2009重庆市中考数学试题答案(Word)
- 格式:doc
- 大小:641.50 KB
- 文档页数:6
2018 年中考数学试题(分析版)·2018·重庆市中考数学试题 B 卷(全卷共五个大,分150 分,考120 分)一、(本大共12 个小,每小 4 分,共 48 分)1.以下四个数中,是正整数是()A、-1;B、0;C、1;D、1、22.以下形中,是称形是()A B C D3.以下形都是由同大小黑色正方形片成,此中第①个中有 3 个黑色正方形片,第②个中有 5 个黑色正方形片,第③个中有7 个黑色正方形片,⋯,按此律摆列下去,第⑥个中黑色正方形片数()⋯①②③④A 、 11; B、 13;C、 15; D 、17、4.以下中,最合适采纳全面(普)是()A、我市中学生每周外状况;B、我市市民知“礼行人”交通新状况;C、我市中学生看影《害了,我国》状况;D、我国首艘国航母002 型各零零件量状况、5.制作一3m×2m方形广告牌成本是120 元,在每平方米制作成真同样状况下,若将此广告牌四都大本来 3 倍,那么大后方形广告牌成本是()A 、 360 元; B、 720 元; C、1080 元; D、 2160 元、6.以下命是真命是()A 、假如一个数相反数等于个数自己,那么个数必定是0;B、假如一个数倒数等于个数自己,那么个数必定是1;C、假如一个数平方等于个数自己,那么个数必定是0;D、假如一个数算平方根等于个数自己,那么个数必定是0、7.估5 624在()入 x 的A、5 和 6 之;B、6 和 7 之;C、7 和 8 之;D、8 和 9 之、y=x2y=2x+b y=6-x 8.依据如所示程序算函数y ,(x≤-3 )(-3<x≤5)(x>5)若入 x 是 4 或 7 ,出 y相等, b 等于()A 、 9;B 、 7; C、 -9;D、 -7、出 y 的9、如, AB 是一垂直于水平面建筑物。
某同学从建筑物底端 B 出 , 先沿水平方向向右行走 20 米到达点 C ,再经过一段坡度 ( 或坡比 ) 为 i=1:0 、 75、坡长为 10 米斜坡 CD 到达点 D 、而后再沿水平方向向右行走 40 米到达点 E(A ,B ,C ,D ,E 均在同一平面内 ) 、在 E 处测得建筑物顶端 A 仰角为 24°,则建筑物 AB 高度约为 ( )A(参照数据: sin24 °≈ 0、 41,cos24 °≈ 0、 91,tan24 °≈ 0、 45)B CA 、 21、 7 米;B 、22、 4 米;i=1:0.7524°C 、 27、 4 米;D 、28、 8 米。
2009年中考试题专题之6-一元一次方程和二元一次方程组试题及答案一、选择1、(2009年某某省内江市)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( )A .1B .3C .5D .22、(2009年某某市、某某市)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ).A .1B .-1C . 2D .33、(2009年某某市)家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是( )A .2013%2340x ⋅=B .20234013%x =⨯C .20(113%)2340x -=D .13%2340x ⋅=4、(2009年某某市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A .4种B .3种C .2种D .1种5、(2009年某某省)A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是()A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=6、(2009年某某市)班长去文具店买毕业留言卡50X ,每X 标价2元,店老板说可以按标价九折优惠,则班长应付()A .45元B .90元C .10元D .100元7、(2009某某某某)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ).A .1B .-1C . 2D .38、(2009某某)方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,.B .21x y =⎧⎨=⎩,.C .11x y =⎧⎨=⎩,.D .23x y =⎧⎨=⎩,.9、(2009年日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为A.43-B.43C.34D.34-10、(2009年某某)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是( )A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =-⎧⎨=-⎩11、(2009年某某)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .4cmB .5cmC .6cmD .13cm12、(2009年某某)已知有10包相同数量的饼干,若将其中1包饼干平分给23名学生,最少剩3片。
重庆市2009年初中毕业学业暨高中招生考试数 学 试 题 (江津卷)(本卷共五个大题 满分:150分 考试时间:120)一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,给出了代号为A 、B 、C 、D 的4个答案,其中只有一个答案是正确的,请将正确答案的代号填到题后的括号内.1. -2的相反数 ( )A. —2B. 2C.21-D. 212.2008年全球金融危机爆发后,世界经济一片萧条,中国中央政府为了刺激经济稳定增长,决定投入40000亿资金来拉动内需,将40000用科学计数法表示为( ) A.31040⨯ B.5104.0⨯ C.210400⨯ D.4104⨯ 3. 下列计算错误的是 ( )A .2m + 3n=5mnB .426a a a =÷C .632)(x x = D .32a a a =⋅4. 不等式组⎪⎩⎪⎨⎧≤<-15112x x x 的解集在数轴上表示正确的是 ( )5.已知一次函数32-=xy的大致图像为()6.把多项式aaxax22--分解因式,下列结果正确的是()A.)1)(2(+-xxa B. )1)(2(-+xxaC.2)1(-xa D. )1)(2(+-axax7. 2009年6月12日某地区有五所中学参加中考的学生人数分别为:320,250,280,293,307,以上五个数据的中位数为()A.320B.293C.250D.2908.下列图形的主视图是()A. B. C. D.9. 如图:在菱形ABCD中,AC=6, BD=8,则菱形的边长为()A. 5B. 10C. 6D.810.在△ABC中,BC=10,B1 、C1分别是图①中AB、AC的中点,在图②中,2121、C、C、BB分别是AB,AC的三等分点,在图③中921921;C、CCB、、BB分别是AB、AC的10等分点,则992211CBCBCB+++ 的值是()A. 30B. 45C.55D.60(第9题图)① ② ③二、填空题(本大题6个小题,每小题4分,共24分)在每个小题中,请将正确答案直接填在空格的横线上.11.分式方程121+=x x 的解是 .12.双曲线xky =的部分图像如图所示,那么 k = .13.在重庆市某区组织的“唱红歌,诵经典,讲故事”的活动中,有国土、税务、工商、教委等10个单位参加演出比赛,将从中选 取3个队到重庆演出,则教委被选中的概率是 .14.等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 cm ,则其腰上的高为 cm.15.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长)。
一、选择题1. (重庆市2001年4分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是【 】.A .带①去B .带②去C .带③去D .带①和②去2. (重庆市2002年4分)如图,⊙O 为△ABC 的内切圆,∠C=90度,OA 的延长线交BC 于点D ,AC=4,CD=1,则⊙O 的半径等于【 】A54 B45 C43 D65【答案】A 。
【考点】三角形的内切圆与内心,相似三角形的判定和性质。
【分析】设圆O 与AC 的切点为M ,圆的半径为r ,如图,连接OM 。
∵∠C=90°,∴CM=r。
∵△AOM∽△ADC,∴OM:CD=AM :AC ,即r:1=(4-r):4,解得r=45。
故选A。
3. (重庆市2003年4分)如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为【】A.152B.154C.3 D.834. (重庆市2003年4分)如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为【】A.1个 B.2个 C.3个 D.4个5. (重庆市2003年4分)如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=15,则AD 的长是【 】A B .2 C .1 D .6. (重庆市2004年4分)如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射后照射到B 点,若入射角为α (入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α的值为【 】A 、311 B 、113 C 、119 D 、9117. (重庆市2004年4分)秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处踩板离地面2米(左右对称),则该秋千所荡过的圆弧长为【 】A 、π米B 、π2米C 、π34米 D 、π23米8. (重庆市大纲卷2005年4分)如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则DMN S ∆∶ANMES 四边形等于【 】A 、1∶5 B、1∶4 C、2∶5 D、2∶7 【答案】A 。
2.用科学记数法表示435000(精确到万位)= 。
0.000897(保留两个有效数字)= 。
d .实数P 在数轴上的位置如图所示:化简()()=-+-2221p p 。
27.实数a 在数轴上的位置如图所示,化简:|1|a -8.化简aa1- = 。
33.已知0<a ,0>b ,且||||b a >,化简||||b a b a ++-= a. 若ab b a b a -+=-2222,求的值是b. 已知多项式x kx 27++能分解成两个一次因式的乘积,则k 的值是c. 若x 、y 满足052422=+--+y x y x ,则代数式:32x y x -的值是e .当a= 时,式子a aaa 1828++的值为整数(只需填一个符合题目要求的数)。
3.在实数范围内分解因式x 4-7x 2+6= 4.若y=23-x +x 32-+6x ,则xy= 。
5.若 m 2-3m +1=0,则m 2+21m= 。
6.已知5的整数部分为a ,小数部分为b ,则ba = 。
7.已知ac b +=bc a +=cb a +=k, 则k 的值为 。
9.当x=3时ax 5+bx 3+x+1=7,则当x=-3时,ax 5+bx 3+x+1= 。
10.如果3-x x -2=3-x k 有增根,则 k=11.已知a 2-a =b 2-b =3,则a b+ba= 。
12.已知关于x 的方程kx 2+4x -1=0只有一个实数根,则k= 。
13.若m ,n 是方程 x 2-2004x+4=0 的两个根,则(m 2-2003m+5)(n 2-2003n+5)= 。
14.已知关于x 的不等式组⎩⎨⎧>--≥-0125a x x 无解,则a 的取值范围是 。
15.若不等式(a +1)x <a +1的解集为x <1,那么a 必须满足___________。
16.若1x ,2x 是方程210x x --=的两个根,则1212x x x x ++⋅= 。
重庆市2017年初中毕业生学业水平暨普通高中招生考试数学试题(B 卷)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.5的相反数是( A ) A.-5 B.5 C.15- D.152.下列图形中是轴对称图形的是( D )A. B. C. D.3.计算a 5÷a 3结果正确的是( B )A.aB.a 2C.a 3D.a 44.下列调查中,最适合采用抽样调查的是( D )A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对市场上某一品牌电脑使用寿命的调查5.1的值在( C )A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.若3x =-,1y =,则代数式231x y -+的值为( B )A.-10B.-8C.4D.107.若分式13x -有意义,则x 的取值范围是( C ) A.3x > B.3x < C. 3x ≠ D.3x =8.已知若ABC ∆ D E F ∆,且相似比为1:2,则ABC ∆与DEF ∆的面积比为( A ) A.1:4 B.4:1 C.1:2 D.2:19.如图,在矩形ABCD 中,AB=4,AD=2,分别以点A ,C 为圆心,AD ,CB 为半径画弧,交AB 于点E ,交CD 于点F ,则图中阴影部分的面积是( C )A.42π-B.82π- C.82π- D.84π-10.下列图形都是由相同大小的☆按一定规律组成的,其中第①个图形中一共有4颗 ,第②个图形中一共有11颗 ,第③个图形中一共有21颗 ,…,按此规律排列下去,第⑨个图形中 的颗数为( B )A.116B.144C.145D.15011.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上_,某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯角为200,则建筑物AB的高度约为(精确到0.1米,参考数据:sin200≈0.342,cos200≈0.940,tan200≈0.364)( A )A.29.1米B.31.9米C.45.9米D.95.9米12.若数a使关于x的不等式组2122274xxx a-⎧≤-+⎪⎨⎪+>-⎩,有且仅有四个整数解,且使关于y的分式方程2222ay y+=--有非负数解,则所有满足条件的整数a的值之和是( B )A.3B.1C.0D.-3二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.据统计,2017年五一假日三天,重庆市共接待游客约为14 300 000人次,将数14 300 000用科学记数法表示为 1.43×107 .14.计算:|-3|+(-4)0= 4 .15.如图,OA,OC是O的半径,点B在O上,连接AB,BC,若∠ACB=400,则∠AOC= 80 度.(15题图) (16题图) (17题图) (18题图)16.某同学在体育训练中统计了自己五次“1分钟跳绳”的成绩,并绘制了如图所示的拆线统计图,这五次“1分钟跳绳”成绩的中位数是 183 个.17.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,则乙到达终点A时,甲还需 78 分钟到达终点B.18.如图,正方形ABCD中,4AD=,点E是对角线AC上一点,连接DE,过点E作EF ED⊥,交AB于点F,连接DF,交AC于点G,将EFG∆沿EF翻折,得到EFM∆,连接DM,交EF于点N,若点F是AB的中点,则EMN∆的周长是 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.如图,直线//EF GH,点A在EF上,AC交GH于点B,若72FAC∠=,58ACD∠=,点D在GH上,求BDC∠的度数.解:∵EF∥GH,∴∠DBC=∠FAC,又∵∠FAC=720,∴∠DBC=720.……(4分)在△BCD中,∠DBC+∠BCD+∠BDC=1800,∴∠BDC=1800-∠DBC-∠BCD=1800-720-580=500.……(8分)20.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应扇形的圆心角为 72 度,并将条形统计图补充完整; 120 (4分)(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁.现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.(8分)解:(2)画树状图,如图所示:共有12种等可能的结果,选中的两名同学恰好是甲、丁的结果有2种,∴P(选中的两名同学恰好是甲、丁)=21126=.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.21.计算:(1)2()(2)x y x y x +--; (2)23469(2)22a a a a a a --++-÷--. 解:(1)原式=22222x xy y xy x ++-+……(4分)(2)原式=2(2)(2)(34)22(3)a a a a a a +------……(7分) =222x y +……(5分) 2(3)22(3)3a a a a a a a --==---……(10分) 22.如图,在平面直角坐标系中,一次函数(0)y ax b a =+≠的图象与反比例函数(0)k y k x=≠的图象交于A 、B 两点,与x 轴交于点C ,过点A 作AH x ⊥轴于点H ,点O 是线段CH 的中点,AC =cos ACH ∠=点B 的坐标为(4,)n .(1)求该反比例函数和一次函数的解析式;(2)求BCH ∆的面积.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了%m ,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2%m ,但销售均价比去年减少了%m ,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m 的值. 解:(1)设该果农今年收获樱桃x 千克,根据题意得400-x ≤7x ,……(3分)解得x ≥50.……(4分)(2)100(1-m %)×30+200×(1+2m %)×20(1-m %)=100×30+200×20,……(7分)令m %=y ,原方程可化为:3000(1-y )+4000(1+2y )(1-y )=7000,整理可得:8y 2-y =0,解得:y 1=0,y 2=0.125,∴m 1=0(舍去),m 2=12.5,∴m =12.5.……(10分)24.如图,ABC ∆中,90ACB ∠=,AC BC =,点E 是AC 上一点,连接BE .(1)如图1,若AB =5BE =,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF BD ⊥于点F .连接CD ,CF .当AF DF =时,求证:DC BC =.(1)解:在△ABC 中,∵∠ACB=900,AC=BC ,∴∠BAC=∠ABC=450.∴BC=ABsin ∠BAC=ABsin450=42=.……(2分) ∴AC=BC=4.在Rt △BCE 中,3CE ==.∴AE=AC-CE=4-3=1.……(4分)(2)证:过点C 作CM ⊥CF 交BD 与点M.∴∠FCM=900.∵∠ACB=900,∴∠FCA=∠MCB ,∴AF ⊥BD ,∴∠AFB=900.∴∠AFE=∠ACB.∵∠AEF=∠BEC ,∴∠CAF=∠CBM.在△ACF 和△BCM 中,∵∠FCA=∠MCB ,AC=BC ,∠CAF=∠CBM ,∴△ACF ≌△BCM.……(7分)∴FC=MC.又∵∠FCM=900,∴∠CFM=∠CMF=450.∴∠AFC=∠AFB+∠CFM=900+450=1350.∠DFC=1800-∠CFM=1800-450=1350.∴∠AFC=∠DFC.在△ACF 和△DCF 中,∵AF=DF ,∠AFC=∠DFC ,CF=CF ,∴△ACF ≌△DCF.……(9分)∴AC=DC.又∵AC=BC ,∴DC=BC.……(10分)五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.25.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6.(1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x≤9,1≤y ≤9,x ,y 都是正整数),规定:()()t F s F k =,当()()18=+t F s F 时,求k 的最大值. 解:(1)F (243)=(423+342+234)÷111=9,F (617)=(176+716+671)÷111=14.26.如图,在平面直角坐标系中,抛物线3332332--=x x y 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 时CP 上的一点,点N 是CD 上的一点,求KM+MN+NK 的最小值;(3)点G 是线段CE 的中点,将抛物线3332332--=x x y 沿x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标,若不存在,请说明理由.解:(1)当0y =时,即2033x x -=. 解这个方程,得11x =-,23x =.∴点A (-1,0),B (3,0). 当4x =时,244n =-=∴点E (4).……(2分) ∴直线AE 的解析式为y =+……(3分)(2)令0x =,得y =∴点C (0,又∵点E (4),∴直线CE 的解析式为3y x =-过点P 作PF ∥y 轴,交CE 于点F ,如图1.设点P 的坐标为(t ,233-,则F(t ,3t -,∴PF=22(33333t -=-+,∴2211834()223333PCE E C S x x PH t =-⨯=⨯⨯-+=-+△. 又∵抛物线开口向下,04t <<,∴当2t =时,PCE S △取得最大值.此时,点P 为(2,……(5分)如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 与N 、M .∵K 是CB 的中点,∴K(32,﹣).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32. ∵点G 与点K 关于CD 对称,∴点G(0,0),∴KM+MN+NK=MH+MN+GN .当点O 、N 、M 、H 在条直线上时,KM+MN+NK 有最小值,最小值=GH ,∴=3,∴KM+MN+NK 的最小值为3.……(8分)(3)点Q 的坐标为(3,3-),(3,3-),(3,,(3,5-).(写对一个点的坐标得1分)……(12分)如图3所示:∵y ′经过点D ,y ′的顶点为点F ,∴F(3,).∵点G 为CE 的中点,∴FG=3=,∴①当FG=FQ 时,点Q(3,3-),Q ′(3②当GF=GQ 时,点F 与点Q ″关于3y =对称,∴点Q ″(3,③当QG=QF 时,设点Q 1的坐标为(3,a ).由两点间的距离公式可知:a =解得:5a =-.∴点Q 1的坐标为(3,5-).综上所述,点Q 的坐标为(3,3-),(3,3-),(3,,(3,5-).。
重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑。
1.下列四个数中,最小的数是( )A .-2B .0C .3D .12-2.下列四种化学仪器的示意图中,是轴对称图形的是()A .B .C .D .3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .-3B .3C .-6D .64.如图,,165AB CD ∠=∥,则2∠的度数是()A .105B .115C .125D .1355.若两个相似三角形的相似比是1∶3,则这两个相似三角形的面积比是( )A .13:B .14:C .16:D .19:6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子。
第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是()A .20B .22C .24D .267.已知m =,则实数m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点。
重庆市2009年初中毕业暨高中招生考试数 学 试 卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2ab ac a b --,对称轴公式为ab x 2-=一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。
1.-5的相反数是( )A .5B .5-C .51 D .51-2.计算232x x ÷的结果是( )A .xB .x 2C .52xD .62x 3.函数31+=x y 的自变量取值范围是( )A .3->xB .3-<xC .3-≠xD .3-≥x 4.如图,直线CD AB 、相交于点E ,AB DF //,若︒=∠100A E C ,则D ∠等于( )A .70ºB .80ºC .90ºD .100º 5.下列调查中,适宜采用全面调查(普查)方式的是( )A .调查一批新型节能灯泡的使用寿命B .调查长江流域的水污染情况C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查6.如图,⊙O 是ABC ∆的外接圆,AB 是直径,若︒=∠80BOC ,则A ∠等于( ) A .60º B .50º C .40º D .30º7.由四个大小相同的正方体组成的集合体如图所示,那么它的左视图是()A BC D8.观察下列图形,则第n 个图形中三角形的个数是( )E F D CBA O CB A第1个第2个第3个……A.22+n B.44+n C.44-n D.n49.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是()A B C D10.如图,在等腰Rt△ABC中,∠C=90º,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF。
2009年重庆市中考数学试卷一、填空题(共7小题,每小题4分,满分28分)1.(4分)(2010•遵义)﹣2的绝对值是_________.11.(4分)(2009•重庆)据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7 840 000万元.那么7 840 000万元用科学记数法表示为_________万元.12.(4分)(2009•重庆)分式方程的解为x=_________.13.(4分)(2012•张家界)已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为_________.14.(4分)(2009•重庆)已知⊙O1的半径为3cm,⊙O2的半径为4cm,两圆的圆心距O1O2为7cm,则⊙O1与⊙O2的位置关系是_________.15.(4分)(2009•重庆)在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1,2,3,,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为_________.16.(4分)(2009•重庆)某公司销售A、B、C三种产品,在去年的销售中,高新产品C的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A、B两种产品的销售金额都将比去年减少20%,因而高新产品C是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C的销售金额应比去年增加_________%.二、选择题(共9小题,每小题4分,满分36分)2.(4分)(2009•重庆)计算2x3÷x2的结果是()A.x B.2x C.2x5D.2x63.(4分)(2009•重庆)函数y=的自变量x的取值范围是()A.x>﹣3 B.x<﹣3 C.x≠﹣3 D.x≥﹣34.(4分)(2011•湛江)如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°5.(4分)(2009•重庆)下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中学生的视力情况D.为保证“神舟7号”的成功发射,对其零部件进行普查检查6.(4分)(2009•重庆)如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A .60°B .50°C.40°D.30°7.(4分)(2009•重庆)由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A.B.C.D.8.(4分)(2009•重庆)观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n9.(4分)(2009•重庆)在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B →C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A.B.C.D.10.(4分)(2009•重庆)如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①④⑤C.①③④D.③④⑤三、解答题(共10小题,满分86分)17.(6分)(2009•重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.18.(6分)(2009•重庆)解不等式组:.19.(6分)(2009•重庆)作图,请你在下图中作出一个以线段AB为一边的等边△ABC.(要求:用尺规作图,并写出已知、求作,保留作图痕迹,不写作法和结论)20.(6分)(2009•重庆)为了建设“森林重庆”,绿化环境,某中学七年级一班同学都积极参加了植树活动,今年4月该班同学的植树情况的部分统计如下图所示:(1)请你根据以上统计图中的信息,填写下表:该班人数植树株数的中位数植树株数的众数(2)请你将该条形统计图补充完整.21.(10分)(2009•重庆)先化简,再求值:,其中x=﹣3.22.(10分)(2009•重庆)已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求该反比例函数的解析式;(2)求直线AB的解析式.23.(10分)(2009•重庆)有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.24.(10分)(2009•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.(1)求证:BG=FG;(2)若AD=DC=2,求AB的长.25.(10分)(2009•重庆)某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系y=﹣50x+2600,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:月份1月5月销售量 3.9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1,2月份该品牌电视机销往农村的售价都比去年12月份下降了m%,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).(参考数据:≈5.831,≈5.916,≈6.083,≈6.164)26.(12分)(2009•重庆)已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC 在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.2009年重庆市中考数学试卷参考答案与试题解析一、填空题(共7小题,每小题4分,满分28分)1.(4分)(2010•遵义)﹣2的绝对值是2.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣2|=2.故填2.点评:规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.(4分)(2009•重庆)据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7 840 000万元.那么7 840 000万元用科学记数法表示为7.84×106万元.考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:解:根据题意7 840 000=7.84×106万元.点评:科学记数法是指把一个数写成a×10n(其中1≤|a|<10,n是整数)的形式,其中10的指数就是原数的整数位数减去1.12.(4分)(2009•重庆)分式方程的解为x=﹣3.考点:解分式方程.专题:计算题.分析:观察可得这个分式方程的最简公分母为(x+1)(x﹣1),去分母,转化为整式方程求解.结果要检验.解答:解:两边都乘以(x+1)(x﹣1),得x﹣1=2(x+1),解方程得x=﹣3.经检验x=﹣3是原方程的根.点评:解分式方程的基本思想是把分式方程转化为整式方程,具体方法是方程两边同时乘以最简公分母,在此过程中有可能会产生增根,增根是转化后整式的根,不是原方程的根,因此要注意检验.13.(4分)(2012•张家界)已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为2:5.考点:相似三角形的性质.专题:压轴题.分析:根据相似三角形的面积的比等于相似比的平方,可直接得出结果.解答:解:因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,因为S△ABC:S△DEF=4:25=()2,所以△ABC与△DEF的相似比为2:5.点评:本题比较容易,考查相似三角形的性质.利用相似三角形的性质时,要注意相似比的顺序,同时也不能忽视面积比与相似比的关系.相似比是联系周长、面积、对应线段等的媒介,也是相似三角形计算中常用的一个比值.14.(4分)(2009•重庆)已知⊙O1的半径为3cm,⊙O2的半径为4cm,两圆的圆心距O1O2为7cm,则⊙O1与⊙O2的位置关系是外切.考点:圆与圆的位置关系.分析:本题主要考查两圆的位置关系.两圆的位置关系有:相离(d>R+r)、相切(外切:d=R+r或内切:d=R﹣r)、相交(R﹣r<d<R+r).∵r+R=3+4=7=圆心距,∴两圆外切.解答:解:因为R+r=3+4=7=圆心距,所以两圆外切.点评:考查圆和圆的位置关系.由d=R+r可知两圆是外切的位置关系.本题部分学生由于考虑不充分,对概念理解不清,误填为相切,导致得出错误的结论.15.(4分)(2009•重庆)在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1,2,3,,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为.考点:概率公式;一次函数的性质.专题:压轴题.分析:综合考查等可能条件下的概率和一次函数及坐标系的知识,先求出中任取一张时所得点的坐标数,再画出图象交点个数,由图象上各点的位置直接解答即可.解答:解:由题意得,所得的点有5个,分别为(1,1)(2,)(3,)(,2)(,3);再在平面直角坐标系中画出直线y=﹣x+3与两坐标轴围成的△AOB.在平面直角坐标系中描出上面的5个点,可以发现落在△AOB内的点有(1,1)(2,)(,2),所以点P落在△AOB内的概率为.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(4分)(2009•重庆)某公司销售A、B、C三种产品,在去年的销售中,高新产品C的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A、B两种产品的销售金额都将比去年减少20%,因而高新产品C是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C的销售金额应比去年增加30%.考点:一元一次方程的应用.专题:增长率问题;压轴题.分析:把去年的总销售金额看作整体1.设今年高新产品C的销售金额应比去年增加x,根据今年的销售总金额和去年的销售总金额相等,则0.4(1+x)+(1﹣40%)(1﹣20%)=1,解方程求解.解答:解:设今年高新产品C的销售金额应比去年增加x,根据题意得:0.4(1+x)+(1﹣40%)(1﹣20%)=1,解得x=30%,故填30.点评:考查列方程模型解决实际问题,关键在于设求知数,列方程,难点在于涉及百分数,运算易出错.此题注意把去年的总销售额看作整体1,即可分别表示出去年A和B的销售金额和C的销售金额.根据今年的销售总金额和去年的销售总金额相等即可列方程.二、选择题(共9小题,每小题4分,满分36分)2.(4分)(2009•重庆)计算2x3÷x2的结果是()A.x B.2x C.2x5D.2x6考点:整式的除法;同底数幂的除法.分析:根据单项式除单项式的法则,同底数幂相除,底数不变指数相减的性质,对各选项计算后选取答案.解答:解:2x3÷x2=2x.故选B.点评:本题比较容易,考查整式的除法和同底数幂的除法法则,熟练掌握运算法则是解题的关键.3.(4分)(2009•重庆)函数y=的自变量x的取值范围是()A.x>﹣3 B.x<﹣3 C.x≠﹣3 D.x≥﹣3考点:函数自变量的取值范围;分式有意义的条件.专题:计算题.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.解答:解:根据题意得:x+3≠0,解得:x≠﹣3.故选C.点评:求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为0.4.(4分)(2011•湛江)如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:在题中∠AEC和∠DEB为对顶角相等,∠DEB和∠D为同旁内角互补,据此解答即可.解答:解:∵AB∥DF,∴∠D+∠DEB=180°,∵∠DEB与∠AEC是对顶角,∴∠DEB=100°,∴∠D=180°﹣∠DEB=80°.故选B.点评:本题比较容易,考查平行线的性质及对顶角相等.5.(4分)(2009•重庆)下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中学生的视力情况D.为保证“神舟7号”的成功发射,对其零部件进行普查检查考点:全面调查与抽样调查.分析:调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.解答:解:A、调查一批新型节能灯泡的使用寿命,有破坏性,故得用抽查方式,故错误;B、调查长江流域的水污染情况,工作量大,得用抽查方式,故错误;C、调查重庆市初中学生的视力情况,工作量大,得用抽查方式,故错误;D、为保证“神舟7号”的成功发射,对零件全面检查十分重要,故进行普查检查,故正确.故选D.点评:本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.6.(4分)(2009•重庆)如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60°B.50°C.40°D.30°考点:圆周角定理.分析:根据同弧所对的圆周角等于圆心角的一半可得:∠A=∠BOC=40°.解答:解:∵∠BOC=80°,∴∠A=∠BOC=40°.故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(4分)(2009•重庆)由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到第一层为2个正方形,第二层左面有一个正方形.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8.(4分)(2009•重庆)观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n考点:规律型:图形的变化类.专题:压轴题.分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.解答:解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选D.点评:此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.9.(4分)(2009•重庆)在长方形ABCD中,AB=2,BC=1,动点P从点B 出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:运用动点函数进行分段分析,当P在BC 上与CD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.解答:解:∵AB=2,BC=1,动点P从点B出发,P点在BC上时,BP=x,AB=2,∴△ABP的面积S=×AB×BP=×2x=x;动点P从点B出发,P点在CD上时,△ABP的高是1,底边是2,所以面积是1,即s=1;∴s=x时是正比例函数,且y随x的增大而增大,s=1时,是一个常数函数,是一条平行于x轴的直线.所以只有C符合要求.故选C.点评:此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.10.(4分)(2009•重庆)如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①④⑤C.①③④D.③④⑤考点:正方形的判定;全等三角形的判定与性质;等腰直角三角形.专题:压轴题;动点型.分析:解此题的关键在于判断△DEF是否为等腰直角三角形,作常规辅助线连接CF,由SAS定理可证△CFE和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可证①正确,②错误,再由割补法可知④是正确的;判断③,⑤比较麻烦,因为△DEF是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,DE 取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的.故只有①④⑤正确.解答:解:连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.因此①正确.当D、E分别为AC、BC中点时,四边形CDFE是正方形.因此②错误.∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CEFD=S△AFC,因此④正确.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4;因此③错误.当△CDE面积最大时,由④知,此时△DEF的面积最小.此时S△CDE=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8;因此⑤正确.故选B.点评:本题考查知识点较多,综合性强,能力要求全面,难度较大.但作为选择题可采用排除法等特有方法,使此题难度稍稍降低一些.三、解答题(共10小题,满分86分)17.(6分)(2009•重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.考点:负整数指数幂;绝对值;有理数的乘方;算术平方根;零指数幂.专题:计算题.分析:根据绝对值、负整数指数幂、零指数幂、算术平方根、有理数的乘方等知识点进行解答.解答:解:原式=2+3×1﹣3+1=3.故答案为3.点评:本题主要考查绝对值、负指数幂、零次幂、算术平方根、(﹣1)的偶次方的计算与化简,比较简单.18.(6分)(2009•重庆)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:分别解出两不等式的解集,再求其公共解.解答:解:由①得x>﹣3,由②得x≤2.所以,原不等式组的解集为﹣3<x≤2.点评:本题是考查不等式组的解法,比较简单,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(6分)(2009•重庆)作图,请你在下图中作出一个以线段AB为一边的等边△ABC.(要求:用尺规作图,并写出已知、求作,保留作图痕迹,不写作法和结论)考点:作图—复杂作图.分析:本题图形不唯一,可以让AB作底,也可做腰,如果让AB做底,则先画一线段AB,作线段AB的垂直平分线,在垂直平分线上任取一点,顺次连接.解答:解:已知:线段AB.(1分)求作:等边△ABC.(2分)作图如下:(注:每段弧各(1分),连接线段AC、BC各1分)(6分)点评:本题是今年重庆中考的新题型,难度不大,但部分学生写已知、求作不很规范.20.(6分)(2009•重庆)为了建设“森林重庆”,绿化环境,某中学七年级一班同学都积极参加了植树活动,今年4月该班同学的植树情况的部分统计如下图所示:(1)请你根据以上统计图中的信息,填写下表:该班人数植树株数的中位数植树株数的众数(2)请你将该条形统计图补充完整.考点:扇形统计图;条形统计图;中位数;众数.专题:压轴题;图表型.分析:(1)根据植树2株的16人,占32%,求出总人数为16÷32%人;进而可求得植树4株的人数,根据中位数,众数的求法即可求得中位数、众数;(2)利用(1)中所求数据即可补全条形统计图.解答:解:(1)根据图表,植树2株的16人,占32%;则总人数为16÷32%=50人;进而可求得植树4株的有14人,根据中位数,众数的求法可求得中位数为3,众数的是2;填表如下:该班人数植树株数的中位数植树株数的众数50 3 2(2)补图如下:点评:本题考查了统计的有关基本概念及对条形统计图、扇形统计图的理解与运用.21.(10分)(2009•重庆)先化简,再求值:,其中x=﹣3.考点:分式的化简求值.专题:计算题.分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.最后把数代入求值.解答:解:原式===;当x=﹣3时,原式=.点评:考查分式的化简与求值,主要的知识点是因式分解、通分、约分等,难度不大,此题学生完成较好.22.(10分)(2009•重庆)已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求该反比例函数的解析式;(2)求直线AB的解析式.考点:反比例函数与一次函数的交点问题.专题:压轴题;数形结合;待定系数法;几何变换.分析:(1)根据已知条件求出c点坐标,用待定系数法求出反比例的函数解析式;(2)根据已知条件求出A,B两点的坐标,用待定系数法求出一次函数的解析式.解答:解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E.tan∠ABO=.∴CE=3.(1分)∴点C的坐标为C(﹣2,3).(2分)设反比例函数的解析式为y=,(m≠0)将点C的坐标代入,得3=.(3分)∴m=﹣6.(4分)∴该反比例函数的解析式为y=﹣.(5分)(2)∵OB=4,∴B(4,0).(6分)∵tan∠ABO=,∴OA=2,∴A(0,2).设直线AB的解析式为y=kx+b(k≠0),将点A、B的坐标分别代入,得.(8分)解得.(9分)∴直线AB的解析式为y=﹣x+2.(10分).点评:本题是一次函数与反比例函数的综合题.主要考查待定系数法求函数解析式.求A、B、C点的坐标需用正切定义或相似三角形的性质,起点稍高,部分学生感觉较难.23.(10分)(2009•重庆)有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.考点:游戏公平性;列表法与树状图法.专题:压轴题.分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.解答:解:(1)画树状图如下:或列表如下:1 2 3 40 0 0 0 01 123 43 3 6 9 12由图(表)知,所有等可能的结果有12种,其中积为0的有4种,所以,积为0的概率为.(2)不公平.因为由图(表)知,积为奇数的有4种,积为偶数的有8种.所以,积为奇数的概率为,积为偶数的概率为.因为,所以,该游戏不公平.游戏规则可修改为:若这两个数的积为0,则小亮赢;积为奇数,则小红赢.点评:本题考查用树状图或列表法解决需两步完成的概率题,判断游戏的公平性,并修改游戏规则.用到的知识点为:概率=所求情况数与总情况数之比.24.(10分)(2009•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC 于点G,交AB的延长线于点E,且AE=AC.(1)求证:BG=FG;(2)若AD=DC=2,求AB的长.考点:直角梯形;全等三角形的判定与性质;等腰三角形的性质.专题:几何综合题;压轴题.分析:(1)由题中可求得AE和AC所在的三角形全等,进而得到BG和FG所在三角形全等的条件;(2)求得AF长即可求得AB长.利用等腰三角形的三线合一定理可得AF=AC=AE,进而求得一些角是30°,主要利用AD长,直角三角形勾股定理来求解.解答:(1)证明:连接AG,∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.在△ABC和△AFE中,∴△ABC≌△AFE,∴AB=AF.在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG.∴BG=FG;(2)解:∵AD=DC,DF⊥AC,∴F为AC中点,∵AC=AE,∴AF=AC=AE.∴∠E=30°.∵∠EAD=90°,∴∠ADE=60°,∴∠FAD=∠E=30°,∴AF=.∴AB=AF=.点评:本题考查直角梯形、等腰三角形的性质、全等三角形的性质与判定,知识点多,综合性强.突破此题的关键在于第一问通过两次全等证Rt△ABG≌Rt△AFG,第二问求AB的长应充分利用等腰△ADC的性质得AF=AC=AE.从而得出∠E=30°.25.(10分)(2009•重庆)某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系y=﹣50x+2600,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:月份1月5月销售量 3.9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1,2月份该品牌电视机销往农村的售价都比去年12月份下降了m%,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).(参考数据:≈5.831,≈5.916,≈6.083,≈6.164)考点:二次函数的应用.专题:压轴题;阅读型;图表型.分析:(1)先根据表中的信息,用待定系数法确定出p,x的一次函数关系式,然后根据月度的总销售额=月销售量×销售的单价,可列出关于销售金额和x的函数关系式,然后根据函数的性质即可得出最大销售金额以及相应的x的值即月份;(2)由于3至5月份的销售量和售价都是同2月份进行比较,因此要先表示出2月份的销售数量和单价,根据(1)中销售量与月份,售价与月份的函数关系式先求出12月份的售价和销售量,进而可根据“今年1,2月份该品牌电视机销往农村的售价都比去年12月份下降了m%,且每月的销售量都比去年12月份下降了1.5m%”来表示出2月份的销售量和售价,那么可根据3至5月份的销售总额为936÷13%(万元)来列出关于m%的方程,即可求出m的值.解答:解:(1)设p与x的函数关系为p=kx+b(k≠0),根据题意,得解得,所以,p=0.1x+3.8.设月销售金额为w万元,则w=py=(0.1x+3.8)(﹣50x+2600).化简,得W=﹣5x2+70x+9880,。
重庆市2009年初中毕业暨高中招生考试数 学 试 卷(本卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,,对称轴公式为2bx a=-.重庆市云阳县养鹿中学 周忠海一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1.5-的相反数是( ) A .5B .5-C .15D .15-2.计算322x x ÷的结果是( ) A .xB .2xC .52xD .62x3.函数13y x =+的自变量x 的取值范围是( ) A .3x >- B .3x <- C .3x ≠- D .3x -≥4.如图,直线AB CD 、相交于点E ,DF AB ∥.若100AEC ∠=°, 则D ∠等于( )A .70°B .80°C .90°D .100° 5.下列调查中,适宜采用全面调查(普查)方式的是( )A .调查一批新型节能灯泡的使用寿命B .调查长江流域的水污染情况C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查6.如图,O ⊙是ABC △的外接圆,AB 是直径.若80BOC ∠=°,则A ∠等于( )A .60°B .50°C .40°D .30°7.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是( )A .B .C .D .8.观察下列图形,则第n 个图形中三角形的个数是( )C AEB FD4题图 (1)第2个第3个6题图A .22n +B .44n +C .44n -D .4n9.如图,在矩形ABCD 中,2AB =,1BC =,动点P 从点B 出发, 沿路线B C D →→作匀速运动,那么ABP △的面积S 与点P 运动 的路程x 之间的函数图象大致是( )10.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形; ②四边形CDFE 不可能为正方形, ③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( ) A .①②③ B .①④⑤ C .①③④ D .③④⑤ 二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上.11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为万元.那么万元用科学记数法表示为 万元.12.分式方程1211x x =+-的解为 . 13.已知ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 .14.已知1O ⊙的半径为3cm ,2O ⊙的半径为4cm ,两圆的圆心距12O O 为7cm ,则1O ⊙与2O ⊙的位置关系是 .15.在平面直角坐标系xOy 中,直线3y x =-+与两坐标轴围成一个AOB △.现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在AOB△内的概率为 .16.某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %. 三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.A .B .C .D .D C P BAC E B A FD10题图初中数学试题原创网17.计算:1021|2|(π(1)3-⎛⎫-+⨯-- ⎪⎝⎭.18.解不等式组:303(1)21x x x +>⎧⎨--⎩,①≤.②19.作图,请你在下图中作出一个以线段AB 为一边的等边ABC △.(要求:用尺规作图,并写出已知、求作,保留作图痕迹,不写作法和结论)已知: 求作:20.为了建设“森林重庆”,绿化环境,某中学七年级一班同学都积极参加了植树活动,今年4月该班同学的植树情况的部分统计如下图所示:(1)请你根据以上统计图中的信息,填写下表:(2)请你将该条形统计图补充完整.A B19题图 (株) 20题图植树2株的人数占32%四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:22121124x x x x ++⎛⎫-÷ ⎪+-⎝⎭,其中3x =-.22.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,1tan 422ABO OB OE ∠===,,.(1)求该反比例函数的解析式; (2)求直线AB 的解析式.23.有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积. (1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.24.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =.(1)求证:BG FG =; (2)若2AD DC ==,求AB 的长.D CE B G A24题图Fx23题图初中数学试题原创网五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 5.831 5.916 6.083 6.164)26.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.26题图x重庆市2009年初中毕业暨高中招生考试数学试题参考答案及评分意见一、选择题1.A 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.B 10.B 二、填空题11.67.8410⨯ 12.3x =- 13.2:5 14.外切 15.3516.30 三、解答题17.解:原式23131=+⨯-+ ···································································· (5分) 3=. ·················································································· (6分) 18.解:由①,得3x >-. ········································································ (2分)由②,得2x ≤. ········································································· (4分) 所以,原不等式组的解集为32x -<≤. ·········································· (6分)19.解:已知:线段AB . ········································································· (1分) 求作:等边ABC △. ··············································································· (2分) 作图如下:(注:每段弧各1分,连接线段AC BC 、各1分)······························································ (6分)20·············· (4分)(2)补图如下:························ (6分)四、解答题:21.解:原式221(1)2(2)(2)x x x x x +-+=÷++- ······················································ (4分)A BC (株)初中数学试题原创网21(2)(2)2(1)x x x x x ++-=++ ·············································································· (6分) 21x x -=+. ······························································································· (8分) 当3x =-时,原式325312--==-+. ···························································· (10分) 22.解:(1)42OB OE ==,,246BE ∴=+=. CE x ⊥轴于点E .1tan 2CE ABO BE ∴∠==,3CE ∴=. ························································· (1分) ∴点C 的坐标为()23C -,. ······································································· (2分) 设反比例函数的解析式为(0)my m x=≠. 将点C 的坐标代入,得32m=-, ································································· (3分) 6m ∴=-. ···························································································· (4分) ∴该反比例函数的解析式为6y x =-. ·························································· (5分)(2)4OB =,(40)B ∴,. ····································································· (6分) 1tan 2OA ABO OB ∠==, 2OA ∴=,(02)A ∴,. ············································································ (7分) 设直线AB 的解析式为(0)y kx b k =+≠.将点A B 、的坐标分别代入,得240.b k b =⎧⎨+=⎩,·················································· (8分)解得122.k b ⎧=-⎪⎨⎪=⎩,························································································· (9分) ∴直线AB 的解析式为122y x =-+. ······················································· (10分)23.解:(1)画树状图如下: ···················· (4分)0 1 30 2 60 3 90 4 120 1 3 0 1 3 0 1 3 0 1 3 2 3 4 1 幸运数 吉祥数 积或列表如下:············································································································· (4分) 由图(表)知,所有等可能的结果有12种,其中积为0的有4种, 所以,积为0的概率为41123P ==. ···························································· (6分) (2)不公平. ························································································· (7分) 因为由图(表)知,积为奇数的有4种,积为偶数的有8种.所以,积为奇数的概率为141123P ==, ························································ (8分) 积为偶数的概率为282123P ==.································································· (9分) 因为1233≠,所以,该游戏不公平.游戏规则可修改为:若这两个数的积为0,则小亮赢;积为奇数,则小红赢. ································ (10分) (只要正确即可) 24.(1)证明:90ABC DE AC ∠=°,⊥于点F ,ABC AFE ∴∠=∠. ································ (1分) AC AE EAF CAB =∠=∠,, ABC AFE ∴△≌△ ································· (2分) AB AF ∴=. ········································· (3分) 连接AG , ·············································· (4分)AG AG AB AF ==,,Rt Rt ABG AFG ∴△≌△. ······················ (5分) BG FG ∴=. ········································· (6分) (2)解:AD DC DF AC =,⊥,1122AF AC AE ∴==. ··········································································· (7分) 30E ∴∠=°.30FAD E ∴∠=∠=°, ············································································ (8分) AF ∴=·························································································· (9分) AB AF ∴== ··············································································· (10分)五、解答题:25.解:(1)设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得D CE B G AF初中数学试题原创网3.954.3.k b k b +=⎧⎨+=⎩,························································································· (1分) 解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. ·························································· (2分)设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+. ···················· (3分)化简,得25709800w x x =-++,所以,25(7)10125w x =--+.当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元. ··· (4分) (2)去年12月份每台的售价为501226002000-⨯+=(元), 去年12月份的销售量为0.112 3.85⨯+=(万台), ········································ (5分) 根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=. ················· (8分) 令%m t =,原方程可化为27.514 5.30t t -+=.1415t ∴==. 10.528t ∴≈,2 1.339t ≈(舍去)答:m 的值约为52.8. ············································································ (10分) 26.解:(1)由已知,得(30)C ,,(22)D ,,90ADE CDB BCD ∠=-∠=∠°,1tan 2tan 212AE AD ADE BCD ∴=∠=⨯∠=⨯=.∴(01)E ,. ····························································································· (1分) 设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠. 将点E 的坐标代入,得1c =.将1c =和点D C 、的坐标分别代入,得42129310.a b a b ++=⎧⎨++=⎩,······················································································ (2分) 解这个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++. ··················································· (3分) (2)2EF GO =成立. ············································································ (4分) 点M 在该抛物线上,且它的横坐标为65, ∴点M 的纵坐标为125. ··········································································· (5分) 设DM 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分别代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧=-⎪⎨⎪=⎩,. ∴DM 的解析式为132y x =-+. ······························································ (6分)∴(03)F ,,2EF =. ·············································································· (7分) 过点D 作DK OC ⊥于点K , 则DA DK =.90ADK FDG ∠=∠=°, FDA GDK ∴∠=∠.又90FAD GKD ∠=∠=°, DAF DKG ∴△≌△. 1KG AF ∴==.1GO ∴=. ···························································································· (8分) 2EF GO ∴=. (3)点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,.∴222(1)2PG t =-+,222(3)2PC t =-+,2GC =.①若PG PC =,则2222(1)2(3)2t t -+=-+, 解得2t =.∴(22)P ,,此时点Q 与点P 重合.∴(22)Q ,. ···························································································· (9分)②若PG GC =,则22(1)22t 2-+=,解得 1t =,(12)P ∴,,此时GP x ⊥轴. GP 与该抛物线在第一象限内的交点Q 的横坐标为1,x。
重庆市中考数学标准测试卷一、选择题1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米3.计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a54.如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>05.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°6.7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是357.对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣8.在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.409.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.10.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个11.观察图中菱形四个顶点所标的数字规律,可知数应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边12.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12二、填空题(本大题有6小题,每小题4分,共24分)13.的倒数是.14.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.15.如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S中,四边形BMON正确的有(填写序号)16.今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是.17.已知正方形ABCD的边长为a,分别以B,D为圆心,以a为半径画弧,如图所示,则阴影部分的面积为.18.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=.三、解答题19.计算:(+1)0+(﹣1)+sin45°﹣()﹣1.20.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.四、解答题(共4小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.22.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.23.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?24.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO 于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.五、解答题(共2小题,每小题12分,共24分)25.如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.26.如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.重庆市中考数学标准测试卷参考答案与试题解析一、选择题1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a5【考点】幂的乘方与积的乘方.【分析】根据积的乘方计算即可.【解答】解:(﹣a2)3=﹣a6,故选B.【点评】此题考查积的乘方,关键是根据法则进行计算.4.如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>0【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式即可.【解答】解:根据二次根式有意义的条件可知,x,y满足≥0时,是二次根式.故选:C.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°【考点】平行线的判定与性质;垂线.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质求出∠BPF,即可求出∠2的度数.【解答】解:如图:∵AB⊥GH,CD⊥GH,∴∠GMB=∠GOD=90°,∴AB∥CD,∴∠BPF=∠1=42°,∴∠2=180°﹣∠BPF=180°﹣42°=138°,故选B.【点评】本题考查了邻补角和平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键.6.7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是35【考点】极差;加权平均数;中位数;众数.【分析】根据极差、众数、平均数和中位数的定义对每一项进行分析即可.【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这些数从小到大排列为30,31,31,31,33,33,35,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是(30+31+31+31+33+33+35)÷7=32,故本选项错误;D、极差是:35﹣30=5,故本选项错误;故选B.【点评】本题考查了极差、众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数;求极差的方法是用一组数据中的最大值减去最小值.7.对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣【考点】解分式方程.【专题】新定义.【分析】根据规定5*(3x﹣1)可化成﹣,再根据解分式方程的步骤即可得出答案.【解答】解:根据题意得:﹣=2,解得:x=;经检验x=是原方程的解;故选B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.40【考点】矩形的性质.【分析】通过证得△AMN∽△DCM,对应边成比例即可求得.【解答】解:∵MN丄MC,tan∠MCN=,∴=,∵∠AMN+∠DMC=90°,∠AMN+∠ANM=90°,∴∠ANM=∠DMC,∵∠A=∠D=90°,∴△AMN∽△DCM,∴==,∵AN=2,∴MD=8,∵M为AD的中点,∴AM=8,∵△AMN∽△DCM,∴==,∴=,∴DC=32,∴AB=32.故选A.【点评】本题考查了矩形的性质,三角形相似的判定和性质以及解直角三角形等,证得三角形相似是解题的关键.9.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三段求解:①当P在AB上运动时;②当P在BC上时;③当P在CO上时;分别求出S关于t的函数关系式即可选出答案.【解答】解:∵A(4,0)、C(0,4),∴OA=AB=BC=OC=4,①当P由点A向点B运动,即0≤t≤4,S=OA•AP=2t;②当P由点A向点B运动,即4<t≤8,S=OA•AP=8;③当P由点A向点B运动,即8<t≤12,S=OA•AP=2(12﹣t)=﹣2t+24;结合图象可知,符合题意的是A.故选:A.【点评】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.10.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【专题】探究型.【分析】根据函数图象和题意,可以判断题目中①②③④的正确与否,从而解答本题,得到正确的选项.【解答】解:由题意和图象可知:x≤0时,N=y2,M=y1;0<x≤2时,N=y1,M=y2;x>2时,M=y1,N=y2∴当0<x<2时,N=y1,故①正确;由图象可知,N的值随x的增大而增大,x为全体实数,故②错误;因为二次函数的最大值为4,而M为y1,y2中的较小值,故M的最大值为4,故③正确;由图象和题意可知,N=2时,0<x<2,N=y1,故对应的x值只有一个,故④错误.由上可得,①③正确,②④错误.故选项A错误,选项B正确,选项C错误,选项D错误.故选B.【点评】本题考查二次函数和一次函数的图象的相关知识,关键是会看函数的图象,能弄懂题意,能找出所求问题需要的条件.11.观察图中菱形四个顶点所标的数字规律,可知数应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边【考点】规律型:图形的变化类.【分析】由题意可知:四个数字以下、左、上、右的顺序依次循环,由此用除以4根据余数判定得出答案即可.【解答】解:由已知图形可知,每四个数字一循环,∵÷4=503…3,∴在第504个图形上,余数是3,则与第一个图形中3的位置相同,即在左边.故选:C.【点评】此题考查图形的变化规律,找出数字循环的规律,利用规律解决问题.12.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A .6B .9C .10D .12【考点】反比例函数图象上点的坐标特征.【分析】过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,得出四边形AFOD 是矩形,四边形OEBF 是矩形,得出S 矩形AFOD =3,S 矩形OEBF =k ,根据平行线分线段成比例定理证得AB=2OD ,即OE=3OD ,即可求得矩形OEBF 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【解答】解:过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,∵AB ∥x 轴,∴AF ⊥y 轴,∴四边形AFOD 是矩形,四边形OEBF 是矩形,∴AF=OD ,BF=OE ,∴AB=DE ,∵点A 在双曲线y=上,∴S 矩形AFOD =3,同理S 矩形OEBF =k ,∵AB ∥OD , ∴==,∴AB=2OD ,∴DE=2OD ,∴S 矩形OEBF =3S 矩形AFOD =9,∴k=9,故选B .【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,矩形的判定和性质,平行线分线段成比例定理,作出辅助线,构建矩形是解题的关键.二、填空题(本大题有6小题,每小题4分,共24分)13.的倒数是.【考点】倒数.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:根据倒数的定义得:的倒数是.故答案为:.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.【考点】相似三角形的判定与性质.【分析】先根据DE∥BC得出△ADE∽△ACB,由相似三角形的性质求出两个相似三角形的面积比,进而求出的值.【解答】解:DE∥BC,∴△ADE∽△ABC,∴=()2=()2,∵AD=1,DB=2,∴,∴.故答案为:.【点评】本题主要考查了相似三角形的判定和性质,本题的关键是利用相似三角形的面积比等于相似比的平方求值.15.如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S中,四边形BMON正确的有①③④(填写序号)【考点】正方形的性质;全等三角形的判定与性质;勾股定理;解直角三角形.【分析】根据正方形的性质得出BC=CD,∠ABC=∠BCD=90°,然后根据SAS证得△BMC≌△CND,得出∠MCB=∠NDC.进而即可证得∠DOC=90°,即DN⊥MC;根据勾股定理求得DN,然后根据NC•CD=ND•OC,求得OC=,OM=13﹣=,则OC≠OM,因为∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,得出∠OCD=∠DNC,所以sin∠OCD=sin∠DNC==;由△BMC≌△CND,=S△ODC.得出S△BMC=S△CND,求得S△BMC﹣S△CNC=S△CND﹣S△CNC,即S四边形BMON【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠BCD=90°,在△BMC和△CND中,,∴△BMC≌△CND,∴∠MCB=∠NDC.又∠MCN+∠MCD=90°,∴∠MCD+∠NDC=90°,∴∠DOC=90°,∴DN⊥MC,故①正确;在Rt△CDN中,∵CD=12,CN=5,∴DN==13.又∵∠BCD=90°,∠COD=90°∴NC•CD=ND•OC,∴OC=,OM=13﹣=,∴OC≠OM,故②错误;∵∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,∴∠OCD=∠DNC,∴sin∠OCD=sin∠DNC==,故③正确;∵△BMC≌△CND,∴S△BMC=S△CND=S△ODC,故④正确.S△BMC﹣S△CNC=S△CND﹣S△CNC,即S四边形BMON综上,正确的结论是①③④.故答案为①③④.【点评】本题考查了正方形的性质,三角形全等的判定和性质,勾股定理的应用,解直角三角形以及三角形面积等,熟练掌握待定系数法是解题的关键.16.今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A 组“引体向上”的概率是.【考点】列表法与树状图法.【分析】分别用D ,E ,F 表示“引体向上””立定跳远”“800米”,据题意画出树状图,然后由树状图即可求得所有等可能的结果;再利用概率公式求解即可求得答案.【解答】解:分别用D ,E ,F 表示“引体向上””立定跳远”“800米”,画树状图得:∵共有9种等可能的结果,∴小明抽到A 组“引体向上”的概率=.故答案为.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.已知正方形ABCD 的边长为a ,分别以B ,D 为圆心,以a 为半径画弧,如图所示,则阴影部分的面积为 (π﹣1)a 2 .【考点】列代数式.【专题】计算题.【分析】根据圆的面积公式和利用S 扇形ABC +S 扇形ADC =S 阴影部分+S 正方形ABCD 进行计算.【解答】解:∵S 扇形ABC +S 扇形ADC =S 阴影部分+S 正方形ABCD ,∴S 阴影部分=2וπ•a 2﹣a 2=(π﹣1)a 2.故答案为(π﹣1)a2.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的根据是利用面积的和差计算阴影部分的面积.18.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=40°.【考点】圆周角定理.【分析】首先连接CD,由AD是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACD=90°,又由圆周角定理,可得∠D=∠ABC=50°,继而求得答案.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=50°,∴∠CAD=90°﹣∠D=40°.故答案为:40°.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.三、解答题19.计算:(+1)0+(﹣1)+sin45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+1﹣3=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.【考点】解直角三角形;勾股定理.【分析】(1)过点A作AD⊥BC于D,根据已知条件可得出AD,再利用勾股定理得出CD,进而得出tanC;(2)在Rt△ABD中,利用勾股定理求出BD=8,结合CD的长度,即可得出BC的长.【解答】解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.【点评】本题考查了解直角三角形以及勾股定理,要熟练掌握好边角之间的关系.四、解答题(共4小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=,y=1代入进行计算即可.【解答】解:原式=[﹣][﹣]=•=•=﹣,当x=,y=1是,原式=﹣=2﹣3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了200名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.【考点】条形统计图;扇形统计图.【分析】(1)根据①种的人数除以①所占的百分比,可得答案;(2)④种情况的人数除以总人数乘以圆周角,可得答案,总人数乘以第③种情况所占的百分比,可得第③种情况的人数,根据总人数减去第①种情况的人数,减去第③种情况的人数,减法第④种情况的人数,可得第②中情况的人数;(3)根据概率的意义:④的人数除以总人数,可得答案.【解答】解:(1)2÷%=200(名);(2)④所在扇形的圆心角×360°=126°,③的人数200×9%=18人,②的人数200﹣18﹣2﹣70=110人,第②种情况110人,第③种情况18,补全图形如图:.(3)p==,他属于第②种情况的概率为.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?【考点】一次函数的应用.【分析】(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意列方程组即可得到结论;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意列方程组得到300≤x≤800,总运费W=200×0.012+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),根据一次函数的性质得到W随想的增大而增大,于是得到当x=300时,W最小=2610元,【解答】解:(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意得:,解得:,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:,解得:300≤x≤800,总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),∵W随x的增大而增大,∴当x=300时,W=2610元,最小∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.【点评】本题考查了二元一次方程组与一次函数的实际应用.此题难度适中,解题的关键是理解题意,抓住等量关系.24.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO 于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)根据菱形的性质得到AC⊥BD,由于DH⊥AB于H,于是得到∠DHA=∠DOG=90°,推出△AGH∽△DGO,根据相似三角形的性质得到,于是得到结论;(2)根据已知条件得到∠DAB=60°,AB=AD=6,得到△ABD是等边三角形,根据菱形的性质得到AC⊥DB,OD=OB=BD=3,得到∠ODG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∵DH⊥AB于H,∴∠DHA=∠DOG=90°,∵∠AGH=∠DGO,∴△AGH∽△DGO,∴,∴AG•GO=HG•GD;(2)解:∵四边形ABCD是菱形,∠ABC=120°,∴∠DAB=60°,AB=AD=6,∴△ABD是等边三角形,∵AC⊥DB,OD=OB=BD=3,∵DH⊥AB,∴∠ODG=30°,∴OG=OD•tan30°=.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,熟记个性质定理是解题的关键.五、解答题(共2小题,每小题12分,共24分)25.如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将N点坐标代入即可求得;(2)由于A、B关于对称轴对称,所以相当于求AH+CH的最小值,根据两点之间线段最短,当A、H、C三点共线时AH+CH最小,即连接AC与对称轴的交点就是H,求出AC解析式,再与对称轴方程联立即可求得;(3)分两种情况:①作BF∥AC交抛物线于点F,先求出BF解析式,再与抛物线方程联立求出F 点坐标,再用两点间的距离公式表示出BF的长度,接着利用相似比例关系列出方程求解;②在x 轴下方作∠ABF=∠ABC=45°,同样先求出BF解析式,再求出F点坐标,进而表示出BF长度,最后利用相似比例关系列方程求解.算的过程中,可能有一种情况无解,舍去就是了.【解答】解:(1)∵抛物线y=﹣(x+2)(x﹣a)(a>0)过点N(6,一4),∴﹣4=,解得,a=4,即实数a的值为4;(2)∵a=4∴令y=0,得x1=﹣2,x2=4;令x=0,得y=2∴点A的坐标为(4,0),点B的坐标为(﹣2,0),点C的坐标为(0,2)∵点A和点B关于抛物线的对称轴x=对称,∴在抛物线的对称轴上找一点H,使得BH+CH最小,即AH+CH最小,连接AC,则AC与抛物线的对称轴x=1的交点即为所求如下图所示:设过点A(4,0),C(0,2)的直线解析式为:y=kx+b则解得k=,b=2∴y=令x=1代入y=,得y=∴点H的坐标为(1,)即点H的坐标为(1,)时,使得BH+CH最小;(3)①作BF∥AC交抛物线于点F,如图:则∠FBA=∠BAC,由y=﹣(x+2)(x﹣a)=﹣,令x=0,则y=2,∴C(0,2),又∵A(a,0),∴AC的解析式为y=,设BF的解析式为y=,∵BF过点B(﹣2,0),∴b=,∴BF的解析式为:y=,∴,解得:F(a+2,﹣2﹣),∴BF=∵△BFA∽△ABC,∴AB2=BF•AC,∴,化简整理得:16=0,不存在这种情形,即这种情况不存满足要求的F点;②∵B(﹣2,0),C(2,0),∴BC的解析式为y=x+2,∠ABC=45°,在x轴下方作∠ABF=∠ABC=45°,如图:∴BF⊥BC,∴BF的解析式为y=﹣x﹣2,∴,解得:F(2a,﹣2a﹣2),∴BF=,∵△BFA∽△BAC,∴AB2=BF•BC,∴,整理得:a2﹣4a﹣4=0,解得a=或a=(舍去),综上所述,a=时,以点B,A,F为顶点的三角形与△BAC相似.【点评】考查了二次函数综合题,解决二次函数问题应注意对称性的应用,若已知三点坐标,可设一般式;若已知顶点坐标,可设顶点式;若已知抛物线与x轴两交点坐标,可设两点式,从而简化运算,整个问题围绕二次函数展开,并将二次函数、三角形等多个问题紧密地结合在一起,无论是题设的给出还是思维方式的考查都很新颖.一道考题不仅考查了二次函数、三角形相似等初中数学中的重点内容,还考查了待定系数法等数学思想方法,这是中考试卷的创新题型和发展趋势,代数知识与几何知识得到了很好的整合,是一个典型的在知识网络交汇点处设计的热点试题.26.如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【考点】四边形综合题.【分析】(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.【解答】解:(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC=4.又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×4=16.。
初中毕业生学业考试数 学 试 卷※考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分)1.目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元B .90.14810⨯元C .101.4810⨯元D .914.810⨯元2.计算23(2)a -的结果为( ) A .52a -B .68a -C .58a -D .66a -3.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°, 则E ∠的度数为( ) A .70° B .80° C .90° D .100°4.一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图所示,则此圆柱体钢块的左.视图是( )5.数据21,21,21,25,26,27的众数、中位数分别是( ) A .21,23 B .21,21 C .23,21 D .21,256.为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( ) A .22025x =B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++=7.如图所示,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为( )A .B .C .D . 俯视图第4题图 EA BCD第3题图45°125°8.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )二、填空题(每小题3分,共24分) 9.分解因式:34a a -= . 10.函数33y x =+自变量x 的取值范围是 . 11.小丽想用一张半径为5cm 的扇形纸片围成一个底面半径为4cm 的圆锥,接缝忽略不计,则扇形纸片的面积是 cm 2.(结果用π表示)12.如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是 . 13.如图所示,AB 为O ⊙的直径,P 点为其半圆上一点,40POA C ∠=°,为另一半圆上任意一点(不含A B 、),则PCB ∠= 度.14.已知抛物线()经过点,且顶点在第一象限.有下列三个结论:①0a < ②0a b c ++> ③02ba->.把正确结论的序号填在横线上 .15.如图所示,在正方形网格中,图①经过 变换(填“平移”或“旋转”或“轴对称”)可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点 (填“A ”或“B ”或“C ”). 16.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .A .B .C .D .y 1 2 2 1 1- (21)A , y 2 y 1 x O垂直 A . B . C . D . 第8题图 第12题图 CB A P O 40° 第13题图O y x 第14题图1- ①② ③ 第15题图A B C三、解答题(每题8分,共16分)17.计算:012|32|(2π)+-+-.18.解方程:2111x x x -=-+.四、解答题(每题10分,共20分)19.如图所示,在Rt ABC △中,9030C A ∠=∠=°,°.(1)尺规作图:作线段AB 的垂直平分线l (保留作图痕迹,不写作法);(2)在已作的图形中,若l 分别交AB AC 、及BC 的延长线于点D E F 、、,连接BE . 求证:2EF DE =.20.某市开展了党员干部“一帮一扶贫”活动.为了解贫困群众对帮扶情况的满意程度,有关部门在该市所管辖的两个区内,分别随机抽取了若干名贫困群众进行问卷调查.根据收集的信息进行了统计,并绘制了下面尚不完整的统计图.已知在甲区所调查的贫困群众中,非常满意的人数占甲区所调查的总人数的35%.根据统计图所提供的信息解答下列问题: (1)甲区参加问卷调查的贫困群众有 人; (2)请将统计图补充完整; (3)小红说:“因为甲区有30人不满意,乙区有40人不满意,所以甲区的不满意率比乙区低.”你认为这种说法正确吗?为什么?第1个图形 第2个图形 第3个图形 第4个图形第16题图A CB 第19题图 非常满意 人数 800 600 400 200 满意 比较满意 不满意 满意程度 甲 乙第20题图420 700 760500250 3040五、解答题(每题10分,共20分)21.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.22.如图所示,已知AB 是半圆O 的直径,弦106CD AB AB CD ==∥,,,E 是AB 延长线上一点,103BE =.判断直线DE 与半圆O 的位置关系,并证明你的结论.六、解答题(每题10分,共20分)23.某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=°,在B 处测得A 的仰角40ABC ∠=°,在D 处测得A 的仰角85ADF ∠=°,过D 点作地面BE 的垂线,垂足为C .(1)求ADB ∠的度数; (2)求索道AB 的长.(结果保留根号)O AB ED C 第22题图A C DE F B 第23题图24.为迎接国庆六十周年,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍.各种奖品的单价如下表所示.如果计划一等奖买x 件,买50件奖品的总钱数是w 元. (1)求w 与x 的函数关系式及自变量x 的取值范围; (2)请你计算一下,如果购买这三种奖品所花的总钱数最少?最少是多少元?一等奖 二等奖 三等奖 单价(元) 12 10 5 E图(b ) 第25题图八、解答题(本题14分)26.如图所示,已知在直角梯形OABC 中,AB OC BC x ∥,⊥轴于点(11)(31)C A B ,,、,.动点P 从O 点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线..OA ,垂足为Q .设P 点移动的时间为t 秒(04t <<),OPQ △与直角梯形OABC 重叠部分的面积为S .(1)求经过O A B 、、三点的抛物线解析式; (2)求S 与t 的函数关系式;2009年铁岭市初中毕业生学业考试 数学试题参考答案及评分标准注:本参考答案只给出一种或几种解法(证法),若用其他方法解答并正确,可参考此评分标准相应步骤赋分.一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案 C B B C A C D A∴3060EBA A AED BED ∠=∠=∠=∠=°,°,∴3060EBC EBA FEC ∠==∠∠=°,°. 又∵ED AB EC BC ⊥,⊥, ∴ED EC =. ······························································································· 8分 在Rt ECF △中,6030FEC EFC ∠=∴∠=°,°, ∴2EF EC =, ∴2EF ED =. ··························································································· 10分 第19题图(2)图形正确(甲区满意人数有500人) ··························································· 5分 (3)不正确. ······························································································· 6分 ∵甲区的不满意率是30 2.5%1200=,乙区的不满意率是402%70076050040=+++, ∴甲区的不满意率比乙区的不满意率高. ·························································· 10分五、(每题10分,共20分) 21.解:(1)根据题意可列表或树状图如下:第一次第二次1 2 3 4∵,∴2.······························· 2分 ∵1025533OE OB BE =+=+=. ····························· 3分 ∴35325553DF OD OD OE ===,, ∴DF ODOD OE=. ····························································································· 6分 ∵CD AB ∥,∴CDO DOE ∠=∠. ································································ 7分3) A第22题图∴90ODE OFD ∠=∠=°, ∴OD DE ⊥∴直线DE 与半圆O 相切. ············································································ 10分 法二:连接OD ,作OF CD ⊥于点F ,作DG OE ⊥于点G . ∵6CD =,∴132DF CD ==. 在Rt ODF △中,2222534OF OD DF =-=-= ·········································· 3分 ∵CD AB ∥,DG AB OF CD ⊥,⊥, ∴四边形OFDG 是矩形,∴43DG OF OG DF ====,. ∵1025533OE OB BE =+=+=,2516333GE OE OG =-=-=, ························ 5分 在Rt DGE △中,22221620433DE DG GE ⎛⎫=+=+= ⎪⎝⎭.∵2222025533⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, ∴222OD DE OE += ····················································································· 8分 ∴CD DE ⊥.∴直线DE 与半圆O 相切. ············································································ 10分 六、(每题10分,共20分) 23.(1)解:∵DC CE ⊥,∴90BCD ∠=°. 又∵10DBC ∠=°, ∴80BDC ∠=°, ····················································· 1分∵85ADF ∠=°,∴360809085105ADB ∠=---=°°°°°. ·················· 2分(2)过点D 作DG AB ⊥于点G . ······························ 3分 在Rt GDB △中,401030GBD ∠=-=°°°, ∴903060BDG ∠=-=︒°° ········································ 4分 又∵100BD =, ∴111005022GD BD ==⨯=. 3cos301005032GB BD ==⨯=°. ···························································· 6分 在Rt ADG △中,1056045GDA ∠=-=︒°° ······················································ 7分 ∴50GD GA ==, ························································································ 8分 ∴50503AB AG GB =+=+(米)································································ 9分A CDEF B 第23题图G答:索道长50+ ············································································· 10分 24.解:(1)1210(210)5[50(210)]x x x x ω=+-+--- ····································· 2分17200x =+.·········································································· 3分 由02100[50(210)]05[50(210)] 1.510(210)x x x x x x x >⎧⎪->⎪⎨--->⎪⎪---⨯-⎩≤ ························································ 5分(3)当CD CB =(2BD CD =或12CD BD =或30CAD ∠=°或90BAD ∠=°或30ADC ∠=°)时,四边形BCGE 是菱形. ················ 9分 理由:法一:由①得AEB ADC △≌△, ∴BE CD = ························································· 10分 又∵CD CB =, ∴BE CB =. ······················································ 11分 由②得四边形BCGE 是平行四边形, ∴四边形BCGE 是菱形. ······································· 12分ADCBFEG 图(b ) 第25题图法二:由①得AEB ADC △≌△, ∴BE CD =. ······························································································ 9分 又∵四边形BCGE 是菱形, ∴BE CB = ································································································ 11分 ∴CD CB =. ····························································································· 12分 法三:∵四边形BCGE 是平行四边形, ∴BE CG EG BC ∥,∥, ∴6060FBE BAC F ABC ∠=∠=∠=∠=°,° ··················································· 9分 ∴60F FBE ∠=∠=°, ∴BEF △是等边三角形. ············································································· 10分220(02)1(12)a h a h ⎧=-+⎪⎨=-+⎪⎩ 解得1343a h ⎧=-⎪⎪⎨⎪=⎪⎩································································· 3分 ∴所求抛物线解析式为214(2)33y x x =--+. ···················································· 4分 (2)分三种情况:①当02t <≤,重叠部分的面积是OPQ S △,过点A 作AF x ⊥轴于点F , ∵(11)A ,,在Rt OAF △中,1AF OF ==,45AOF ∠=°在Rt OPQ △中,OP t =,45OPQ QOP ∠=∠=°,∴cos 452PQ OQ t ===°, (3)存在 11t = ······················································································ 12分 22t = ···················································································· 14分。
2009年中考试题专题之1-有理数试题及答案一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元B .70.25810⨯元C .62.5810⨯元D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12- C .2- D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是A .0.156³10-5 B .0.156³105 C .1.56³10-6 D .1.56³106【答案】C6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21 D .-21 【答案】B9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( )A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元D .117.2610⨯元【答案】A12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1a b <D .0a b -< 【答案】C 13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3 (3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ). A .-6B .9C .-9D .6【答案】B17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1³190-米 B .8.1³180-米 C .81³190-米 D .0.81³170-米ab 0【答案】B18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A .32 B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯D .83.110-⨯解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。
旋转问题考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。
旋转性质-—-—对应线段、对应角的大小不变,对应线段的夹角等于旋转角。
注意旋转过程中三角形与整个图形的特殊位置. 一、直线的旋转1、(2009年浙江省嘉兴市)如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?2、(2009年河南)如图,在Rt △ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D 。
过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________; (2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.C(第1题)解:(1)①当四边形EDBC是等腰梯形时,∠EDB=∠B=60°,而∠A=30°,根据三角形的外角性质,得α=∠EDB—∠A=30,此时,AD=1;②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5.(2)当∠α=90°时,四边形EDBC是菱形.∵∠α=∠ACB=90°,∴BC‖ED,∵CE‖AB,∴四边形EDBC是平行四边形.在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠A=30度,∴AB=4,AC=2 ,∴AO= = .在Rt△AOD中,∠A=30°,∴AD=2,∴BD=2,∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形.3、(2009年北京市)在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1)(1)在图1中画图探究:①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90得到线段EC2。
EFD CBAOCBAP D C BA EF D C B A 第1个 第2个 第3个重庆市2009年初中毕业暨高中招生考试 数 学 试 卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线)0(2≠++=a c bx axy 的顶点坐标为24(,)24b ac b aa--,对称轴公式为x =-2b a一、选择题:(本大题10个小题,每小题4分,共40分) 1.-5的相反数是( )A .5B .5-C .51D .51-2.计算232x x ÷的结果是( )A .xB .x 2C .52x D .62x3.函数31+=x y 的自变量取值范围是( )A .3->xB .3-<xC .3-≠xD .3-≥x4.如图,直线CD AB 、相交于点E ,AB DF //,若︒=∠100AEC ,则D ∠等于( ) A .70º B .80º C .90º D .100º5.下列调查中,适宜采用全面调查(普查)方式的是( )A .调查一批新型节能灯泡的使用寿命B .调查长江流域的水污染情况C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查6.如图,⊙O 是ABC ∆的外接圆,AB 是直径,若︒=∠80BOC ,则A ∠等于( ) A .60º B .50º C .40º D .30º7.由四个大小相同的正方体组成的集合体如图所示,那么它的左视图是(A B C D8.观察下列图形,则第n 个图形中三角形的个数是( )……A .22+nB .44+nC .44-nD .n 49.如图,在矩形ABCD 中,A B=2,BC=1,动点P 从点B 出发,沿路线B→C→D 作匀速运动,那么△ABP 的面积S 与点P运动的路程x 之间的函数图象大致是( )A B C D10.如图,在等腰Rt △A BC 中,∠C=90º,A C=8,F 是A B 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持A D=CE ,连接DE 、DF 、EF 。
在此运动变化的过程中,下列结论: ①△DFE 是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8。
其中正确的结论是( ) A .①②③ B .①④⑤ C .①③④ D .③④⑤ 二、填空题:(本大题6个小题,每小题4分,共24分)11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元,那么7840000万元用科学计数法表示为 万元。
12.分式方程1211-=+x x 的解为 。
13.已知△ABC 与△DEF 相似且面积比为4︰25,则△ABC 与△DEF 的相似比为 。
14.已知⊙1O 的半径为3cm ,⊙2O 的半径为4cm ,两圆的圆心距21O O 为7cm ,则⊙1O 与⊙2O 的位置关系为 。
A B植树2株的 人数占32%15在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB 。
现将背面完全相同,正面分别标有数1、2、3、21、31的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 。
16.某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%。
由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点。
若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %。
三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤。
17.计算:201)1(9)2()31(2-+--π⨯+--18.解不等式组:⎩⎨⎧-≤->+12)1(303x x x19.作图:请你在下图中作出一个以线段A B 为一边的等边△A BC 。
(要求:用尺规作图,并写出已知、求作,保留作图痕迹,不写作法和结论) 已知:求作: 20.为了建设“森林重庆”,绿化环境, 某中学七年级一班同学都积极参加了植树活动。
今年4月份该班同学的植树情况的部分统计如 下图所示:(1)请你根据以上统计图中的信息,填写下表:(2四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤。
21.先化简,再求值:412211(22-++÷+-x x x x ,其中3-=x22.已知:如图在平面直角坐标系xOy 中,直线A B 分别与y x 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE ⊥x 轴于点E ,21tan =∠ABO ,OB=4,OE=2。
(1)求该反比例函数的解析式;(2)求直线A B 的解析式。
23.有一个可以自由转动的转盘,被分成了4装有分别标有数0、1、3的三个小球(除数不同外,其余都相同)。
小亮转动一次转盘,停止后指针指向某一扇形,扇 (1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢; 否则,小红赢。
你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平。
24.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠A BC=90º,DE ⊥A C 于点F ,交BC 于点G ,交A B 的延长线于点E ,且AE=A C 。
(1)求证:BG=FG ;(2)若AD=DC=2,求A B 的长。
25.某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系260050+-=x y ,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:(1(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了%5.1m 。
国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴。
受此政策的影响,今年3月份至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台。
若今年3至5月份国家对这种电视机的销售共给予财政补贴936万元,求m 的值(保留一位小数)(参考数据:831.534≈,916.535≈,083.637≈,164.638≈) 26.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA=2,OC=3。
过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E 。
(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G 。
如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF=2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由。
重庆市2009一、选择题1.A 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.B 10.B 二、填空题11.67.8410⨯ 12.3x =- 13.2:5 14.外切 15.3516.30三、解答题17.解:原式23131=+⨯-+ (5分) 3=. (6分) 18.解:由①,得3x >-. (2分) 由②,得2x ≤. (4分)所以,原不等式组的解集为32x -<≤. (6分) 19.解:已知:线段A B . (1分) 求作:等边A B C △. (2分)作图如下:(注:每段弧各1分,连接线段A C B C 、各1分) (6分) 20((2)补图如下:(6分)四、解答题: 21.解:原式221(1)2(2)(2)x x x x x +-+=++-÷(4分) 21(2)(2)2(1)x x x x x ++-=++(6分)21x x -=+.(8分)当3x =-时,原式325312--==-+.(10分)22.解:(1)42O B O E == ,,246B E ∴=+=.C E x ⊥轴于点E .12tan CE BEABO =∴∠=,3C E ∴=.(1分)∴点C 的坐标为()23C -,. (2分)ABC(株)设反比例函数的解析式为(0)m y mx=≠.将点C 的坐标代入,得32m =-, (3分)6m ∴=-. (4分)∴该反比例函数的解析式为6y x=-. (5分)(2)4O B = ,(40)B ∴,. (6分) 12tan OA OBABO =∠=,2O A ∴=,(02)A ∴,. (7分) 设直线A B 的解析式为(0)y kx b k =+≠.将点A B 、的坐标分别代入,得240.b k b =⎧⎨+=⎩,(8分)解得122.k b ⎧=-⎪⎨⎪=⎩,(9分)∴直线A B 的解析式为122y x =-+. (10分) 23.解:(1)画树状图如下:(4分)由图(表)知,所有等可能的结果有12种,其中积为0的有4种, 所以,积为0的概率为41123P ==. (6分)(2)不公平. (7分)因为由图(表)知,积为奇数的有4种,积为偶数的有8种. 所以,积为奇数的概率为141123P ==, (8分)积为偶数的概率为282123P ==. (9分)因为1233≠,所以,该游戏不公平.游戏规则可修改为:若这两个数的积为0,则小亮赢;积为奇数,则小红赢. (10分) (只要正确即可) 24.(1)证明:90D E A C A B C ∠= ,°⊥于点F ,A B C A F E ∴∠=∠. (1分)A C A E E A F C AB =∠=∠ ,,A BC A F E ∴△≌△ (2分)AB AF ∴=. (3分)连接A G , (4分)AG AG AB AF == ,,R t R t ABG AFG ∴△≌△. (5分)B G F G ∴=.(6分)(2)解:D F AD D C AC = ,⊥,1122AC AE AF =∴=.(7分)30E ∴∠=°.30F A D E ∴∠=∠=° (8分)AF ∴= (9分)AB AF ∴==.(10分)五、解答题: 25.解:(1)设p与x 的函数关系为(0)p kx b k =+≠,根据题意,得 3.95 4.3.k b k b +=⎧⎨+=⎩,(1分)解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. (2分)D CEB GA F 0 1 3 0 2 6 0 3 9 0 4 12 0 1 3 0 1 3 0 1 3 0 1 3 2 3 4 1 幸运数 吉祥数 积设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+.(3分)化简,得25709800w x x =-++,所以,25(7)10125w x =--+. 当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元. (4分) (2)去年12月份每台的售价为501226002000-⨯+=(元), 去年12月份的销售量为0.112 3.85⨯+=(万台), (5分)根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=.(8分)令%m t =,原方程可化为27.514 5.30t t -+=.215t =∴=10.528t ∴≈,2 1.339t ≈(舍去)答:m 的值约为52.8. (10分)26.解:(1)由已知,得(30)C ,,(22)D ,, 90AD E C D B BC D ∠=-∠=∠ °,112tan 2tan 2AE AD ADE BCD =∴=∠=⨯∠=⨯.∴(01)E ,. (1分) 设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠. 将点E 的坐标代入,得1c =.将1c =和点D C 、的坐标分别代入,得42129310.a b a b ++=⎧⎨++=⎩, (2分)解这个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++. (3分)(2)2E F G O =成立.(4分)点M 在该抛物线上,且它的横坐标为65, ∴点M 的纵坐标为125.(5分)设D M 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分别代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩,解得1123k b ⎧=-⎪⎨⎪=⎩,. ∴D M 的解析式为132y x =-+.(6分)∴(03)F ,,2E F =.(7分)过点D 作D K O C ⊥于点K ,则D A D K =.90A D K F D G ∠=∠= °,F D A G D K ∴∠=∠. 又90F A D G K D ∠=∠= °,D A F D K G ∴△≌△. 1K G A F ∴==.1G O ∴=. (8分) 2E F G O ∴=.(3) 点P 在A B 上,(10)G ,,(30)C ,,则设(12)P ,.∴222(1)2PG t =-+,222(3)2PC t =-+,2G C =.x①若P G P C =,则2222(1)2(3)2t t -+=-+,解得2t =.∴(22)P ,,此时点Q 与点P 重合. ∴(22)Q ,. (9分) ②若PG G C =,则22(1)22t 2-+=,解得 1t =,(12)P ∴,,此时G P x ⊥轴. G P 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73. ∴713Q ⎛⎫ ⎪⎝⎭,.(10分)③若P C G C =,则222(3)22t -+=,解得3t =,(32)P ∴,,此时2PC G C ==,PC G △是等腰直角三角形. 过点Q 作QH x ⊥轴于点H ,则QH GH =,设QH h =, (1)Q h h ∴+,.2513(1)(1)166h h h ++++=∴-.解得12725h h ==-,(舍去). 12755Q ⎛⎫⎪⎝⎭∴,. (12分)综上所述,存在三个满足条件的点Q ,即(22)Q ,或713Q ⎛⎫⎪⎝⎭,或12755Q⎛⎫⎪⎝⎭,.x。