多元函数的极值和极值点的计算
- 格式:docx
- 大小:37.38 KB
- 文档页数:5
多元函数的极值与条件极值的求解方法一、引言多元函数在数学和应用领域中扮演着重要的角色。
求解多元函数的极值是一个常见的数学问题,而条件极值则进一步考虑了多个约束条件下的最优解。
本文将介绍多元函数极值和条件极值的求解方法。
二、多元函数极值的求解方法要求解多元函数的极值,需要判断函数在特定点的局部极值,并进一步确定全局极值。
常用的方法包括二阶条件、梯度以及拉格朗日乘子法。
1. 二阶条件法对于一个二次可导函数,可以通过计算其二阶偏导数来确定函数的极值。
具体步骤如下:a. 计算函数的一阶偏导数,并令其等于零,得到临界点;b. 计算函数的二阶偏导数,并检查其正负性;c. 若二阶偏导数为正,则临界点是局部极小值;若二阶偏导数为负,则临界点是局部极大值。
2. 梯度法梯度法可以用于求解多元函数的极值,其思想是在梯度的指引下,逐步迭代寻找函数的最优解。
具体步骤如下:a. 计算函数的梯度向量,并初始化变量值;b. 根据梯度向量的反方向更新变量的取值;c. 重复步骤b,直到满足收敛条件。
3. 拉格朗日乘子法拉格朗日乘子法用于求解多元函数在一组约束条件下的极值。
通过构建拉格朗日函数,并利用约束条件和拉格朗日乘子进行求解,得到函数的条件极值。
三、条件极值的求解方法在现实问题中,多元函数的极值求解往往伴随着条件限制。
求解条件极值需要考虑约束条件,并结合优化理论中的拉格朗日乘子法。
1. 求解过程a. 构建拉格朗日函数,将约束条件引入目标函数中,得到增广拉格朗日函数;b. 求解增广拉格朗日函数的临界点,即通过求解方程组来确定目标函数的条件极值点。
c. 验证求得的临界点是否满足约束条件,并通过比较确定全局的条件极值。
2. 案例分析假设有一个三角形,其面积为目标函数,而周长为约束条件。
通过使用拉格朗日乘子法,可以求解出在给定周长下,使得三角形面积最大的顶点。
四、总结本文介绍了多元函数极值和条件极值的求解方法。
对于多元函数极值的求解,可以使用二阶条件法、梯度法和拉格朗日乘子法来确定函数的极值点。
关于多元函数的极值和最值计算多元函数的极值和最值计算是高等数学中的重要部分,它涉及到多元函数的极大值和极小值的求解以及在给定区域内的最大值和最小值的确定。
在这篇文章中,我们将详细介绍多元函数的极值和最值计算的方法和步骤。
首先,让我们来了解一下多元函数的概念。
在高等数学中,一个多元函数是指具有多个变量的函数,它通常被表示为f(x1,x2,...,xn),其中x1,x2,...,xn是变量,f是一个函数。
多元函数与一元函数不同,它的输入变量不再是一个实数,而是多个实数。
因此,多元函数的求解方法也与一元函数有所不同。
下面我们将分别介绍多元函数的极大值和极小值的求解方法。
首先是多元函数的极大值和极小值的求解。
要求解多元函数的极大值和极小值,我们需要找到函数的驻点(即导数等于零的点)以及临界点(即定义域的边界点)。
第一步是计算多元函数的偏导数。
在多元函数中,我们根据变量的个数来计算偏导数。
例如,对于一个两个变量的函数f(x1,x2),我们需要计算f对x1的偏导数∂f/∂x1和f对x2的偏导数∂f/∂x2第二步是找到偏导数为零的点。
我们将得到一个方程组,其中每个方程都是一个偏导数等于零的方程。
通过求解这个方程组,我们可以找到多元函数的驻点。
第三步是找到临界点。
临界点是指函数定义域的边界点。
我们需要判断多元函数在这些边界点是否存在极值。
为此,我们可以计算函数在边界点处的取值,并与其他驻点的函数值进行比较。
通过这些步骤,我们可以确定多元函数的极大值和极小值。
接下来,让我们介绍多元函数在给定区域内的最大值和最小值的确定方法。
要确定多元函数在给定区域内的最大值和最小值,我们需要利用拉格朗日乘数法。
首先,确定给定区域的边界条件。
给定区域可以是一个封闭区域,也可以是一个开放区域。
第一步是通过拉格朗日乘数法构建一个方程。
这个方程的形式是多元函数加上一个或多个约束条件的等式。
拉格朗日乘子是用来考虑约束条件对函数极值的影响的。
第五节多元函数的极值及其求法的图形观察二元函数22y x e xyz +-=播放播放设函数),(y x f z =在点),(00y x 的及其附近有定义,对于点),(00y x 附近的任一点),(y x 都有),(),(00y x f y x f <,则称函数在),(00y x 有极大值;若有),(),(00y x f y x f >,则称函数在),(00y x 有极小值.一、多元函数的极值及最值极大值、极小值统称为极值.使函数取得极值的点称为极值点.(1)(2)(3)例1处有极小值.在函数)0,0(4322yx z +=例2处有极大值.在函数)0,0(22yx z +-=例3处无极值.在函数)0,0(xyz =设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零:0),(00=y x f x , 0),(00=y x f y .多元函数取得极值的条件(称驻点)例如, 点)0,0(是函数xy z =的驻点,但不是极值点.驻点极值点注意:定理1(必要条件)问题:如何判定一个驻点是否为极值点?设函数),(y x f z =在点),(00y x 的某邻域内连续,有一阶及二阶连续偏导数,设 0),(00=y x f x , 0),(00=y x f y ,定理2(充分条件)则),(y x f 在点),(00y x 处是否取得极值的条件如下:令 A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00, (1)02>-B AC 时具有极值,且当0<A 时有极大值,当0>A 时有极小值;(2)02<-B AC 时没有极值;(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论.设3322(,)339f x y x y x y x =-++-,求极值. 求得驻点:)2,1(),2,3(),0,1(),0,3(--,二阶偏导数为:66,0,66+-=''=''+=''y f f x f yy xy xx ,C B A 2B AC - (-3,0)-12 0 6 - 不是极值 (1,0)12 0 6 + 极小值-5 (-3,2)-12 0 -6 + 极大值31 (1,2) 12 0 6- 不是极值 例4解,令⎪⎩⎪⎨⎧=+-='=-+='063096322y y f x x f y x多元函数的最值求最值的一般方法:将函数在D内的所有驻点处的函数值及在D的边界上的最大值和最小值相互比较,其中最大者即为最大值,最小者即为最小值.求二元函数)4(),(2y x y x y x f z --==在直线6=+y x ,x 轴和y 轴所围成的闭区域D 上的最大值与最小值. 解x y o 6=+y x D 例5先求函数在D 内的驻点,⎩⎨⎧=---='=---='0)4(),(0)4(2),(222y x y x x y x f y x y x xy y x f y x 得区域D 内唯一驻点)1,2(,且4)1,2(=f ,再求),(y x f 在D 边界上的最值,解方程组 在边界0=x 和0=y 上0),(=y x f ,在边界6=+y x 上,即x y -=6,得 4,021==x x ,,2|64=-=⇒=x x y ,64)2,4(-=f 比较后可知4)1,2(=f 为最大值, 64)2,4(-=f 为最小值.,)6(223x x -=)2)(6(2--=x x z )60(≤≤x ,0)4(6=-='x x z 得区域D 内唯一驻点)1,2(,且4)1,2(=f ,在边界0=x 和0=y 上0),(=y x f ,要做一个容积为323cm 的无盖长方体箱子,问长、宽、高各为多少时,才能使所用材料最省? 若根据实际问题,目标函数有最大值(或最小值),而在定义区域内部有唯一的极大(小)值点,则可以断定该极大(小)值点即为最大(小)值点.例6解6464(0.0)S xy x y x y =++>>设长方体的长为x ,高为y ,则宽为32.xy 则箱子所用材料的面积为令由实际问题意义知,S 必有最小值,且内部唯一驻点,故当4x y ==时,S 有最小值.即当长、宽均为4cm 时,所用材料最省.22640640x y S y x S x y ⎧'=-=⎪⎪⎨⎪'=-=⎪⎩解得唯一驻点 4.x y ==用铁皮做一个有盖的长方形水箱,要求容积为V ,问怎么做用料最省?二、条件极值拉格朗日乘数法设水箱的长、宽、高分别为z y x ,,,则目标函数:)(2zx yz xy S ++=,约束条件:xyz V =, 实际问题中,目标函数的自变量除了受到定义域的限制外, 往往还受到一些附加条件的约束,这类极值问题称条件极值问题.例7解即表面积最小.,xyV z =⇒ 代入目标函数,化为无条件极值问题:x yz令 ⎪⎪⎩⎪⎪⎨⎧=-='=-='0)(20)(222y V x S x V y S y x ,求得唯一驻点3V y x ==,从而3V z =, 内部唯一驻点,且由实际问题S 有最大值,故做成立方体表面积最小.这种做法的缺点:1.变量之间的平等关系和对称性被破坏;2.有时解出隐函数困难甚至不可能.目标函数化为:)(2yV x V xy S ++=, 0,0>>y x要找函数),(y x f z =在条件0),(=y x ϕ下的可能极值点,解出λ,,y x ,其中y x ,就是可能的极值点的坐标.拉格朗日乘数法令,0),(0),(),(0),(),(⎪⎩⎪⎨⎧=='+'='+'y x y x y x f y x y x f y y x x ϕϕλϕλ其中λ为参数,引入拉格朗日函数),(),();,(y x y x f y x F λϕλ+=如果目标函数是三元函数),,(z y x f ,且约束条件有两个,0),,(=z y x g ,0),,(=z y x h ,则构造拉格朗日函数为.),,(),,(),,(),;,,(z y x h z y x g z y x f z y x L μλμλ++=令,0),,(0),,(),,(),,(),,(0),,(),,(),,(0),,(),,(),,(⎪⎪⎪⎩⎪⎪⎪⎨⎧=='+'+'='+'+'='+'+'z y x h z y x g z y x h z y x g z y x f z y x h z y x g z y x f z y x h z y x g z y x f z z z y y y x x x μλμλμλ解出z y x ,,,就是可能的极值点的坐标.用铁皮做一个有盖的长方形水箱,要求容积为V ,问怎么做用料最省?例7目标函数:)(2zx yz xy S ++=,约束条件:xyz V =,解构作拉格朗日函数 )()(2V xyz zx yz xy L -+++=λ,令 ⎪⎪⎩⎪⎪⎨⎧==++='=++='=++='Vxyz xy y x L xz z x L yz z y L z y x 0)(20)(20)(2λλλ, 解得唯一驻点,3V z y x ===,由实际问题,即为最小值点.。
大学数学易考知识点多元函数的极值和最值大学数学易考知识点:多元函数的极值和最值多元函数的极值和最值是大学数学中的一个重要概念,在数学分析和最优化理论中具有广泛的应用。
本文将介绍多元函数的极值和最值的相关概念、计算方法及其应用。
一、极值和最值的定义在介绍多元函数的极值和最值之前,首先需要了解极值和最值的定义。
1. 极值:在某个定义域内,如果一个函数在某一点的某个邻域内的函数值始终大于(或小于)该点的函数值,那么这个函数在该点就有一个极大值(或极小值)。
极大值和极小值统称为极值。
2. 最大值和最小值:在某个定义域内,如果一个函数在该定义域内的所有函数值中存在一个最大值(或最小值),那么这个函数在该定义域就有一个最大值(或最小值)。
二、求解多元函数的极值和最值为了求解多元函数的极值和最值,需要掌握以下几种常用的计算方法。
1. 偏导数法偏导数法是求解多元函数极值和最值的一种常用方法。
步骤如下:(1)求出多元函数的所有偏导数。
(2)令所有偏导数等于零,解得所有的稳定点。
(3)计算这些稳定点的函数值,并找到其中的最大值和最小值。
2. 条件极值法条件极值法是在满足一定条件下求解多元函数的极值和最值的方法。
步骤如下:(1)建立多元函数的约束条件。
(2)应用拉格朗日乘数法或者将约束条件代入目标函数,将多元函数的求解问题转化为含有一个变量的函数的求极值问题。
(3)对这个含有一个变量的函数应用一元函数的求导法则,求得极值点。
(4)将求得的极值点代入原多元函数,求得极值和最值。
3. 边界法边界法是求解多元函数的最值的一种方法。
步骤如下:(1)找到多元函数的定义域的边界。
(2)计算定义域的边界上的函数值,并找出其中的最大值和最小值。
三、多元函数极值和最值的应用多元函数的极值和最值在众多学科中都有着广泛的应用,这里介绍其中的两个应用领域。
1. 经济学中的优化问题在经济学中,很多问题可以抽象为多元函数的极值和最值问题。
例如,生产者如何选择生产要素的投入比例以最大化利润,消费者如何选择商品的购买数量以最大化效用等。
多元函数的极值及其求法
一、多元函数的极值
定理1(必要条件) 设函数()y x f z ,=在点()00,y x 具有偏导数且在点()00,y x 处有极值,则有
()()0,,0,0000==y x f y x f y x
定理2(充分条件) 设函数()y x f z ,=在点()00,y x 的某邻域内连续且有一阶及二阶连续偏导,又 ()()0,,0,0000==y x f y x f y x ,令
()()()C y x f B y x f A y x f yy xy xx ===000000,,,,,,
则()y x f ,在()00,y x 处是否取得极值的条件如下:
(1)02>-B AC 时具有极值,且当0<A 时有极大值,当0>A 时有极小值;
(2)02<-B AC 时没有极值(在()00,y x 处不取极值);
(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论。
二、条件极值 拉格朗日乘数法
拉格朗日乘数法 要找函数()y x f z ,=在条件()0,=y x ϕ下的可能极值点,可先作拉格朗日函数
()()()y x y x f y x L ,,,λϕ+=,
其中λ为参数。
()()()()()0,0,,0
,,==+=+y x y x y x f y x y x f y y x x ϕλϕλϕ
解出y x ,及λ,这样得到的()y x ,就是函数()y x f z ,=在附加条件()0,=y x ϕ下的可能极值点。
多元函数的极值及其求法多元函数的极值多元函数的最大值、最小值条件极值拉格朗日乘数法多元函数的极值定义 设函数()z f x y =,的定义域为D ,()000,P x y 则称函数在点()00,x y 有极大值(或极小值) ()00,f x y为D 的内点,若存在0P 的某个邻域()0U P D ⊂,如果对于该邻域内任何异于0P 的点(),x y , 都有()()00,,f x y f x y < (或()()00,,f x y f x y >),极大值、极小值统称为极值. 使函数取得极值的点称为极值点.例 函数2234z x y =+在点(0,0)处有极小值.()0,00z =, 例 函数22y x z +-=在点(0, 0)处有极大值.当()(),0,0x y ≠时, 0z >.=在点(0,0)处既不取得极大值也不取得极小例函数z xy值.()0,00z=,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点.设n 元函数()u f P =在点0P 的某一邻域内有定义,如果对于该邻域内任何异于0P 的点P , 都有则称函数()fP 在点0P 有极大值(或极小值)()0f P .()()0f P f P < (或()()0f P f P >),定理1(必要条件) 设函数()z f x y =,在点()00,x y 具 有偏导数, 且在点()00,x y 处有极值, 则有()00,0x f x y =, ()00,0y f x y =.不妨设()z f x y =,在点()00,x y 处有极大值. 证 依极大值的定义, 对于点()00,x y 的某邻域内异于()00,x y 的点(),x y , 都有不等式特殊地, 在该邻域内取0y y =而0x x ≠的点,也应有()()00,,f x y f x y <()()000,,f x y f x y <这表明一元函数()0,f x y 在0x x =处取得极大值,因而有()00,0x f x y =.类似地可证()00,0y f x y =.从几何上看, 这时如果曲面()z f x y =,在点()000,,x y z 处有切平面, 则切平面()()()()0000000,,x y z z f x y x x f x y y y -=-+-成为平行于xoy 坐标面的平面0z z =.凡是能使()00,0xf x y =, ()00,0y f x y =同时成立的点()00,x y 称为函数()z f x y =,的驻点.具有偏导数的函数的极值点必定是驻点.但函数的驻点不一定是极值点.例如, 函数z xy =在点 (0,0)处的两个偏导数都是零, 但(0,0)不是极值点.定理2(充分条件) 设函数()z f x y =,在点()00,x y 的某邻域内连续且有一阶及二阶连续偏导数,又()00,0x f x y =, ()00,0y f x y =,令()00,xx f x y A =, ()00,xy f x y B =, ()00,yy f x y C =则()f x y ,在()00,x y 处是否取得极值的条件如下:(2)20AC B -<时没有极值;(1) 20AC B ->时具有极值, 且当0A <时有极大值,当0A >时有极小值;(3) 20AC B -=时可能有极值, 也可能没有极值.极值的求法: 第一步 解方程组求得一切实数解, 即可得一切驻点.第二步 对于每一个驻点()00,x y , 求出二阶偏导数的 ()00,0x f x y =, ()00,0y f x y =,值A 、B 和C .第三步 定出2AC B -的符号, 按定理2的结论判定()00,f x y 是否是极值、是极大值 还是极小值.例 求函数()3322,339f x y x y x y x =-++-的极值.解 解方程组⎩⎨⎧=+-==-+=063),(0963),(22y y y x f x x y x f yx 得驻点为()1,0、()1,2、()3,0-、()3,2-.求得1,3x =- ; 0,2y =再求出二阶偏导数(),66xx f x y x =+,(),0xy f x y = ,(),66yy f x y y =-+.在点()1,0处,21260AC B -=⋅>, 又0A >,所以函数在()1,0处有极小值()1,05f =-;在点()1,2处, ()21260AC B -=⋅-<,所以()1,2f 不是极值;所以()3,0f -不是极值;所以函数在()3,2-处有极大值()3,231f -=.在点()3,0-处, 21260AC B -=-⋅<,在点()3,2-处,()21260AC B -=-⋅->, 又0A <,不是驻点也可能是极值点.例如,函数220,0处有极大值,=-+在点()z x y0,0不是函数的驻点.但()多元函数的最大值、最小值如果()f x y ,在有界闭区域D 上连续, 则()f x y ,在 D 上必定能取得最大值和最小值.假定函数在D 上连续、在D 内可微分且只有有限个驻 点, 如果函数在D 的内部取得最大值(最小值), 那么这个 最大值(最小值)也是函数的极大值(极小值).求最大值和最小值的一般方法将函数()f x y ,在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较, 其中最大的就是最大 值, 最小的就是最小值.实际问题中如果根据问题的性质, 知道函数()f x y , 的最大值(最小值)一定在D 的内部取得, 而函数在D 内 只有一个驻点, 那么可以肯定该驻点处的函数值就是函数 ()f x y ,在D 上的最大值(最小值).例 某厂要用铁板做成一个体积为38m 的有盖长方体水箱.问当长、宽、高各取多少时, 才能使用料最省.解 设水箱的长为x , 宽为y , 则其高应为xy8. 此水箱所用材料的面积为)0 ,0( )88(2)88(2>>++=⋅+⋅+=y x yx xy xy x xy y xy A令0)8(22=-=x y A x , 0)8(22=-=yx A y , 得2x =, 2y =.当水箱的长为2m 、宽为2m 、高为82m 22=⋅时, 水箱所用的材料最省.条件极值拉格朗日乘数法例如, 对自变量有附加条件的极值称为条件极值.求表面积为2a 的长方体的最大体积.设长方体的三棱的长为x y z 、、, 则体积V xyz =.x y z 、、还必须满足附加条件22()xy yz xz a ++=.由条件2)(2a xz yz xy =++, 解得)(222y x xy a z +-=, 于是得 V ))(2(22y x xy a xy +-=. 有些条件极值问题可以化为无条件极值问题.例如, 求表面积为2a 的长方体的最大体积.函数()z f x y =,在条件()0x y ϕ=,下取得极值的必要 条件.如果函数()z f x y =,在()00,x y 取得所求的极值, 则()00,0x y ϕ=.假定在()00,x y 的某一邻域内()f x y ,与()x y ϕ,均有连续的一阶偏导数, 将其代入目标函数()z f x y =,, 得的函数()y x ψ=, 定理, 由方程()0x y ϕ=,确定一个连续且具有连续导数而()00,0y x y ϕ≠. 由隐函数存在一元函数()()z f x x ψ=,.0x x =是一元函数()()z f x x ψ=,的极值点,由取得极值的必要条件, 有即()()0000d d ,,0d d x y x x x x z yf x y f x y xx--=+=()()()()00000000,,,0,x x y y x y f x y f x y x y ϕϕ-=设λϕ-=),(),(0000y x y x f y y , 则函数()z f x y =,在条件 ⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(0000000000y x y x y x f y x y x f y y x x ϕλϕλϕ ()0x y ϕ=,下在()00,x y 取得极值的必要条件是拉格朗日乘数法要找函数()z f x y =,在条件()0x y ϕ=,下的可能极值点, 可以先构成辅助函数()()()L x y f x y x y λϕ=+,,,其中λ为某一常数. 然后解方程组(,)(,)(,)0(,)(,)(,)0(,)0L x y f x y x y x x x L x y f x y x y y y y x y λϕλϕϕ⎧=+=⎪=+=⎨⎪=⎩ 由这方程组解出,x y 及λ, 则其中(),x y 就是所要求的可能的极值点.此方法可以推广到自变量多于两个而条件多于一个的情形.例 求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱的长为x y z 、、, 构成辅助函数解方程组()()2,222L x y z xyz xy yz xz a λ=+++-,(,,)2()0(,,)2()0(,,)2()02222L x y z yz y z x L x y z xz x z y L x y z xy y x z xy yz xz aλλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪++=⎩ 得a z y x 66===, 这是唯一可能的极值点. 最大值就在这个可能的值点处取得. 此时3366a V =.。
多元函数的极值与最值求解在数学中,多元函数是指有多个自变量的函数。
对于多元函数,我们常常需要求解它的极值与最值,以便确定函数的特征与性质。
本文将介绍多元函数的极值与最值的求解方法。
一、极值的定义与求解方法在多元函数中,极值是指函数在某个局部区域内取得的最大值或最小值。
极值的求解可以通过以下方法进行:1. 边界法:如果多元函数在一个有限的闭区域内定义且连续,在区域内的边界上取到的值必然是极值。
因此,我们可以通过计算多元函数在边界上的值来确定极值。
需要注意的是,在使用边界法时,我们应当首先确定区域的边界。
2. 梯度法:多元函数的梯度表示函数在某个点处的变化率和方向。
对于一个局部极值点,函数在该点处的梯度应当为零。
因此,我们可以通过求解多元函数的梯度并令其为零来确定极值点。
3. Lagrange乘数法:Lagrange乘数法适用于求解多元函数在约束条件下的极值问题。
通过引入一个或多个约束条件,我们可以将多元函数的极值问题转化为无约束条件下的极值问题。
随后,可以使用梯度法或其他方法求解。
二、最值的定义与求解方法在多元函数中,最值指的是函数在某个区域内取得的最大值或最小值。
最值的求解可以通过以下方法进行:1. 整体法:整体法是指先求出函数在整个定义域上的取值,然后从中选取最大值或最小值作为最值。
该方法适用于函数在整个区域内单调递增或单调递减的情况。
2. 极值法:可以通过先求解函数的极值点,然后在这些点处比较函数的取值来确定最值。
需要注意的是,函数的最值可能存在于极值点处,也可能存在于边界上。
3. 梯度法:与求解极值类似,可以通过计算多元函数的梯度,并在梯度为零的点处比较函数的取值来确定最值。
三、示例为了更好地理解多元函数的极值与最值的求解方法,我们来看一个具体的示例。
假设有一个二元函数 f(x,y) = x^2 + y^2,我们需要求解这个函数的极值与最值。
首先,我们计算函数的梯度∇f = (2x, 2y)。
多元函数的极值和极值点的计算在数学中,多元函数是一种包含多个自变量的函数。
对于一元函数,我们可以通过求导或者二阶导数来计算它的极值。
但对于多元函数,如何求它的极值呢?在这篇文章中,我们将探讨多元函数的极值和极值点的计算方法。
一、梯度和偏导数
在计算多元函数的极值和极值点时,我们需要用到梯度和偏导数的概念。
梯度是指一个向量,它的方向指向函数值增加最快的方向,大小表示增加幅度。
对于一个多元函数f(x1,x2,x3,...,xn),它的梯度为:
∇f(x1,x2,x3,...,xn) = (∂f/∂x1, ∂f/∂x2, ∂f/∂x3,...,∂f/∂xn)
其中,∂f/∂xi表示对自变量xi的偏导数。
偏导数是多元函数对其中一个自变量的导数,其他自变量看做常数。
对于一个函数f(x1,x2)而言,它的偏导数为:
∂f/∂x1 = limΔx1→0 [( f(x1+Δx1,x2) - f(x1,x2) )/Δx1]
∂f/∂x2 = limΔx2→0 [( f(x1,x2+Δx2) - f(x1,x2) )/Δx2]
二、求解多元函数的极值
对于一个多元函数f(x1,x2,x3,...,xn),它在点(x1*,x2*,x3*,...,xn*)处取得极值,当且仅当以下两个条件同时成立:
1.∇f(x1*,x2*,x3*,...,xn*)=0
2.对任意的(x1,x2,x3,...,xn),有
f(x1*,x2*,x3*,...,xn*)≥f(x1,x2,x3,...,xn)
其中,第一个条件保证在这个点附近任意方向的导数都趋近于0,即它是函数曲面的一个平坦点,第二个条件保证在这个点处函数的值是一个局部极小值。
用数学符号表达,上述条件可以写成:
1.∂f/∂x1(x1*,x2*,x3*,...,xn*)=0
∂f/∂x2(x1*,x2*,x3*,...,xn*)=0
∂f/∂x3(x1*,x2*,x3*,...,xn*)=0
...
∂f/∂xn(x1*,x2*,x3*,...,xn*)=0
2.二次偏导数矩阵为正定或者负定,即对于任意的i和j,有∂^2f/∂xi∂xj(x1*,x2*,x3*,...,xn*)>0或者<0.
其中,二次偏导数矩阵为一个n×n的矩阵,其ij位置的元素为∂^2f/∂xi∂xj。
需要注意的是,以上条件只保证(x1*,x2*,x3*,...,xn*)是局部极值点,而不是全局极值点。
如果我们想要求解全局极值点,我们需要通过其他方法,如遗传算法等。
三、举例说明
我们以函数f(x,y)=x^2+y^2-2x+4y-7为例,来说明如何计算多元函数的极值。
首先,我们求出它的偏导数:
∂f/∂x=2x-2
∂f/∂y=2y+4
然后找出使偏导数为0的点,即
2x-2=0
2y+4=0
解得 (1,-2)。
接下来,我们需要验证这个点是否是函数的一个极小值点。
为了方便计算,我们可以使用二次偏导数矩阵:
[2 0]
[0 2]
根据定义,它是正定的,因此(x1,x2)=(1,-2)是f(x,y)的局部极小值点。
四、总结
本篇文章介绍了多元函数的极值和极值点的计算方法,包括梯度、偏导数和二次偏导数矩阵等概念。
我们以一个具体的例子来说明了计算的步骤,希望读者能够通过本文了解多元函数的极值和极值点的计算方法,进一步探索多元函数的更多性质和应用。