03-1网壳结构的稳定性
- 格式:ppt
- 大小:2.40 MB
- 文档页数:24
大跨度网壳结构的稳定性分析xxxxxx摘要:空间结构是一种倍受瞩目的结构形式,其中网壳结构是近半个世纪以来发展最快、应用最广的空间结构之一。
随着大跨度单层网壳结构的不断涌现,其结构重要性不言而喻,结构的稳定性问题尤为突出。
本文主要介绍了网壳结构的稳定性问题并以某大跨度球类馆为工程实例,采用非线性有限元法针对承载力计算时的11种工况进行整体稳定计算,考虑了材料和几何非线性,对实际工程进行了第一类和第二类稳定分析,结果表明:该网壳结构的第一类稳定符合相关规范的要求;其第二类稳定性较差。
因此,第二类稳定分析应该受到重视。
关键词:网壳结构;稳定性;非线性有限元;大跨度;稳定系数STABILITY ANALYSIS OF LONG-SPAN LATTICED SHELLSxxxDepartment of Civil Engineering ,xxxAbstract: Space structure is a very attractive structure system, and the latticed shell is one of the furthest development and the most widely applied space structure in the recent half century. The stability analysis is the key problem in the design of latticed shells, especially in single-layer latticed shells. This paper introduces the stability of latticed shells and a long-span ball gymnasium is adopted as a practical work, and it is analyzed by nonlinear finite element method under the first and the second kinds of stability problems. The holistic calculation aimed at 11 conditions in bearing capacity, material and geometric nonlinearity are considered. The results show that the first kind of stability of this latticed shells accords with the requirements of correlative specifications; the second kind of stability is poorer. Therefore, the analysis of the second kind of stability should be paid attention..Keywords: latticed shells; stability; nonlinear finite element; long-span; stability factor1 前言自20世纪以来,大跨度、大空间的建筑在世界各地得到了迅猛发展。
单层网壳结构整体稳定性分析摘要:作为常用的大跨度空间结构形式之一,单层网壳结构不仅结构形式美观,而且较少的节点和杆件也体现出该结构形式良好的经济性,但现实中单层网壳的整体失稳破坏现象在国内外均有发生,并得到设计师关注。
本文以结构稳定性分析理论为基础,对单层网壳整体结构线性稳定和考虑初始缺陷的非线性稳定问题的分析方法进行了系统的研究,并将研究成果直接应用于某站房屋盖的整体稳定性设计中,取得了良好的效果。
关键词:单层网壳结构;整体稳定性;分析1、前言单层网壳面外刚度弱,随着跨度的增大,结构的承载力主要由稳定控制,稳定验算成为结构设计的关键。
此外,单层网壳对缺陷敏感,其初始缺陷的分布与取值是该领域研究的主要课题之一。
网壳整体稳定性能的影响因素有很多种,而且都具有随机性。
而这些因素之间的相互影响使得网壳结构的稳定性问题变得更为复杂。
因此,对网壳结构进行整体稳定性分析是非常有必要的。
2、结构稳定分析基本问题在荷载作用下结构处于稳定平衡状态,荷载逐渐增加到某一值时,若继续施加某一微小增量,结构的平衡状态即发生明显的变化,结构体系由开始的衡状态变为不稳定平衡状态,最后达到一个新的稳定状态,这就是结构失稳或屈曲过程,对应的荷载即为屈曲荷载或临界荷载。
结构失稳主要有三种类型:第一类失稳通常是指结构荷载增加至一定数值时,结构由原来平衡状态变为另外一个平衡状态,该类失稳又称为分支点失稳或平衡分岔失稳,基本平衡路径为外荷载与内力相等的平衡状态对应的平衡路径,当结构沿基本平衡路径加载达到屈曲临界荷载时,平衡路径发生变化,有可能会出现新的平衡状态,新的平衡路径称为分支平衡路径,分支平衡路径与基本平衡路径的交叉点称为分支点,线性屈曲失稳的临界荷载N即为分支点对应的外荷载。
第二类失稳是指结构在大变形和大位移的不稳定的发展过程中,没有新的变形形式出现,失稳时结构平衡形态本质没有发生改变,这类失稳也称极值点失稳。
当外荷载逐渐增加至极值荷载Nmax后,结构平衡状态由稳定变为不稳定,荷载增大或即使保持不变,结构也会产生很大的位移,若要维持结构内外力之间的平衡必须逐渐减小外荷载。
空间网壳结构稳定分析概述发表时间:2016-04-18T14:00:31.153Z 来源:《工程建设标准化》2015年12月供稿作者:徐飞[导读] 河北正元化工工程设计有限公司空间网格结构由于其重量小、抗震性能好、空间性能优、外型美观等特点.(河北正元化工工程设计有限公司,河北,石家庄,050000)【摘要】概述影响网壳稳定的因素,线性屈曲与非线性屈曲的区别及联系。
【关键字】稳定分析内容;非线性稳定;荷载--位移曲线。
1.简述空间网格结构由于其重量小、抗震性能好、空间性能优、外型美观等特点,使其能够很好的满足建设方对功能、造型的要求,广泛应用于机场、体育场馆、高速公路收费站、大型储煤设施等跨度较大的建筑物,由于其充分发挥了材料的强度及外形优势,使其取得了良好的经济效益和社会效益。
由于跨度大,网壳结构在竖向荷载作用下,整体变形较大,荷载与变形之间的行为已经呈现出非线性特征,根据《空间网格结构技术规程》(JGJ 7-2010)[1]规定,单层网壳以及厚度小于跨度 1/50 的双层网壳均应进行稳定性计算。
一般双层网壳均能满足此条件,所以网壳稳定实际上就是单层网壳稳定的问题。
2.稳定状态特点网壳稳定分有约束稳定和变形稳定两种。
约束稳定是由于约束不足引起整体位移或大位移,主要靠支座约束来解决,而目前所讲的网壳稳定为变形稳定问题,即在特定外荷载作用下几何形状的改变。
网壳的稳定性分析分为两类,第一类为理想化分析,即达到某种荷载时,除结构原来的平衡状态外,还可能出现第二个平衡状态,称为平衡分岔失稳或分支点失稳,在数值分析上称为求特征值问题,为线性分析,得到的荷载为屈曲荷载,荷载——位移曲线见图1。
线性屈曲的静力平衡方程可以写成下列形式: [K﹢λKG]{U}={P}[K]: 结构的弹性刚度矩阵 [K]: 结构的结合刚度矩阵 {U}: 结构的几何位移向量 {U}: 结构的外力向量 λ:特征值(临界荷载)λ<λcr :不稳定平衡状态; λ=λcr :不稳定状态; λ>λcr : 稳定状态第二类分析表现为结构失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,称为极值点失稳,为非线性分析,考虑结构几何非线性和材料非线性,此时的荷载称为极限荷载,荷载——位移曲线见图2。
网壳结构稳定性研究现状分析摘要:网壳结构以其受力合理、轻质高强以及良好的跨越能力等优点在世界各地被广泛应用,网壳结构稳定性是衡量其安全与否的重要指标之一,本文综述了网壳结构稳定性的国内、外研究现状,并对网壳结构的应用发展趋势做了总结。
关键词:网壳结构;稳定性1、引言随着人类物质文明和精神文明的发展与提高,人们亟需更大的自由空间及更小内支撑相互干扰的结构的出现,如大型集会场所、体育馆会展中心等。
而一般的平面结构,如刚架、桁架、平板网架等,受其结构形式的限制,跨越能力有限。
为此网壳结构应运而生,它以杆件为基础,按一定的规律组成网格,以壳体构型,兼具杆系和壳体的性质,保证了三维空间受力特性以及空间工作状态。
此外,网壳结构还有以下特点:1)轻型化特征,网壳结构各个构件之间没有特别明显的主次关系,各个构件几乎都能均衡承受荷载,其内力分布较为均匀,受力更加合理。
2)可以将结构美和建筑美有机地结合起来,完美与周围环境协调。
3)计算原理成熟、计算方法简便。
4)具有标准化、规格化特征。
网壳结构的杆件可以用型钢、铝材、木材等建材制成,容易实现建筑构件的大批量工业化生产,多种节点体系的发明及生产方法的高度自动化,可以提高生产效率,降低生产成本,从而使网壳结构的力学合理性与生产经济性完美结合起来,使大跨度网壳结构的广泛应用成为现实。
2、网壳结构稳定性的国内外研究现状网壳结构多数构件呈受压状态,典型的破坏形态是失稳破坏,具有突然性,会造成严重的损失。
尤其对于单层网壳,稳定更是控制其设计的关键,失稳破坏时钢材实际承受的应力水平很低,仅为30~40N/mm?,远未达到钢材屈服强度,使得网壳稳定性成为国内外学者关注的焦点。
网壳结构的计算方法大致分为两类:基于连续化拟壳理论的拟壳法和基于杆系有限元分析理论的离散结构法。
拟壳法的是一种近似方法,可近似算出杆件的内力、节点的位移和结构的稳定性,适合于中小跨度的网壳计算。
随着电子计算机技术的飞速发展,杆系结构的有限元方法已被广泛应用在网壳结构计算上,该法可以精确的计算出网壳结构的内力和挠度。
单层球面网壳结构的稳定性分析摘要:网壳结构是近年来在建筑工程中广泛应用的一种空间结构形式,它受力合理,造型美观, 用料经济,施工简便。
其结构形势多样,跨度较大,重量轻,因而网壳结构的稳定性问题是结构设计和施工安装中的十分重要。
本文主要在国内外研究成果的基础上,介绍单层球面网壳结构的发展状况以及其非线性稳定性分析方法,并得出相关结论。
关键词:单层球面网壳结构、非线性、稳定性Abstract:In recent years latticed shell is a widespread spatial structure in the architectural engineering because of the reasonable stress, the beautiful modeling and convenient installation. Its structure diversifies , span is big and the weight is light. So the stability calculation problem on the latticed shell structure becomes important in the structure design and construction installment. Based on the recent research within and without , this paper mainly introduce the development and the nonlinear stability analysis methods of single-layer spherical lattice shells and draws some conclusions.Key words: single-layer spherical lattice shell、nonlinear、stability1 网壳结构的发展概况网壳结构是一种由杆件构成的曲面网格结构,可以看作是曲面状的网架结构,兼有杆系结构和薄壳结构的固有特性。
网壳结构两种悬挑形式稳定性研究摘要:网壳结构是一种常见的钢结构形式,被广泛的应用于工业厂房,其结构形式多变,本文以某工业厂房为例,使用有限元分析软件sap2000,对网壳结构的悬挑部分在不同设计方案下的计算长度以及不同连接方式对计算长度的影响进行了分析,并进行了理论验证,根据不同的设计形式得出了相应的计算长度,供相关设计使用参考。
关键词:网壳结构;计算长度;sap2000;临界荷载1.引言钢结构常常被用于空间结构之中,网壳是工业厂房常用的结构形式。
要做出安全、经济、合理的钢结构设计,除了把握好工艺要求和结构布置以外,还应重视设计分析方法和构造要求。
工程上多采用单层网壳、双层网壳等复杂曲面来实现建筑物的特殊造型,稳定性是影响网壳结构的承载力主要因素,而计算长度系数是控制杆件稳定性的重要参数。
网壳结构设计的实用方法除了考虑整体分析的方法外,还要对结构中每个杆件进行承载力的校核,在计算时考虑其他杆件的约束,用计算长度系数体现。
由于工程实际中杆端的约束各种各样的,在进行结构设计时为了方便计算。
通常是使用等效计算长度,即把端部不同约束杆件的承载力换算到两端铰接的轴压杆件的形式,我们常把等效长度叫做计算长度,把计算长度除以杆件的几何长度就可以得到杆件的计算长度系数。
对于网壳结构,其外荷载可按静力等效的原则将节点所辖区域内的荷载集中作用在该节点上,分析双层网壳时可假定节点为铰接,杆件只承受轴向力,分析其计算长度时,可将杆件看作轴心受压构件进行分析。
2.工程背景在西安某工业厂房设计项目中,主生产厂房为总装厂房,该车间占地面积约为14580平方米,厂房纵向长度为162m,横向宽度为90m。
厂房地上一层,高度为18m,跨度分别为18m、36m及36m,柱距27m;其中:18m跨内设有夹层,夹层首层层高7m,以库房、小型加工区为主;二层层高4米,为管理办公用房;另外两跨36米区域为总装生产区,每跨设有两台2t悬挂式单梁吊车,吊车钩底净高不低于8m。
《网壳结构的稳定性》沈世钊著网壳结构的稳定性沈世钊(哈尔滨工业大学哈尔滨150090)摘要:本文通过荷载-位移全过程分析对各种形式网壳结构的稳定性能进行了深入研究。
对复杂结构的全过程分析方法作了探讨,通过所完成的2800余例各式网壳的全过程分析揭示了不同类型网壳结构稳定性能的基本特性,并提出了单层球面网壳、柱面网壳和椭圆抛物面网壳稳定性承载力的实用计算公式。
关键字:网壳结构稳定性全过程分析非线性有限元分析一、概述稳定性分析是网壳结构、尤其是单层网壳结构设计中的关键问题。
国外自70年代以来,国内自80年代中期以来,网壳结构发展异常迅速,其稳定性问题遂成为研究热点领域之一。
结构的稳定性可以从其荷载-位移全过程曲线中得到完整的概念。
传统的线性分析方法是把结构强度和稳定问题分开来考虑的。
事实上,从非线性分析的角度来考察,结构的稳定性问题和强度问题是相互联系在一起的。
结构的荷载-位移全过程曲线可以准确地把结构的强度、稳定性以至于刚度的整个变化历程表示得清清楚楚。
当考察初始缺陷和荷载分布方式等因素对实际网壳结构稳定性能的影响时,也均可从全过程曲线的规律性变化中进行研究。
但以前,当利用计算机对复杂结构体系进行有效的非线性有限元分析尚未能充分实现的时候,要进行网壳结构的全过程分析是十分困难的。
在较长一段时间内,人们不得不求助于连续化理论("拟壳法")将网壳转化为连续壳体结构,然后通过某些近似的非线性解析方法来求出壳体结构的稳定性承载力。
例如文献1-3都提出了关于球面网壳稳定性的计算公式。
这种"拟壳法"公式对计算某些特定形式网壳的稳定性承载力起过重要作用。
但这种方法有较大的局限性:连续化壳体的稳定性理论本身并未完善,缺乏统一的理论模式,需要针对不同问题假定可能的失稳形态,并作出相应的近似假设;事实上仅对少数特定的壳体(例如球面壳)才能得出较实用的公式;此外,所讨论的壳体一般是等厚度的和各向同性的,无法反映实际网壳结构的不均匀构造和各向异性的特点。
网壳结构的整体稳定分析姓名:张秀斌学号:10121270指导教师:张勇网壳结构的整体稳定分析摘要网壳结构的稳定性是网壳、特别是单层网壳分析中的一个关键问题,复杂曲面单层网壳结构的稳定性问题更值得重视。
如何准确计算结构的稳定极限承载力和确定各种因素对稳定性的影响程度是结构设计必须考虑的问题。
本文简单介绍了网桥结构稳定分析的两种方法拟壳法和有限元法,并展望了网壳稳定分析的发展趋势。
关键词:网壳结构失稳有限元法几何初始缺陷目录网壳结构的整体稳定分析 (2)关键词:网壳结构失稳有限元法几何初始缺陷 (2)1绪论 (3)1.1网壳结构的特点 (3)1.2网壳结构的分类 (3)1.3 国内外网壳结构应用概况 (3)2网壳结构稳定性分析的理论和基础 (4)2.1稳定分析的必要性和目的 (4)2.2失稳和屈曲 (5)2.3网壳结构的失稳模态 (5)2.4影响网桥结构整体稳定性的因素 (7)3网壳结构的稳定分析方法 (8)3.1拟壳法 (8)3.2有限元法 (9)3.21有限元法的特点: (9)3.2.2有限元分析的关键问题 (9)3.3有缺陷网壳的相关分析方法 (10)3.3.1随机缺陷模态法 (10)3.3.2一致缺陷模态法 (10)4网壳稳定分析趋势与展望 (11)参考文献 (12)1绪论1.1网壳结构的特点网壳结构是一种曲面形网格结构,有单层网壳和双层网壳之分,是大跨空间结构中一种举足轻重的主要结构形式。
网壳结构的优点和特点,大致可归纳如下:(1)网壳结构兼有杆系和薄壳结构的主要特性,杆件比较单一,受力比较合理。
(2)网壳结构的刚度大、跨越能力大,往往当跨度超过l00m时,便很少采用网架结构,而较多的采用网壳结构。
(3)网壳结构可以用小型构件组装成大型空间,小型构件和连接节点可以在工厂预制,走工业化生产的道路,现场安装简便,不需要大型的机具设备,因而综合技术经济指标较好。
(4)网壳结构的分析计算借助于通用程序和计算机辅助设计,现已相当成熟,不会有多大的难度。
结构的稳定分析()华中科技大学土木工程与力学学院,湖北武汉430074失稳破坏是一种突然破坏,人们没有办法发觉及采取补救措施,所以其导致的结果往往比较严重。
正因为此,在实际工程中不允许结构发生失稳破坏。
导致结构失稳破坏的原因是薄膜应力,也就是轴向力或面内力。
所以在壳体结构、细长柱等结构体系中具有发生失稳破坏的因素和可能性。
这也就是为什么在网壳结构的设计过程中稳定性分析如此被重视的原因。
下面根据本人多年来的研究及工程计算经验,谈谈个人对整体稳定性分析的一点看法,也算做一个小结。
1稳定性分析的层次在对某个结构进行稳定性分析,实际上应该包括两个层次。
(一)是单根构件的稳定性分析。
比如一根柱子、网壳结构的一根杆件、一个格构柱(桅杆)等。
单根构件的稳定通常可以根据规范提供的公式进行设计。
不过对于由多根构件组成的格构柱等子结构,还是需要做试验及有限元分析。
(二)是整个结构的稳定分析。
比如整个网壳结构、混凝土壳结构等结构整体的稳定性分析。
整体稳定性分析目前只能根据有限元计算来实现。
2整体稳定性分析的内容通常,稳定性分析包括两个部分:Buckling分析和非线性荷载-位移”全过程跟踪分析。
(1)Buckling 分析Buckling分析是一种理论解,是从纯理论的角度衡量一个理想结构的稳定承载力及对应的失稳模态。
目前几乎所有的有限元软件都可以实现这个功能。
Buckling分析不需要复杂的计算过程,所以比较省时省力,可以在理论上对结构的稳定承载力进行初期的预测。
但是由于Buckling分析得到的是非保守结果,偏于不安全,所以一般不能直接应用于实际工程。
但是Buckling又是整体稳定性分析中不可缺少的一步,因为一方面Buckling可以初步预测结构的稳定承载力,为后期非线性稳定分析施加的荷载提供依据;另一方面Buckling分析可以得到结构的屈曲模态,为后期非线性稳定分析提供结构初始几何缺陷分布。
另外本人认为通过Buckling分析还可以进一步校核单根构件截面设计的合理性。
浅谈网壳结构的稳定性分析浅谈网壳结构的稳定性分析【摘要】稳定性是网壳结构(尤其是单层网壳结构)分析设计中的关键问题。
在设计网壳结构时,除了按常规设计规范验算网壳结构构件强度、稳定性及结构刚度外,还应该进行结构整体稳定性以及对初始缺陷的敏感性验算[2]。
本文对影响网壳稳定性的因素和研究方法做了综述,从而有助于设计人员对网壳稳定性的研究。
【关键词】网壳;稳定性;缺陷网壳结构的稳定性能可能从其荷载-位移全过程曲线中得到完整的概念。
结构的失稳(屈曲)类型分为两种:一种是极值点屈曲,另一种是分枝点屈曲,其中分枝点屈曲又分为稳定分枝点屈曲和不稳定分枝点屈曲。
网壳结构根据不同的曲面形式对初始缺陷的敏感程度不同。
对初始缺陷敏感的网壳,结构稳定承载力会因为初始缺陷的存在而降低,同时,初始缺陷还会导致分枝屈曲问题转化极值点屈曲问题。
分枝点屈曲只发生在理想完善的结构,实际结构都是有初始缺陷的,所以其失稳都极值点屈曲而不是分枝点屈曲。
网壳失稳模态有很多种类型,通常有两种分类方法:一种是根据网壳结构失稳时,结构失稳的变形范围可以分为局部失稳和整体失稳;另一种是根据结构失稳时,构件是否发生塑性变形可以分为弹性失稳和塑性失稳。
局部失稳就是结构在荷载作用下失稳时,如果只有某个或某些局部区域结构偏离了初始平衡位置的失稳变形,而其他区域没有发生偏离初始平衡位置的变形。
结构的局部失稳又可以分为局部节点失稳和局部杆件失稳,局部节点失稳主要表现为结构局部一个或多个节点偏离了其初始平衡位移,这种节点的偏离平衡位置有两种,第一种是节点仍在它初始平衡位置上,但节点已经出现了绕某个自身轴的转动变形,这样的转动变形有可能会造成连接在此节点上的杆件弯曲变形。
第二种是节点偏离了它的初始平衡位置。
局部失稳一般容易发生在结构整体刚度分布不均匀,存在较薄弱的区域或者在结构上某区域作用过大的集中荷载。
整体失稳就是结构在荷载作用下失稳时,结构的大部分或几乎整个结构都偏离了初始平衡位置的失稳变形。