高二上学期数学知识点整理
- 格式:docx
- 大小:50.09 KB
- 文档页数:7
高中数学高二上期知识点数学是一门重要的学科,对于高中生来说尤为关键。
下面将为大家总结高中数学高二上学期的知识点,帮助大家更好地掌握这门学科。
一、函数与方程式1. 二次函数及其性质:包括二次函数的定义、图像特征、顶点坐标、轴对称、增减性等。
2. 一次函数与二次函数的关系:通过变换或复合使一次函数变成二次函数。
3. 高次函数及其性质:了解高次函数的定义、图像特征、奇偶性等。
4. 根据函数的性质解方程:通过函数的图像和性质分析解方程。
5. 一元二次方程组:学习一元二次方程组的解法,掌握消元、代入法、图解法等。
二、数列与数学归纳法1. 等差数列与等比数列:了解等差数列和等比数列的定义、通项公式、性质等。
2. 数列的前n项和:学习计算等差数列和等比数列的前n项和。
3. 数学归纳法:掌握数学归纳法的基本思想和运用,能够进行简单的数学归纳证明。
三、三角函数1. 三角函数的定义:了解正弦、余弦、正切等三角函数的定义及其图像特征。
2. 基本关系式:学习三角函数之间的基本关系式,如正弦定理、余弦定理等。
3. 三角函数的图像变换:通过变换函数的参数,学习三角函数图像的平移、伸缩与翻转等性质。
四、概率论1. 随机事件与概率:了解随机事件的概念、样本空间、事件的概率等。
2. 事件的关系:学习事件的包含关系、互斥关系等。
3. 条件概率:掌握条件概率的计算方法,了解独立事件的概念与性质。
五、向量与坐标系1. 向量的概念:了解向量的定义、性质及运算法则。
2. 向量的坐标表示:学习向量在坐标系中的表示方法。
3. 向量的数量积与向量的夹角:学习向量的数量积的计算方法、性质及与向量夹角的关系。
六、立体几何1. 空间直角坐标系:了解空间直角坐标系的表示方法及坐标运算法则。
2. 空间中的点、线、面:学习空间中点的坐标、直线的方程及平面的方程。
3. 空间几何图形的投影:学习空间图形在平面上的投影方法。
4. 空间几何图形的交点与距离:了解空间图形的交点、距离以及平面与直线的相对位置。
高二上数学知识点总结一、函数与方程1、函数的定义、性质及表示(定义域、值域、定义域、值域的关系)函数是一种特殊的数量关系,函数的表示形式有多种,解析函数是最常用的表示形式,它由定义域和值域确定,定义域决定了它在哪些x值得上有意义,值域决定了它在哪些y值上有意义。
2、函数的图像函数的图像是由曲线给出的,主要有直线、圆、抛物线、双曲线、椭圆、指数函数等形状。
3、一元函数的极值函数y=f(x)在定义域内的极值分为极大值和极小值,取决于f(x)的增减性。
通常可以通过寻找极大值、极小值的判别式,来判断函数的极值情况。
4、方程的类型可以根据方程的阶数,将其分为一元方程、二元方程、立方方程、高阶方程等,根据两边式子数量的多少,将其分为不等式、等式;根据解的个数,又可以将其分为可解和不可解方程。
5、方程的求解常见的一元方程求解方法有开根号法、完全平方因式法、因式分解法、分段函数法、解析法、组合法等。
二、圆与椭圆1、圆的定义及性质圆是由直径向内部定位的平行于直径的弧线组成的平面图形,它具有特殊的几何性质,如圆心角等边三角形,圆周等分等。
2、圆的学习表示法圆可以用既知直径法和标准方程表示,既知直径法表示为用两个直径的中点和圆的半径表示,标准方程表示为用圆的圆心和半径表示。
3、椭圆椭圆是一种形状为椭圆的曲线,它具有自己特定的方程表示,一般情况下,椭圆的内切线是直径,外切线是椭圆的短轴,一般椭圆的最大值由长轴,最小值由短轴决定。
4、椭圆的中心坐标表示法椭圆可以用中心坐标表示,即把图形移动到椭圆的中心坐标,再把椭圆沿着y轴对称,再旋转一个特定的角度。
三、三角形三角形是一种由三条线段组成的平面图形,线段之间不会发生重叠,每条边都与另外边相连接。
三角形的内角和总是180度,每两个内角的和是360度的两倍,三角形的边长全部大于0,两边和必须大于第三边;三角形的以边中点为圆心的内切圆连接三角形的顶角,两个顶角之间的内接圆相同。
3、三角形内角度数三角形的内角可以有相等的三角形,等腰三角形,等边三角形,普通三角形,它们的内角的度数的和都是180度,而且相等三角形的内角全部是相等的,等腰三角形的两个角是相等的,等边三角形的三个角全部是一样的。
高二上册数学必考知识点在高二上册的数学学习中,有一些重要的知识点是必须要掌握的。
这些知识点不仅在考试中频繁出现,而且在以后的学习中也会起到基础和桥梁的作用。
下面将对这些数学必考知识点进行详细的介绍。
1. 二次函数与一次函数:- 二次函数的定义和表示方法;- 二次函数的图像特征:开口方向、顶点坐标、对称轴等;- 一次函数的定义和表示方法;- 一次函数的图像特征:斜率与截距等。
2. 平面向量与空间向量:- 向量的定义及表示方法;- 平面向量的加减法;- 向量的数量积与向量积;- 空间向量的性质与运算法则。
3. 三角函数与三角恒等变换:- 基本三角函数的定义和性质;- 三角函数的图像特征:周期、区间、奇偶性等; - 三角恒等变换的应用:化简、证明等。
4. 概率与统计:- 随机事件与概率的概念;- 概率计算:加法定理、乘法定理等;- 排列组合与概率计算;- 统计与统计图表的分析与应用。
5. 解析几何:- 直线与圆的性质及方程;- 点、线、面的位置关系;- 平面与空间的相交关系。
6. 导数与微分:- 函数的极限与连续性;- 函数的导数与导数的计算法则;- 高阶导数与导数的应用。
7. 矩阵与行列式:- 矩阵的定义、运算与性质;- 行列式的定义与计算方法;- 逆矩阵与方程组解的关系。
8. 空间图形与立体几何:- 平面与空间图形的性质与分类;- 球、圆锥、圆柱、圆球的性质与计算。
以上所列举的数学必考知识点,是高二上册数学学习中最为重要的内容。
掌握这些知识点不仅可以在考试中取得不错的成绩,还能为以后的学习打下坚实的基础。
在学习过程中,我们要注重理论的学习与实际应用的结合,灵活运用所学知识解决实际问题。
只有不断努力,才能在数学学科中取得优异的成绩。
高二上学期数学知识点汇总一、函数与方程1. 函数的概念与性质函数是一种特殊的关系,其中每一个自变量都对应唯一一个因变量。
函数可以用图像、表格或公式表示。
函数的性质包括定义域、值域、奇偶性、单调性等。
2. 一次函数与二次函数一次函数的表达式为f(x) = kx + b,其中k和b是常数。
一次函数的图像是一条直线。
二次函数的表达式为f(x) = ax^2 + bx + c,其中a、b和c是常数,且a ≠ 0。
二次函数的图像是抛物线。
3. 指数函数与对数函数指数函数的表达式为f(x) = a^x,其中a是正实数且不等于1。
指数函数的性质包括增减性、奇偶性、对称轴等。
对数函数是指数函数的逆运算,可以表示为f(x) = logₐx,其中a是正实数且不等于1。
对数函数的性质包括定义域、值域、单调性等。
4. 三角函数常见的三角函数包括正弦函数、余弦函数和正切函数。
这些函数可以用来描述角度和边长之间的关系。
三角函数的性质包括定义域、值域、周期性、对称性等。
二、数列与数学归纳法1. 等差数列与等差数列的通项公式等差数列是指相邻两项之差都相等的数列。
等差数列的通项公式为aₙ = a₁ + (n-1)d,其中a₁是首项,d是公差。
等差数列的常用性质包括前n项和公式、通项求和公式等。
2. 等比数列与等比数列的通项公式等比数列是指后一项与前一项的比值都相等的数列。
等比数列的通项公式为aₙ = a₁ · r^(n-1),其中a₁是首项,r是公比。
等比数列的常用性质包括前n项和公式、通项求和公式等。
3. 数学归纳法数学归纳法是一种用来证明数学命题的方法。
它包括基本步骤和归纳假设两个部分,可以用来证明关于自然数的命题。
三、平面解析几何1. 平面直角坐标系平面直角坐标系由两条垂直的坐标轴组成。
坐标轴的交点称为原点,用O表示。
平面上的点可以用有序数对(x, y)来表示,其中x表示横坐标,y表示纵坐标。
2. 点的坐标与距离点在平面直角坐标系中的坐标可以用来求点的距离和位置关系。
高二数学上期全部知识点高二数学上期所学的内容非常广泛和深入,包括了多个重要的数学知识点。
在本文中,我们将回顾和总结这些知识点,以便对学习者进行复习和进一步加深理解。
一、函数与方程1. 函数的概念和性质:定义域、值域、奇偶性、单调性等。
2. 一次函数与二次函数:方程、图像、性质和应用。
3. 高次函数与分式函数:方程、图像、性质和应用。
4. 反函数与复合函数:概念、性质及应用。
5. 一元二次方程与不等式:解法、判定、应用。
二、三角函数1. 弧度制与角度制:定义、转换及应用。
2. 正弦、余弦和正切函数:定义、性质、图像及应用。
3. 三角函数的诱导公式、和差化积、倍角公式、半角公式等。
4. 解三角形与三角方程:SAS、SSS、ASA、AAS 等解法。
三、数列与数学归纳法1. 等差数列与等比数列:通项公式、前 n 项和、求和公式及应用。
2. 数列与数列的和的递推关系。
3. 数学归纳法的概念、基本步骤及应用。
四、平面向量1. 向量的概念:定义、模、共线性等。
2. 向量的运算:加法、减法、数量积、向量积及应用。
3. 向量的坐标表示与应用。
4. 向量的线性运算与向量方程。
五、立体几何1. 空间几何体:点、直线、平面、多面体等基本概念。
2. 空间位置关系:平行、垂直、相交等判定与性质。
3. 球、圆柱、圆锥、棱柱和棱锥的表面积与体积计算。
4. 空间几何图形的投影与旋转。
六、导数与微分1. 函数极限与连续性:定义、计算及应用。
2. 导数的概念与性质:定义、计算、可导函数与不可导函数等。
3. 导数的应用:函数的切线、极值与最值、函数图像的性质等。
4. 微分与高阶导数。
七、概率与统计1. 随机事件与概率的概念:频率与概率的关系。
2. 离散型随机变量与连续型随机变量的概念与性质。
3. 二项分布与正态分布的概念与应用。
4. 统计与数据分析:样本调查、数据整理、统计量计算等。
通过对高二数学上期知识点的整理和回顾,我们可以更好地理解和掌握这些重要内容。
高二上册数学知识点归纳非常实用高二上册数学知识点一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的`距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个)十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的最大值和最小值十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法提高数学成绩的方法一、课内重视听讲,课后及时复习接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。
数学高二上学期所学知识点汇总高二上学期数学知识点汇总一、复数1. 复数的定义和表示2. 复数的加减法和乘法3. 复数的除法及倒数的表示4. 复数的共轭与模5. 复数的乘方和根的表示6. 复数方程的解法二、二次函数1. 二次函数的定义和基本性质2. 二次函数的图像和平移3. 二次函数的对称性与零点4. 二次函数的最值和单调性5. 二次函数与一元二次方程的关系6. 二次函数的应用三、三角函数1. 弧度制与角度制的转换2. 三角函数的定义与性质3. 三角函数的图像和周期4. 三角函数的坐标变换5. 三角函数的和差化积公式6. 三角函数的应用四、统计与概率1. 统计的基本概念和方法2. 频数表和频率表的制作及应用3. 描述统计的指标:均值、中位数、众数、四分位数4. 概率的基本概念和性质5. 事件与概率的计算6. 条件概率和独立事件五、数列与数列的表示1. 数列的定义和基本性质2. 等差数列的通项公式和前n项和3. 等比数列的通项公式和前n项和4. 递推数列的递推公式和前n项和5. 等差数列与等差数列的应用6. 等比数列与等比数列的应用六、三角恒等变换1. 三角恒等式的定义和性质2. 三角恒等式的证明方法3. 三角恒等式的应用4. 半角公式和倍角公式5. 锐角三角函数的定义和性质6. 驻弦公式和余弦定理以上是高二上学期数学的主要知识点汇总,希望对你的学习有所帮助。
通过系统地掌握这些知识,你将能够更好地应对数学学习中的各种问题,提高自己的数学水平。
加油!。
数学高二上册知识点归纳数学高二上册知识点归纳一:总体和样本①在统计学中,把研究对象的全体叫做总体。
②把每个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,研究,我们称它为样本.其中个体的个数称为样本容量。
简单随机抽样也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随。
机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础,高三。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
数学高二上册知识点归纳二:简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。
数学高二上册知识点归纳三:函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;数学高二上册知识点归纳四:立体几何初步(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
高二数学上册知识点及公式一、二次函数与方程的关系二次函数是高中数学课程中的重要内容,其一般形式为 y = ax^2 +bx + c。
通过二次函数图像,我们可以直观地理解一元二次方程的解。
当抛物线与x轴相交时,交点的横坐标即为方程 ax^2 + bx + c = 0的根。
根据判别式Δ = b^2 - 4ac 的值,可以判断方程的根的情况:Δ > 0 时有两个不相等的实根;Δ = 0 时有两个相等的实根;Δ <0 时没有实根。
二、三角函数的基本概念与应用三角函数包括正弦、余弦、正切等,它们在解决与角度和三角形相关的问题时发挥着关键作用。
高二数学课程中,学生会学习到如何利用三角函数解决实际问题,例如计算物体的位移、速度和加速度等。
此外,三角恒等式的应用也是这一部分的重点,包括基本恒等式、和差角公式、倍角公式等。
三、数列的通项公式与求和公式数列是一系列按照一定规律排列的数。
在高二数学中,等差数列和等比数列是两种非常重要的数列类型。
等差数列的通项公式为 an = a1+ (n-1)d,其中 a1 是首项,d 是公差,n 是项数。
等比数列的通项公式为 an = a1 * q^(n-1),其中 a1 是首项,q 是公比。
数列求和公式也是学习的重点,等差数列的前 n 项和公式为 Sn = n(a1 +an)/2 或 Sn = n[a1 + a1 + (n-1)d]/2,等比数列的前 n 项和公式为 Sn = a1(1 - q^n) / (1 - q),当q ≠ 1 时。
四、立体几何的基础知识立体几何是研究空间图形的学科,它包括点、线、面以及由它们构成的立体图形的性质和关系。
在高二数学课程中,学生会学习到如何计算棱锥、棱柱、圆柱、圆锥和球的体积和表面积。
此外,空间向量的概念及其在立体几何中的应用也是这一部分的重要内容。
五、概率与统计的初步概率论是研究随机现象的数学分支,而统计学则是收集、处理、分析、解释以及呈现数据的科学。
高二数学必修一复习知识点笔记1.高二数学必修一复习知识点笔记篇一空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为0。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b 平行的直线a,b,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为0。
②平面的垂线与平面所成的角:规定为90。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
2.高二数学必修一复习知识点笔记篇二数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.3.高二数学必修一复习知识点笔记篇三函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.4.高二数学必修一复习知识点笔记篇四向量的计算1.加法交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
高二上数学知识点归纳大全高二上学期的数学学习内容相对较多,包括了很多基础知识和一些拓展内容。
下面是高二上学期数学的知识点归纳。
一、函数与方程1. 一次函数:定义、特征、图像、性质2. 二次函数:定义、特征、图像、性质、根、判别式、最值3. 指数函数与对数函数:定义、特征、图像、性质、基本性质、指数方程与对数方程4. 三角函数基础:正弦、余弦、正切、基本性质、周期性质、图像5. 方程与不等式:一元一次方程、一元一次不等式、二次方程、二次不等式、绝对值方程与不等式、分式方程与不等式二、图形的性质与变换1. 平面直角坐标系:定义、坐标、轴、象限2. 点与坐标:点的概念、坐标与点的关系3. 直线与斜率:直线方程、斜率的概念、斜率的计算、斜率的性质4. 圆与椭圆:常见圆的性质、圆方程、椭圆方程5. 图形的变换:平移、旋转、对称、放缩三、三角函数与解三角形1. 三角函数的基本关系式:同角三角函数的基本关系式、三角函数的化简2. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质3. 正弦定理与余弦定理:正弦定理的概念、正弦定理的应用、余弦定理的概念、余弦定理的应用4. 解三角形:解直角三角形、解任意三角形四、数列与数列的运算1. 数列的概念与表示:数列的定义、通项公式、前n项和公式2. 等差数列与等比数列:等差数列的概念、通项公式、前n项和公式、等差数列的性质、等比数列的概念、通项公式、前n项和公式、等比数列的性质3. 数列的应用:算术平均数、几何平均数、算术-几何平均不等式五、概率与统计1. 随机事件与概率:随机事件的概念、概率的定义与性质、事件间的关系、概率的计算2. 排列与组合:排列的概念、排列的计算、组合的概念、组合的计算、二项式定理3. 统计图表与数据分析:频率分布表、直方图、折线图、散点图、样本调查与统计分析以上是高二上学期数学的知识点归纳大全。
这些知识点是高中数学学习的基础,对于深入学习数学和解决实际问题都具有重要意义。
高二上册数学知识点大全在高二上册的数学学习中,我们将会涉及到许多重要的知识点。
下面将为大家整理一个高二上册数学知识点的大全,以供参考。
一、集合与函数1. 集合的概念和表示方法2. 集合的运算:并集、交集、差集、补集3. 常用数集:自然数集、整数集、有理数集、实数集4. 函数的概念与性质5. 基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数二、二次函数与一元二次方程1. 二次函数的概念与性质2. 二次函数图像的性质与变换3. 解一元二次方程的方法:配方法、因式分解、求根公式4. 二次函数与一元二次方程的应用:最值问题、图像问题、实际问题三、立体几何1. 空间几何体的概念与性质:点、直线、平面、多面体、棱柱、棱锥、棱台、圆锥、圆柱、球等2. 空间几何体的展开图与表达3. 空间几何体的体积与表面积计算四、概率与统计1. 随机事件与样本空间2. 概率的基本性质与计算方法3. 条件概率与乘法定理4. 排列与组合的计算方法5. 古典概型、几何概型与统计概型6. 统计数据的收集与整理:频数表、频率表、频率分布直方图等五、三角函数与解三角形1. 三角函数的定义、性质与基本关系式2. 三角函数的图像与变换3. 三角函数的计算:特殊角的正弦、余弦、正切值、任意角的正弦、余弦、正切值4. 解三角形的基本思路与方法:正弦定理、余弦定理、正切定理5. 三角函数与解三角形的应用六、导数与函数的应用1. 函数的极限与连续性2. 函数的导数与导数的性质3. 常用函数的导数计算方法与性质:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数、复合函数等4. 函数的最值与单调性5. 函数图像的性质与变换6. 函数的应用:切线与法线、函数的最值问题、函数的模型建立七、数列与级数1. 数列的概念与性质2. 等差数列与等比数列的计算方法与性质3. 数列的求和公式与应用4. 级数的概念与性质5. 等差级数与等比级数的求和公式与应用以上是高二上册数学知识点的一个大致整理。
高二上册数学重点知识点在高二上学期的数学学习中,有一些重要的知识点需要我们掌握。
下面将对这些知识点进行详细的介绍。
一、集合与函数1. 集合的表示与运算集合是由一些确定的对象组成的总体,可以用罗列法、描述法或图形法表示。
常见的集合运算有并、交、差等。
2. 关系与函数关系是集合间的对应关系,函数是一种特殊的关系。
函数由定义域、值域和一个将定义域中的每个元素映射到值域中唯一元素的规则组成。
3. 函数的基本性质函数的性质有:定义域、值域、单调性、奇偶性、周期性等。
我们需要掌握函数的性质,以便能够进行函数图像的分析与绘制。
二、数列与数项1. 等差数列等差数列是指数列中相邻两项之差恒定的数列。
我们需要掌握等差数列的通项公式以及常见的性质和应用。
2. 等比数列等比数列是指数列中相邻两项之比恒定的数列。
我们需要掌握等比数列的通项公式以及常见的性质和应用。
3. 递推数列递推数列是指数列中的每一项都是前一项通过某种递推关系得到的数列。
我们需要掌握递推数列的递推公式以及常见的性质和应用。
三、三角函数1. 弧度与角度弧度是衡量角度大小的单位,与角度之间存在一定的换算关系。
我们需要熟练掌握这两者之间的转换方法。
2. 三角函数的定义三角函数有正弦函数、余弦函数、正切函数等,它们的定义涉及到直角三角形中的边长比例。
我们需要掌握三角函数的定义以及它们的性质和图像。
3. 三角函数的基本关系式三角函数之间存在一系列基本的关系式,如正弦定理、余弦定理、正切定理等。
我们需要熟练运用这些关系式解决三角函数相关的问题。
四、平面几何1. 直线与圆的性质直线与圆的性质是平面几何中的基础内容。
我们需要掌握直线与圆的位置关系、相交关系以及相切关系等。
2. 三角形的性质三角形是平面几何中的重要图形,它具有一系列基本的性质,如角度和为180°、三角形的中位线、高线、角平分线等。
我们需要掌握这些性质以及它们的应用。
3. 向量的运算向量是平面几何中的重要概念,它有加法、减法、数乘等运算。
高二数学人教版上册知识点(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二数学人教版上册知识点本店铺为大家整理的,在日常过程学习中,相信大家一定都接触过知识点吧!知识点有时候特指教科书上或考试的知识。
高中高二上册数学知识点
一、集合与函数
1. 集合的定义与表示
2. 集合的运算与性质
3. 集合的应用
二、数列与数列的极限
1. 数列的概念与表示
2. 数列的性质与分类
3. 数列的极限及其计算
三、三角函数
1. 弧度制与角度制
2. 基本三角函数的定义与性质
3. 三角函数的图像与性质
四、平面向量
1. 向量的概念与表示
2. 向量的运算与性质
3. 向量的坐标与平移
五、解析几何
1. 平面与直线的方程
2. 圆与抛物线的方程
3. 解析几何中的应用问题
六、数学推理与证明
1. 数学语言与符号的运用
2. 命题与命题的逻辑运算
3. 数学证明方法与证明思路
七、立体几何
1. 空间中的点、线、面
2. 立体图形的性质与分类
3. 空间几何中的应用问题
八、概率与统计
1. 随机事件与概率
2. 概率的计算方法与性质
3. 统计与统计图表的应用
以上列举了高中高二上册数学的一些重要知识点。
希望这些知
识点能够帮助你更好地学习与掌握数学。
在学习过程中,要结合
教材上的具体例题进行练习,同时多进行思考与思维训练,灵活
应用所学知识解决实际问题。
数学需要坚实的基础与不断的练习,相信只要你用心去学,一定能够取得优异的成绩!。
高二第一学期数学知识点高二数学是学生在高中数学中的一个重要阶段,本学期包括了多个重要的数学知识点。
在本文中,我们将总结和介绍高二第一学期数学的主要知识点。
一、函数与方程1. 一次函数:函数的定义、函数图像、求解一次方程等。
2. 二次函数:函数的定义、函数图像、求解二次方程等。
3. 指数函数与对数函数:指数函数的定义、性质、图像及应用;对数函数的定义、性质、图像及应用等。
二、三角函数与解三角形1. 三角函数的定义与性质:正弦函数、余弦函数、正切函数等。
2. 角的变化与三角函数的图像:角度制与弧度制的转化,三角函数的周期与图像变化等。
3. 解三角形:根据已知条件,利用三角函数的关系来求解三角形的各个要素。
三、平面几何1. 向量与坐标:平面向量的定义与性质,向量的坐标表示,向量的数量积与向量的夹角等。
2. 二次曲线与圆:抛物线、椭圆、双曲线及圆的定义与性质。
3. 平面向量与几何应用:平面向量的共线、垂直、平行等关系的判定与应用,三角形重心、垂心、外心、内心的坐标等。
四、概率论与数理统计1. 随机事件与概率:随机事件的概念、基本性质、计算概率的方法等。
2. 第一、第二类试验与概率:基于组合数的概率计算方法。
3. 随机变量与概率分布:离散型随机变量、连续型随机变量的定义与性质。
4. 统计与抽样:总体、样本与统计量的概念,抽样方法与抽样分布的基本性质。
五、解析几何1. 平面解析几何:直线的方程、与直线的位置关系等。
2. 空间解析几何:平面方程、直线方程、直线与平面的位置关系等。
以上是高二第一学期数学的主要知识点。
学生们应该通过理论学习、教师讲解、练习题与应用题的反复训练来掌握这些知识。
在学习过程中,要注重理论与实际的结合,灵活运用数学知识解决实际问题。
同时,要注意培养数学思维和逻辑推理能力,提高解题的思维能力和创新能力。
通过对高二第一学期数学知识点的学习和掌握,可以为学生的数学素养的提高奠定基础,也为以后的学习打下坚实的数学基础。
高二上册数学知识点总结坚强是成功的一大要素,只要在试题中推敲得够久,那么你终将高考完善克服。
以下是作者整理的有关高考考生必看的高二上册数学知识点总结,期望对您有所帮助,望各位考生能够爱好。
高二上册数学知识点总结1一、变量间的相干关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相干关系;与函数关系不同,相干关系是一种非肯定性关系.2.从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相干关系称为正相干,点散布在左上角到右下角的区域内,两个变量的相干关系为负相干.二、两个变量的线性相干1.从散点图上看,如果这些点从整体上看大致散布在通过散点图中心的一条直线邻近,称两个变量之间具有线性相干关系,这条直线叫回来直线.当r 0时,表明两个变量正相干;当r 0时,表明两个变量负相干.r的绝对值越接近于1,表明两个变量的线性相干性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相干关系.通常|r|大于0.75时,认为两个变量有很强的线性相干性.三、解题方法1.相干关系的判定方法一是利用散点图直观判定,二是利用相干系数作出判定.2.对于由散点图作出相干性判定时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相干性,若呈曲线型也是有相干性.3.由相干系数r判定时|r|越趋近于1相干性越强.高二上册数学知识点总结2圆与圆的位置关系1、利用平面直角坐标系解决直线与圆的位置关系;2、进程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.高二上册数学知识点总结31、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一样方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一样都采取待定系数法:先设后求.肯定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一样方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来肯定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情形:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来肯定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来肯定. 当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.运用:判定直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:它是判定两个平面相交的方法.它说明两个平面的交线与两个平面公共点之间的关系:交线公共点.它可以判定点在直线上,即证若干个点共线的重要根据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点肯定一平面;两相交直线肯定一平面;两平行直线肯定一平面.公理3及其推论作用:它是空间内肯定平面的根据它是证明平面重合的根据公理4:平行于同一条直线的两条直线相互平行高二上册数学知识点总结到此结束。
高二上数学知识点及公式在高二上学期的数学学习中,我们将进一步巩固和扩展中学阶段所学的数学知识。
本文将为您总结高二上数学的知识点及相关公式,帮助您更好地理解和掌握这些内容。
1. 复数与复数运算- 复数定义:复数由实部和虚部组成,通常表示为a + bi,其中a为实部,b为虚部,i为虚数单位。
- 复数运算:复数的加减法,乘法和除法。
- 共轭复数:将虚部的符号取反得到的复数。
- 模长和辐角:复数的绝对值叫做模长,表示复数到原点的距离;复数的辐角表示与实轴的夹角。
2. 平面向量- 向量定义:向量是具有大小和方向的量。
- 向量的表示:以有向线段表示向量,有起点和终点。
- 向量的运算:向量的加减法,数量乘法,内积和外积。
- 向量的模长和方向角:向量的长度叫做模长,方向的角度叫做方向角。
3. 三角函数- 正弦函数、余弦函数和正切函数的定义和性质。
- 三角函数的图像和周期性。
- 三角函数的基本关系式和恒等式。
4. 函数与导数- 函数定义:函数是自变量与因变量之间的依赖关系。
- 函数的性质:奇偶性,周期性,单调性和有界性。
- 导数的定义和几何意义:导数衡量函数在某一点的变化率或斜率。
- 导数运算法则:常数规则、求和规则、乘法规则和链式法则。
5. 三角函数的导数- 正弦函数、余弦函数和正切函数的导数公式。
- 三角函数的导数与函数图像的关系。
- 利用三角函数的导数求解相关问题。
6. 幂函数与指数函数- 幂函数的定义:y = x^a,其中a为实数。
- 指数函数的定义:y = a^x,其中a大于0且不等于1。
- 幂函数与指数函数的性质和图像特点。
7. 对数函数- 对数函数的定义:y = loga(x),其中a大于0且不等于1。
- 对数函数的性质和图像特点。
- 对数函数与指数函数的关系。
8. 二次函数- 二次函数的定义:y = ax^2 + bx + c,其中a不等于0。
- 二次函数的图像特点:顶点、对称轴、开口方向等。
- 二次函数与一元二次方程的关系。
高二上学期数学知识点大全
一、集合与函数
1. 集合的表示与运算
2. 集合的性质与关系
3. 函数的定义与性质
4. 函数的运算与复合
二、二次函数与不等式
1. 二次函数的性质与图像
2. 二次函数的最值与零点
3. 二次不等式的求解与图像解法
4. 二次不等式的应用
三、三角函数与三角恒等式
1. 标准角与任意角
2. 三角函数的性质与图像
3. 三角函数的基本关系式与恒等式
4. 三角函数的应用
四、概率与统计
1. 随机事件与样本空间
2. 概率的计算与性质
3. 排列与组合的计数原理
4. 统计图表与数据分析
五、导数与微分
1. 导数的定义与计算法则
2. 高阶导数与导数的应用
3. 函数图像与凹凸性
4. 微分与近似计算
六、平面向量与解析几何
1. 平面向量的表示与运算
2. 平面向量的共线与垂直
3. 平面向量与几何实体的应用
4. 直线与平面的方程与性质
七、立体几何与空间向量
1. 空间中的点、线与面
2. 球与球面的性质与参数方程
3. 空间向量的基本性质与运算
4. 空间中的位置关系与计算
八、常微分方程
1. 常微分方程的基本概念与解法
2. 一阶线性微分方程
3. 高阶线性微分方程
4. 常微分方程的应用领域
以上是高二上学期数学的知识点大全,通过学习这些知识点,可以帮助你在数学学科中取得更好的成绩。
希望你能够认真学习并掌握这些内容,为将来的学习打好坚实的数学基础。
高二的第一学期数学知识点高二的第一学期数学内容较为广泛,包括了一系列重要的数学知识和技能。
下面将按照不同的章节和知识点进行介绍。
1. 函数与方程高二数学的第一个重点是函数与方程。
这部分内容主要包括函数的概念、性质及图像表示,以及一元一次方程、一元二次方程等各种类型的方程的解法和应用。
2. 三角函数与解三角形三角函数与解三角形是高二数学的第二个重点。
这部分内容主要包括三角函数的定义、性质和图像表示,以及求解各种类型的三角形的面积和角度等问题。
3. 平面向量平面向量是高二数学的第三个重点。
这部分内容主要包括向量的概念、性质和运算,以及向量在几何和物理问题中的应用。
4. 数列与数学归纳法数列与数学归纳法是高二数学的第四个重点。
这部分内容主要涉及数列的概念、性质和求解方法,以及利用数学归纳法证明各种数学命题。
5. 解析几何解析几何是高二数学的第五个重点。
这部分内容主要包括平面直角坐标系与直线、圆的方程,以及利用解析几何解决几何问题。
6. 概率与统计概率与统计是高二数学的第六个重点。
这部分内容主要包括事件与概率、随机变量及其分布、统计图与统计分析等内容,以及概率和统计在实际问题中的应用。
以上是高二第一学期数学的主要知识点,每个知识点都有其特定的概念、性质和解题方法。
在学习过程中,要注重理论与实际问题的结合,通过大量的练习来巩固所学知识。
此外,培养数学思维和解决问题的能力也是数学学习的重要目标。
通过系统学习和不断的实践,相信同学们能够掌握高二数学的知识点,为接下来的学习打下坚实的基础。
希望同学们能够在数学学习中保持积极的态度和良好的学习习惯,不断提高数学素养和解题能力。
加油!。
高二上学期数学知识点整理
(实用版)
编制人:__________________
审核人:__________________
审批人:__________________
编制单位:__________________
编制时间:____年____月____日
序言
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!
Download tips: This document is carefully compiled by this editor.
I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!
Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!
高二上学期数学知识点整理
本店铺整理的《高二上学期数学知识点整理》希望能够帮助到大家。
1.高二上学期数学知识点整理篇一
空间中的垂直问题
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两
个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
2.高二上学期数学知识点整理篇二
直线方程:
1.点斜式:y-y0=k(x-x0)
(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。
x 是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。
2.斜截式:y=kx+b
直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。
该方程叫做直线的斜截式方程,简称斜截式。
此斜截式类似于一次函数的表达式。
3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。
如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。
x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距)。
ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。
3.高二上学期数学知识点整理篇三
概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B 互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.
(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.
4.高二上学期数学知识点整理篇四
判断函数零点个数的常用方法
1、解方程法:
令f(x)=0,如果能求出解,则有几个解就有几个零点。
2、零点存在性定理法:
利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b) 3、数形结合法:
转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。
已知函数有零点(方程有根)求参数取值常用的方法
1、直接法:
直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
2、分离参数法:
先将参数分离,转化成求函数值域问题加以解决。
3、数形结合法:
先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。
5.高二上学期数学知识点整理篇五
等差数列
对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
6.高二上学期数学知识点整理篇六
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba
3.不等式的性质
(1)对称性:ab
(2)传递性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可开方:a0
(nN,n2).
注意:
一个技巧
作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
一种方法
待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.。