频率控制字为K,控制时钟频率为f c,系统在同一个时钟下工作,每个时钟周期加法器做一次累加计算。
因为累加器的满偏是2N,所以累加一次,相当于做一次2N模的运算。
得到的和作为相位值。
(2)波形函数存储在ROM中。
根据累加器输出的相位值,作为地址,寻找存储在ROM中的波形函数的幅度量化值,完成相位到幅值的转换,输出相对应的序列。
(3)数模转换器DAC是DDS中的重要部分。
经过查表以后得到的是离散的脉冲信号,通过数模转换器将转换成为连续平滑的信号。
任意波形发生器的设计方案12电信1 张晓航 1200301108 一,选择课题:电子测量仪器设计——任意波形发生器设计二,设计要求:能产生方波、三角波、正弦波、锯齿波信号。
主要技术指标:(1)输出频率范围100HZ~1KHZ、1~10KHZ(2)输出电压:方波UPP=6V,三角波UPP=6V,正弦波UPP>1V,锯齿波UPP=6V。
三,仪器仪表清单:1.直流稳压电源 1台 2.双踪示波器 2台3.运放741(LM324n)*3 4.二极管 1N4154*2 1N4680*25.电位器50K*2 1K*1 6.电容1μF 47nF *17.电阻 100k 10k 5k 3k 4k 96k若干 8.面包板 1块9.剪刀1把 10.仪器探头线 2根11.电源线若干四,设计考虑因素:信号发生器可以通过多种方法设计产生,但是考虑到如果使用芯片去完成可能所需要的成本比较高,但如果用单片机等则设计太复杂,还需要嵌入相应代码,有点大材小用,综合多方面的因素考虑该方案是可行性比较高,性价比比较高的一种方案,同时,能够让我对于一些专业基础知识有了更深的了解。
元器件可重复利用,符合现在可持续发展的绿色思想。
该电路具有结构、思路简单,运行时性能稳定且能较好的符合设计要求,对原器件要求不高,且成本低廉、调整方便.五,函数发生器的总方案:为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波(锯齿波)—正弦波函数发生器的设计方法。
本课题中函数发生器电路组成框图如下所示:函数发生器电路组成框图由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
波形发生器设计方案一、引言波形发生器是一种电子设备,用于产生具有特定频率、振幅和形状的电信号。
它在各种应用中广泛使用,例如科学实验、医疗设备和通信系统等。
本文将介绍一种波形发生器的设计方案。
二、设计原理波形发生器的设计原理是基于振荡电路。
振荡电路是一种能够稳定产生周期性信号的电路,通常采用反馈路径来实现。
在波形发生器中,我们将采用RC振荡电路作为基础。
三、设计步骤1. 选择合适的电路元件我们需要选择合适的电容和电阻来构建RC振荡电路。
根据所需的频率范围和精度要求,选取合适的元件。
2. 计算元件数值根据振荡电路的设计公式,计算所需的电容和电阻数值。
确保电容和电阻的数值可获得并满足设计需求。
3. 组装电路根据所选的电路元件和计算得到的数值,组装RC振荡电路。
确保元件的正确连接,并注意防止干扰和噪音。
4. 调试和优化连接电源后,使用示波器监测输出信号。
如果波形不满足设计要求,可以调整电容或电阻的数值进行优化。
四、特性和功能该波形发生器设计方案具有以下特性和功能:1. 频率可调性:通过调整电容或电阻的数值,可以实现不同频率的输出信号。
2. 波形形状可变性:根据实际需求,可以调整电路参数以产生正弦波、方波、矩形波等不同形状的输出信号。
3. 稳定性和精度:经过调试和优化后,该波形发生器能够稳定输出准确的波形信号。
五、应用领域本设计方案的波形发生器可应用于以下领域:1. 科学实验:在物理、化学等实验中,需要产生特定频率和形状的信号,用于测试和研究。
2. 医疗设备:在医疗设备中,波形发生器常用于心电图机、超声设备等,用于诊断和治疗。
3. 通信系统:在通信系统中,波形发生器被用于产生调制信号和时钟信号等,保证通信的稳定和可靠。
六、总结波形发生器是一种重要的电子设备,在多个领域中发挥着重要作用。
本文介绍了一种基于RC振荡电路的波形发生器设计方案,通过选择合适的元件、计算数值、组装电路和调试优化等步骤,可以实现频率可调、波形形状可变的输出信号。
计算机应用基于DDS 技术的任意波形发生器设计浙江大学(杭州310027) 刘成尧 王小海 祁才君 王文华 摘 要 文章介绍了基于DDS 技术的任意波形发生器的设计。
详细讨论了CPLD 器件在DDS 技术实现中的具体应用。
该任意波形发生器具有输出频率稳定、准确,波形质量好和输出频率范围宽等优点。
关键词 直接数字频率合成 CPLD 任意波形发生器1 概述基于DDS 技术的任意波形发生器(AW G )利用高速存储器作为查找表,通过高速D/A 转换器对存储器的波形进行合成[1]。
它不仅可以产生正弦波、方波、三角波和锯齿波等规则波形,而且还可以通过上位机(或下位机)编辑,产生真正意义上的任意波形。
例如,它能模拟编码雷达信号、潜水艇特征信号、磁盘数据信号、机械振动瞬变过程、电视信号以及神经脉冲之类的波形,也能重演由数字示波器(DSO )捕获的波形。
DDS 技术的实现依赖于高速、高性能的数字器件。
可编程逻辑(CPLD )器件以其速度高、规模大、可编程,以及有强大EDA 软件支持等特性,十分适合实现DDS 技术。
本文中即将讨论的是EPF6016A 器件在DDS 技术实现任意波形发生器中的具体应用。
2 DDS 实现任意波形发生器的原理DDS 技术建立在采样定理的基础上,它首先对需要产生的波形进行采样,将采样值数字化后存入存储器作为查找表,然后再通过查表将数据读出,经过D/A 转换器转换成模拟量,把存入的波形重新合成出来。
DDS 原理如图1所示。
图1 DDS 的原理框图 利用上位机生成所需波形的数据,然后通过单片机将生成的数据写入波形存储器(RAM )中,再由DDS 系统将波形合成出来,这样就可以产生出所需的任意波形。
DDS 系统任意波产生的原理图如图2所示。
图2 DDS 系统任意波形的产生3 CPLD 在DDS 技术实现中的应用FL EX6016芯片的主要结构包括132个逻辑阵列块(logic array block )、快速通道(fast track )和I/O单元[2]。
1 DDS概述1.1 DDS基本原理直接数字合成技术(Direet Digital Synthesis,简称DDS)是建立在采样定理基础上,首先对需要产生的波形进行采样,将采样值数字化后存入存储器作为查找表,然后通过查表读取数据,再经D/A转换器转换为模拟量,将保存的波形重新合成出来。
DDS基本原理框图如图1所示。
由图l看出,除了滤波器(LPF)之外,DDS系统都是以数字集成电路实现,因此DDS系统易于集成和小型化。
DDS系统的参考时钟源通常是一个具有高稳定性的晶体振荡器,整个系统的各个组成部分提供同步时钟。
频率字(FSW)实际上是相位增量值(二进制编码),作为相位累加器的累加值。
相位累加器在每一个参考时钟脉冲输入时,累加一次频率字,其输出相应增加一个步长的相位增量。
由于相位累加器的输出连接在波形存储器(ROM)的地址线上,因此其输出的改变就相当于查表。
这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查找表查出。
ROM的输出送到D/A转换器,经D/A转换器转换成模拟量输出。
1.2 DDS的基本参数及其计算在系统时钟脉冲的作用下,相位累加器不停累加,即不停查表,把波形数据送到D/A 转换器转换成模拟量输出,从而合成波形。
滤波器则进一步平滑D/A转换器输出的近似正弦波的锯齿阶梯波,同时衰减不必要的杂散信号。
设频率字(FSW)的值为d,系统时钟频率为f,相位累加器的字长为N,则系统的输出频率为:2 任意波形发生器的设计方案基于DDS技术的任意波形发生器主要由微处理器控制模块、键盘与显示模块、DDS通道的FPGA实现模块、D/A转换模块以及滤波器模块组成。
同时片外扩展了4 KB程序存储器SRAM和6 KB数据存储器ROM,分别用于存储波形抽样数据和3种标准输出波形抽样数据。
本系统设计原理如图2所示。
2.1 微处理器控制模块采用AT89C5l单片机完成数据处理和控制其他电路工作。
将键盘接收的数据通过特定算法转换成二进制码,再将处理后的控制字、波形参数和其他器件的控制信号发送出去。
26实验室研究与探索LABO RA TO R Y R ESEA RCH AND EXPLO RA T I ON1999年 第5期・实验教学・数字电路综合实验——频率可调的任意波形发生器的设计及实现徐小凤, 江一山(常州技术师范学院电子系,江苏常州市213001)摘 要:介绍了数字电路综合实验“频率可调的任意波形发生器”的设计方案及实验方法。
该实验涉及到数字电路课程的逻辑电路、存贮器、定时器、数模转换等内容,有利于提高学生分析问题的能力和动手能力。
关键词:数字电路;设计原理;实践能力C om p re he ns ive Expe ri m e nt ofD ig ita l C ircuit ——D e s ign a nd Re a liza tion of Ad jus ta b le F re que ncy 2Ra ndom W a ve s G e ne ra to rX U X iao 2f eng J IA N G Y i 2shan(Changzhou T eachers Co llege of T echno logy ,Changzhou ,213001,Ch ina )Abstract :T h is article in troduced the design and realizati on of the com p rehen sive exp eri m en t of digital circu it ——adju stab le frequency 2random w aves generato r .It is concerned w ith logic circu it 、m em o ry 、ti m er 、D A converter of digital circu it cou rse ,and is favou rab le to i m p rove studen t’s ab ility in analysing p rob lem s and p ractice .Key words :digital circu it ;design p rinci p le ;p ractising ab ility收稿日期:1999201221 “脉冲与数字电路”是电子类专业的一门基础课。
任意波形发生器设计一、设计目标和需求分析在进行任意波形发生器设计之前,首先需要明确设计目标和需求。
根据实际应用需求,我们需要设计一种具有以下特点的任意波形发生器:1.多种波形形状:能够产生包括正弦波、方波、三角波、锯齿波等多种波形形状的输出信号。
2.高精度输出:能够提供稳定、精确的波形输出,满足对波形频率、幅度、相位等参数的要求。
3.宽频率范围:能够在较宽的频率范围内产生波形信号,适应不同应用场景的需求。
4.灵活性和操作便捷:具备灵活的参数调节和操作界面,方便用户配置所需波形信号。
二、电路设计和构成基于以上需求,我们可以采用数字/模拟混合电路来设计任意波形发生器。
整体电路结构包括信号发生器、波形调节电路、滤波器、放大器和输出接口等几大部分。
1.信号发生器:信号发生器是生成基本信号的核心部分。
可以采用数字逻辑电路,通过编程控制产生不同形状的基本波形,例如正弦波、方波、三角波、锯齿波等。
可以使用存储器来存储基本波形的采样点,并通过数字模拟转换器(DAC)将数字信号转换为模拟信号。
2.波形调节电路:波形调节电路用于调整波形的频率、幅度和相位等参数。
通过调整振荡电路中的电阻、电容或电感等元件,实现对基本波形的变换和调节。
可以设计多种电路模块来完成这一任务,例如可变电容二极管电路、可调电阻电路等。
3.滤波器:滤波器用于对产生的波形信号进行滤波处理,除去高频或低频的杂散分量,保留所需频率范围内的信号。
可以采用各种类型的滤波器电路,例如RC滤波器、有源滤波器或数字滤波器等。
4.放大器:放大器用于增强波形信号的幅度,确保输出的信号具备足够的驱动能力,可以驱动接收端电路。
可以采用运放等放大电路,根据需要选择合适的增益。
5.输出接口:输出接口用于将产生的波形信号输出给外部设备。
可以设计多种类型的输出接口,例如模拟输出接口(BNC接口)、数字输出接口(USB接口)等,方便用户接入不同类型的设备。
三、实现方法和关键技术在设计任意波形发生器时,需要考虑以下关键技术和实现方法:1.数字信号处理技术:通过数字信号处理技术,实现对基本波形的生成、存储和输出。
仪器设备研制与应用任意波形发生器的一种快速设计与实现龚向东1,3,刘春平1,3,黄虹宾2,3(1.深圳大学电子科学与技术学院,广东深圳 518060; 2.深圳大学机电与控制工程学院,广东深圳 518060; 3.深圳市微纳光子信息技术重点实验室,广东深圳 518060)摘 要:采用直接数字频率合成(DDS)技术,在基于F PGA (field pr og rammable gate arr ay)的可编程片上系统(SOP C)和M atlab 平台上设计实现了一种任意波形发生器,任意波形数据通过M at lab 的图形用户界面产生并传送到FP GA 片上R AM 存储器中,DD S 模块对RA M 的寻址操作实现波形数据输出,并通过片外的数/模转换电路产生模拟波形信号。
该波形发生器的设计实现周期短,输出波形平滑、稳定。
关键词:任意波形发生器;可编程片上系统;M at lab;直接数字频率合成中图分类号:T N 710 文献标志码:A 文章编号:1002 4956(2010)10 0066 03Rapid prototyping of an arbitrary waveform generatorGong Xiangdong 1,3,Liu Chunping 1,3,H uang H ongbin2,3(1.Co llege o f Electro nic Science and T echno log y,Shenzhen U niver sity,Shenzhen 518060,China; 2.Co lleg e of M echatro nics and Co nt rol Engineer ing,Shenzhen U niversity,Shenzhen 518060,China)Abstract:A n ar bitrar y wav efo rm generato r (AW G)is designed and implemented o n FP GA based SO PC and M atlab platfo rms with direct digital sy nthesis(DDS)techniques,wher e arbitr ary w avefor m data are generated w it hin a M at lab based g raphic user interface pr og ram and then transmitted into an RA M memor y on FPG A chip.By DDS mo dule addr essing to the RA M ,the w avefo rm data are outputted t o a D/A cir cuit o ff chip,w ith w hich required analogue w avefor m is obtained.Besides o f sho rt tur n around time fo r design and implementa tion,the A WG has smoo th and stable wavefo rm o utput.Key words:ar bitra ry w avefo rm g ener ator;system on pro gr ammable chip;M atlab;dir ect dig ita l synthesis收稿日期:2009 11 19 修改日期:2010 03 31基金项目:深圳市微纳光子信息技术重点实验室开放基金(200803)作者简介:龚向东(1956 ),男,江西省新余市人,硕士,教授,主要从事光电技术教学和科研工作.DE2是Altera 公司和友晶科技公司合作推出的一种基于FPGA (field programmable g ate array )的可编程片上系统(SOPC)实验/开发平台[1],目前国内许多高校都建有以此为基础的EDA/SOPC 实验室。
波形发生器设计方案1. 简介波形发生器是一种用于产生各种波形信号的电子设备。
波形发生器广泛应用于电子实验、通信、测试等领域,具有重要的实际意义。
本文将介绍一个基于数字技术的波形发生器设计方案。
2. 设计原理波形发生器的设计原理是基于数字信号处理技术的。
主要包括以下几个步骤:1.选择合适的数字信号处理器(DSP)芯片作为波形发生器的核心处理器。
DSP芯片具有强大的数学运算能力和高速数据处理能力,适合用于波形生成。
2.实现波形发生器的数字信号处理算法。
根据需求,可以选择正弦波、方波、三角波等常见的波形形式。
具体的算法实现可以利用DSP芯片提供的数学运算指令和运算库来完成。
3.将数字信号处理器与外部模拟电路相连。
使用模数转换器(ADC)将DSP芯片生成的数字信号转换为模拟信号,然后通过低通滤波器进行滤波处理,最后输出所需的波形信号。
3. 设计步骤步骤一:选择合适的DSP芯片根据波形发生器的性能要求,选择一款功能强大的DSP芯片作为波形发生器的核心处理器。
考虑芯片的计算能力、存储容量、接口类型等因素。
步骤二:实现波形生成算法根据需求,在选择的DSP芯片上开发波形生成算法。
可以使用C语言或者汇编语言来编写算法代码。
常见的波形生成算法包括:•正弦波生成算法:利用正弦函数的周期性特点,通过离散化计算得到正弦波的采样值。
•方波生成算法:通过周期性地改变正负值来生成方波的采样值。
•三角波生成算法:通过线性函数的斜率逐渐增大或减小来生成三角波的采样值。
步骤三:连接外部模拟电路将DSP芯片与外部模拟电路相连。
使用模数转换器将DSP芯片生成的数字信号转换为模拟信号。
选择合适的ADC芯片,并配置相应的通信接口。
步骤四:滤波处理与输出通过低通滤波器对模拟信号进行滤波处理。
滤波器的设计要考虑去除数字信号的高频成分,保留所需波形的频谱特性。
最后,将滤波后的信号输出到波形发生器的输出端口。
4. 总结本文介绍了一种基于数字技术的波形发生器设计方案,通过选择合适的DSP芯片、实现波形生成算法、连接外部模拟电路和滤波处理与输出等步骤,可以实现高性能、多种波形的波形发生器。
目录第一章EDA技术概述 (2)1.1 EDA技术的发展 (2)1.2 EDA技术的基本设计方法 (3)1.2.1 电路级设计 (3)1.2.2 系统级设计 (4)1.2.3 数字系统设计模型及基本步骤 (6)1.3 数字系统设计 (8)1.3.1 数字系统设计概要 (8)1.3.2数字系统的设计模型 (8)1.3.3 数字系统的设计步骤 (9)第二章任意波形产生器 (11)2.1任意波形信号发生器的概述: (11)2.2发展趋势及应用 (11)2.3 任意波形产生器构成 (12)第三章任意波形产生器的设计 (14)3.1设计的意义 (14)3.2 设计步骤及程序 (15)心得体会 (19)参考引脚配置 (21)附录:下载板与主板主要器件连接关系 (22)第一章EDA技术概述EDA是电子设计自动化(Electronic Design Automation)缩写,是90年代初从CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAT(计算机辅助测试)和CAE(计算机辅助工程)的概念发展而来的。
EDA技术是以计算机为工具,根据硬件描述语言HDL( Hardware Description language)完成的设计文件,自动地完成逻辑编译、化简、分割、综合及优化、布局布线、仿真以及对于特定目标芯片的适配编译和编程下载等工作。
典型的EDA工具中必须包含两个特殊的软件包,即综合器和适配器。
综合器的功能就是将设计者在EDA平台上完成的针对某个系统项目的HDL、原理图或状态图形描述,针对给定的硬件系统组件,进行编译、优化、转换和综合,最终获得我们欲实现功能的描述文件。
综合器在工作前,必须给定所要实现的硬件结构参数,它的功能就是将软件描述与给定的硬件结构用一定的方式联系起来。
也就是说,综合器是软件描述与硬件实现的一座桥梁。
综合过程就是将电路的高级语言描述转换低级的、可与目标器件FPGA/CPLD 相映射的网表文件。
文章编号:1001-9227(2001)03-0058-03基于DDS 技术的任意波发生器薛 刚(河北邯郸农校,056001) 摘 要:本文给出了基于DDS 技术的VXI 系统平台上任意波形发生器功能电路的一种设计方法。
介绍了DDS 技术在波形产生功能电路中的应用,推出了利用DAC 实现高精度线性程控的一种方法。
最后简要说明了仪器软件的实现方式及主要功能。
关键词:DDS VXI 任意波发生器AB STRACT :This paper presents a method of arbitrary waveform generator ’s function circuit which is based on the VXI system.It mainly introduces the application of DDS technology in the arbitrary wave generator ’s function circuit It proposes a method of high -rate accuracy programming control by way of DAC.At the last part the realization manner of the software and its principal function is briefly intro 2duced.KEYWORDS :DDS VXI Arbitrary waveform generator 中图分类号:TP346文献标识码:B 0 概 述传统波形发生器往往只能产生少数几种波形,且仪器本身的体积大、灵活性差。
鉴于此,本人设计了一种基于DDS (直接数字合成)技术的VXI 总线系统平台上的任意波形发生器模块。
这种仪器不但产生波形的种类多、频率高,而且还具有体积小、可靠性高、操作灵活、使用方便及可由计算机直接控制等特点,相对于传统的独立仪器,它易于与VXI 系统的集成,可以最大限度地发挥计算机和微电子技术在当今测试领域中的应用,是组建VXI 自动测试系统的重要组成单元之一。
基于DDS的任意波形发生器设计与实现基于DDS的任意波形发生器设计与实现一、引言任意波形发生器是一种能够产生各种复杂波形信号的仪器,广泛应用于电子测量、通信系统、医疗设备等领域。
传统的任意波形发生器需要通过外部模拟电路,通过改变电压来产生不同的电压信号,从而得到不同形状的波形。
但这种方式存在着设计复杂、波形精度有限等问题。
而现在,随着数字技术的快速发展,基于直接数字合成(DDS)的任意波形发生器逐渐成为了新的选择。
二、DDS的工作原理DDS基于数字信号处理技术,通过数字技术生成复杂波形信号,并将其转换为模拟信号输出。
其基本工作原理如下:1.时钟信号的产生DDS需要一个稳定的时钟信号,并且要求其频率远高于输出信号的最高频率。
常见的时钟源可以是晶振或者外部频率源。
2.相位累加器相位累加器是DDS的核心部件,其作用是将时钟信号进行频率除法,并将相位结果累加。
累加得到的相位值将作为波形图的横坐标,决定波形的频率。
3.频率累加器频率累加器用于通过改变累加阶数来控制相位累加器的工作速度,从而实现波形的频率可调控。
4.相位查找表(Phase Lookup Table,简称LUT)相位查找表存储了一系列的相位值对应的幅度。
通过输入相位信息,即可查找到相应的幅度值。
5.数字到模拟信号转换DDS通过数模转换器,将数字信号转换为模拟信号输出。
三、基于DDS的任意波形发生器的设计与实现基于DDS的任意波形发生器的设计与实现包括以下几个关键步骤:1.波形参数的输入与存储首先,用户需要通过控制面板或者计算机软件输入所需波形的参数信息,包括频率、幅度、相位等。
系统需要提供一个存储器,将这些参数信息进行存储。
2.DDS模块的设计DDS模块是该任意波形发生器的核心模块。
根据输入的波形参数信息,DDS模块将根据上述工作原理,计算出相应的相位序列,进而产生对应的波形信号。
3.时钟模块的设计时钟模块用于产生高稳定性的时钟信号,其频率要远高于输出信号的最高频率。
基于DDS的任意波形发生器的设计南京理工大学电子工程与光电技术学院南京210094汪栋硕俞锋华思远指导老师:蒋立平摘要:本设计旨在实现一个基于直接数字合成技术(DDS,Direct Digital Synthesic)的任意波形发生器。
该波形发生器不仅可以生成正弦波、三角波、锯齿波、方波等常见波形,还可以通过PC端控制,使之产生任意波形。
DDS技术是一种新型的频率合成技术,具有相对带宽大、频率转换时间短、分辨力高、相位连续性好等优点,因而被广泛用于通讯领域,是任意波形发生器研究的一个重要方向。
关键词:直接数字频率合成,可编程片上系统,NIOSⅡArbitrary Waveform Generator Based on DDS Abstract:This paper describes an arbitrary waveform generator (AWG) based on DDS, which can not only synthesize sine waveforms, triangle waveforms, square waveforms, sawtooth waveforms and other common waveforms, but also generate arbitrary waveforms with data edited and downloaded by PC software. DDS is an advanced technique on frequency synthesis. Its primary advantages are controlling facility , continuous phase and fine frequency resolution. It's an important field of the AWG design.Keywords:DDS;SOPC;NIOSⅡ一、绪论1、DDS2、SOPCSOPC(System On Programmable Chip, 可编程的片上系统),是Altera 公司提出的一种灵活、高效的SOC解决方案,是一种新的软硬件协同设计的系统设计技术。