2011全国中考数学模拟汇编一34.矩形 菱形 正方形
- 格式:doc
- 大小:3.06 MB
- 文档页数:29
2011年全国各地100份中考数学试卷分类汇编第31章 平移、旋转与对称一、选择题1. (2011浙江省舟山,3,3分)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30°(B )45° (C )90° (D )135°【答案】C2. (2011广东广州市,4,3分)将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(0,1) B.(2,-1) C.(4,1) D.(2,3) 【答案】A[来源:]3. (2011广东广州市,8,3分)如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )A .B .C .D .【答案】D4. (2011江苏扬州,8,3分)如图,在Rt △ABC 中,∠ACB=90º,∠A=30º,BC =2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )CDB (A )ABABCD图1ABOCD(第3题)A. 30,2B.60,2C. 60,23D. 60,3 【答案】C 5. (2011山东菏泽,5,3分)如图所示,已知在三角形纸片ABC 中,BC =3, AB =6,∠BCA =90°,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为A .6B .3C . 23D .3【答案】C6. (2011山东泰安,3,3分)下列图形:其中是中心对称图形的个数为( )A.1B.2C.3D.4 【答案】B7. (2011浙江杭州,2,3)正方形纸片折一次,沿折痕剪开,能剪得的图形是( )A .锐角三角形B .钝角三角形C .梯形D .菱形 【答案】C8. (2011 浙江湖州,7,3)下列各图中,经过折叠不能..围成一个立方体的是【答案】D9. (2011 浙江湖州,8,3)如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕A B C D E点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是A.150°B.120°C.90°D.60°[来源:学§科§网]【答案】A10.(2011浙江省,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是()【答案】D11.(2011浙江义乌,6,3分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【答案】B12. (2011四川重庆,3,4分)下列图形中,是中心对称图形的是()A.B.C.D.【答案】B13. (2011浙江省嘉兴,3,4分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD 是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()(A)30°(B)45°(C)90°(D)135°【答案】C14. (2011台湾台北,21)21.坐标平面上有一个线对称图形,)25,3(-A、)211,3(-B两点在此图形上且互为对称点。
中考数学二轮专题复习-矩形、菱形及正方形一、单选题1.下列四边形中,对角线互相垂直平分的是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形2.下列测量方案中,能确定四边形门框为矩形的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量对角线是否相等D.测量对角线交点到四个顶点的距离是否都相等3.如图,菱形的对角线、相交于点,过点作于点,连接,若,,则菱形的面积为()A.B.C.D.4.如图,有甲、乙、丙三个矩形,其中相似的是()A.甲与丙B.甲与乙C.乙与丙D.三个矩形都不相似5.如图,在菱形ABCD中,DE⊥AB,cosA=,AE=3,则tan∠DBE的值是()A.B.2C.D.6.如图,在菱形ABCD中,对角线AC与BD交于点O,E是边AB的中点,连结OE.若菱形ABCD的面积为24,AC=8,则OE的长为()A.B.3C.D.57.如图,在正方形ABCD中,E是边BC上一点,且BE:CE=1:3,DE交AC于点F,若DE=10,则CF等于()A.B.C.D.8.如图,矩形中,对角线交于点O,,则矩形的面积是()A.2B.C.D.89.如图,将长、宽分别为6cm,cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.cm2 B.(36)cm2C.cm2D.cm210.如图所示,反比例函数的图象经过矩形OABC的边AB的中点,则矩形OABC的面积为()A.2B.4C.5D.811.如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD ,垂足分别为点E,F,连结EF,则△AEF 的面积是()A.B.C.D.12.如图,四边形ABCD是正方形,BE⊥EF,DF⊥EF,BE=2.5dm,DF=4dm,那么EF的长为()A.6.5dm B.6dm C.5.5dm D.4dm13.将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上的F处,若,则的值为()A.B.C.D.14.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为()A.6B.8C.10D.915.如图,在矩形ABCD中,对角线、BD交于C,,垂足为E,,那么的面积是()A.B.C.D.16.如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CI⊥HJ于点I,交AB于K,在图形的外部作矩形MNPQ,使点D,E,G和H,J都落在矩形的边上.已知矩形BJIK的面积为1,正方形ACDE的面积为4,则为()A.B.C.D.17.如图,正方形的边长为a,点E在边上运动(不与点A,B重合),,点F在射线上,且与相交于点G,连接.则下列结论:①,② 的周长为 ,③;④当 时,G 是线段 的中点,其中正确的结论是( )A .①②③B .①④C .①③④D .①②③④ 18.如图,菱形ABCD 的边长为4,E 、F 分别是AB 、AD 上的点,AC 与EF 相交于点G ,若, ,则FG 的长为( )A .B .2C .3D .419.如图,在△ABC 中,∠ACB =90°,以△ABC 的各边为边分别作正方形BAHI ,正方形BCFG 与正方形CADE ,延长BG ,FG 分别交AD ,DE 于点K ,J ,连结DH ,IJ.图中两块阴影部分面积分别记为S 1,S 2.若S 1:S 2=1:4,S 四边形边BAHE =18,则四边形MBNJ 的面积为( )A.5B.6C.8D.920.如图,在Rt△ABC中,∠CBA=60°,斜边AB=10,分别以△ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5=()A.50B.50C.100D.100二、填空题21.在四边形ABCD中,对角线AC,BD交于点O,OA=OC=OB=OD,添加一个条件使四边形ABCD是正方形,那么所添加的条件可以是(写出一个即可)22.如图,分别以Rt△ABC三边构造三个正方形,面积分别为S1,S2,S3,若S1=15,S3=39,则S2=.23.如图,在平面直角坐标系中,点A1(1,0)、A2(3,0)、A3(6,0)、A4(10,0)、……,以A1A2为对角线作第一个正方形A1C1A2B1,以A2A3为对角线作第二个正方形A2C2A3B2,以A3A4,为对角线作第三个正方形A3C3A4B3,……,顶点B1,B2,B3……都在第一象限,按照此规律依次下去,则点Bn的坐标为.24.如图,菱形ABCD的对角线,BD相交于点,,,以AB为直径作一个半圆,则图中阴影部分的面积为.25.如图,在矩形ABCD中,AB=8,AD=10,AD,AB,BC分别与⊙O相切于E,F,G三点,过D作⊙O的切线交BC于点M,切点为N,则DM的长为.26.建党100周年主题活动中,702班浔浔设计了如图1的“红色徽章”其设计原理是:如图2,在边长为的正方形四周分别放置四个边长为的小正方形,构造了一个大正方形,并画出阴影部分图形,形成了“红色徽章”的图标.现将阴影部分图形面积记作,每一个边长为的小正方形面积记作,若,则的值是.27.如图,正方形ABCD的边长为4,P是边CD上的一动点,EF⊥BP交BP于G,且EF平分正方形ABCD的面积,则线段GC的最小值是.28.正方形ABCD的边长为4,点E是BC边上的一动点,连结AE,过点B作BF⊥AE于点F,以BF为边作正方形FBHG,当点E从B运动到C时,求CF的最短距离为;线段HG扫过的面积为29.如图,在矩形ABCD中,AB=4,BC=3,将△BCD沿射线BD平移长度a(a>0)得到△B'C'D',连接AB',AD',则当△AB'D'是直角三角形时,a的长为.30.如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD边上的动点,PQ=16,以PQ 为直径的⊙O与BD交于点M,N,则MN的最大值为.三、计算题31.如图,在中,,D为的中点,,,连接交于点O.(1)证明:四边形为菱形;(2)若,,求菱形的高.32.如图,已知在矩形ABCD中,AB=6,BC=2,点E,F分别在边CD,AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形;(2)若□AFCE是菱形,求菱形AFCE的边长.四、解答题33.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,AD=BC,求证:四边形EFGH是菱形.34.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A′B′C′D′,此时点B′恰好落在边AD上.连接B′B,若∠AB′B=75°,求旋转角及AB长.35.如图,△ABC中,点D是边AC的中点,过D作直线PQ∥BC,∠BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,∠ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形.36.在几何探究问题中,经常需要通过作辅助线(如,连接两点,过某点作垂线,作延长线,作平行线等等)把分散的条件相对集中,以达到解决问题的目的.(1)(探究发现)如图1,点E,F分别在正方形ABCD的边BC,CD上,,连接EF.通过探究,可发现BE,EF,DF之间的数量关系为(直接写出结果).(2)(验证猜想)同学们讨论得出下列三种证明思路(如图1):思路一:过点A作,交CD的延长线于点G.思路二:过点A作,并截取,连接DG.思路三:延长CD至点G,使,连接AG.请选择你喜欢的一种思路证明(探究发现)中的结论.(3)(迁移应用)如图2,点E,F分别在正方形ABCD的边BC,CD上,且,,设,试用含的代数式表示DF的长.37.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5 时,求t的取值范围(直接写出结果即可).38.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边中,是边上一点(不含端点),是的外角的平分线上一点,且.求证:.点拨:如图②,作,与的延长线相交于点,得等边,连接.易证:,可得;又,则,可得;由,进一步可得又因为,所以,即:.问题:如图③,在正方形中,是边上一点(不含端点),是正方形的外角的平分线上一点,且.求证:.五、综合题39.将绕点A按逆时针方向旋转度,并使各边长变为原来的n倍,得,如图①,我们将这种变换记为.(1)如图①,对作变换得,则;直线与直线所夹的锐角为度;(2)如图②,中,,对作变换得,使点B、C、在同一直线上,且四边形为矩形,求和n的值;(3)如图③,中,,对作变换得,使点B、C、在同一直线上,且四边形为平行四边形,求和n的值. 40.如图(1)如图1,正方形ABCD与调研直角△AEF有公共顶点A,∠EAF=90°,连接BE、DF,将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,则=;β=;(2)如图2,矩形ABCD与Rt△AEF有公共顶点A,∠EAF=90°,且AD=2AB,AF=2AE,连接BE、DF,将Rt△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,请求出的值及β的度数,并结合图2进行说明;(3)若平行四边形ABCD与△AEF有公共项点A,且∠BAD=∠EAF=α(0°<α<180°),AD=kAB,AF=kAE(k≠0),将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的锐角的度数为β,则:①=;②请直接写出α和β之间的关系式.答案解析部分【解析】【解答】解:∵平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线互相平分且相等,正方形对角线互相垂直平分且相等,∴A、B、C不符合题意,D符合题意.故答案为:D.【分析】根据平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线互相平分且相等,正方形对角线互相垂直平分且相等,即可得出答案.【解析】【解答】解:A、∵对角线互相平分的四边形是平行四边形,而对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意.故答案为:D.【分析】利用对角线互相平分且相等的四边形是矩形,可作出判断.【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=2,∴BD=4,∵OA=3,∴AC=6,∴菱形ABCD的面积.故答案为:A.【分析】根据菱形的性质和直角三角形斜边上的中线定理求出对角线的长即可求出菱形的面积。
2011年中考数学试题精选汇编《矩形、菱形、正方形》一、选择题1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n (B )4n (C )12n + (D )22n +【答案】C3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.19图1图2 图3……(第10题) FA B C D H E① ②③ ④ ⑤4. (2011山东泰安,19 ,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE 折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为A.23B. 332C. 3D.6【答案】A5. (2011浙江杭州,10,3)在矩形ABCD中,有一个菱形B F D E(点E,F分别在线段AB,CD上),记它们的面积分别为ABCD BFDES S和.现给出下列命题:()①若ABCDBFDESStan EDF∠=.②若2,DE BD EF=∙则2DF AD=.则:A.①是真命题,②是真命题 B.①是真命题,②是假命题C.①是假命题,②是真命题 D,①是假命题,②是假命题【答案】A6. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡AF AG、分别架在墙体的点B、点C处,且AB AC=,侧面四边形BDEC为矩形,若测得100FAG∠=︒,则FBD∠=( )A. 35°B. 40°C. 55°D. 70°【答案】C7. (2011浙江温州,6,4分)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( )A.2条B.4条C.5条D.6条8. 2011四川重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C9. (2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 10.(2011台湾台北,29)如图(十二),长方形ABCD 中,E 为BC 中点,作AEC 的角平分线交AD 于F 点。
中考专题复习第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。
这四者之间的关系可表示为:2、正方形也既是对称图形,又是对称图形,有条对称轴3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】【重点考点例析】考点一:与矩形有关的折叠问题例1 (2016•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=105cm,且tan∠EFC=34,那么该矩形的周长为()A.72cm B.36cm C.20cmD.16cm对应训练1.(2016•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为()A.12B.33C.23D.22考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2016•泉州)如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .对应训练2.(2016•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.1 D.17考点三:和正方形有关的证明题例3 (2016•湘潭)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.思路分析:(1)根据正方形的性质可得AO=CO ,OD=OF ,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF ,再利用“边角边”证明△AOD 和△COF 全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD ,连接DF 交OE 于G ,根据正方形的对角线互相垂直平分可得DF ⊥OE ,DG=OG=12OE ,再求出AG ,然后利用勾股定理列式计算即可求出AD . 解:(1)AD=CF .理由如下:在正方形ABCO 和正方形ODEF 中,AO=CO ,OD=OF ,∠AOC=∠DOF=90°, ∴∠AOC+∠COD=∠DOF+∠COD ,即∠AOD=∠COF ,在△AOD 和△COF 中,AO CO AOD COF OD OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COF (SAS ), ∴AD=CF ;(2)与(1)同理求出CF=AD ,如图,连接DF 交OE 于G ,则DF ⊥OE ,DG=OG=12OE ,∵正方形ODEF 的边长为2,∴OE=2×2=2,∴DG=OG=12OE=12×2=1, ∴AG=AO+OG=3+1=4,在Rt △ADG 中,AD=22224117AG DG +=+=,∴CF=AD=17.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,(1)熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.对应训练3.(2016•三明)如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB .(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.3.(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∴∠DPE=∠DCE,∵∠1=∠2(对顶角相等),∴180°-∠1-∠CDP=180°-∠2-∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:与(2)同理可得:∠DPE=∠ABC,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.考点四:四边形综合性题目例4 (2016•资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以2cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.思路分析:(1)证明△ADF≌△DNC,即可得到DF=MN;易证△MND ∽△DFA,∴ND DMAF AD=,即ND a tat aa t-=-,得ND=t.∴ND=CM=t,AN=DM=a-t.若△MNF为等腰三角形,则可能有三种情形:(I)若FN=MN,则由AN=DM知△FAN≌△NDM,∴AF=DM,即ata t-=t,得t=0,不合题意.∴此种情形不存在;(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,∴t=12a,此时点F与点B重合;(III)若FM=MN,显然此时点F在BC边上,如下图所示:易得△MFC≌△NMD,∴FC=DM=a-t;又由△NDM∽△DCF,∴DN DCDM FC=,即t aa t FC=-,∴FC=()a a tt-.∴()a a tt-=a-t,∴t=a,此时点F与点C重合.综上所述,当t=a或t=12a时,△MNF能够成为等腰三角形.点评:本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解.对应训练4.(2016•营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=43,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.4.解:(1)①BF=AD ,BF ⊥AD ;②BF=AD ,BF ⊥AD 仍然成立,证明:∵△ABC 是等腰直角三角形,∠ACB=90°,∴AC=BC ,∵四边形CDEF 是正方形,∴CD=CF ,∠FCD=90°,∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,在△BCF 和△ACD 中BC ACBCF ACD CF CD=⎧⎪∠=∠⎨⎪=⎩,∴△BCF ≌△ACD (SAS ),∴BF=AD ,∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF ⊥AD ;(2)证明:连接DF ,∵四边形CDEF 是矩形,∴∠FCD=90°,又∵∠ACB=90°,∴∠ACB=∠FCD∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,∵AC=4,BC=3,CD=43,CF=1,∴34BC CF AC CD ==,∴△BCF ∽△ACD ,∴∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF⊥AD,∴∠BOD=∠AOB=90°,∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB2=AC2+BC2=32+42=25,∵在Rt△FCD中,∠FCD=90°,CD=43,CF=1,∴DF2=CD2+CF2=(43)2+12=259,∴BD2+AF2=AB2+DF2=25+259=2509.【聚焦山东中考】1.(2016•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF2.(2016•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3-1B.3-5C.5+1D.5-13.(2016•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.4.(2016•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连结AF,CF,则图中阴影部分面积为.5.(2016•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+3.其中正确的序号是(把你认为正确的都填上).6.(2016•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.6.(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,ABE DAFAB ADBAE D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则与(1)的情况完全相同.7.(2016•青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD :AB= 时,四边形MENF 是正方形(只写结论,不需证明)8.(2016•淄博)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD 剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD 中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).8.解:(1)正方形的最大面积是16.设AM =x (0≤x ≤4),则MD =4-x .∵四边形MNEF 是正方形,∴MN =MF ,∠AMN +∠FMD =90°.∵∠AMN +∠ANM =90°,∴∠ANM =∠FMD .∵在△ANM 和△DMF 中A D ANM FMD MN FM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANM ≌△DMF (AAS ).∴DM =AN .∴S 正方形MNEF =MN 2=AM 2+AN 2,=x2+(4-x)2,=2(x-2)2+8∵函数S正方形MNEF=2(x-2)2+8的开口向上,对称轴是x=2,在对称轴的左侧S随x的增大而减小,在对称轴的右侧S随x的增大而增大,∵0≤x≤4,∴当x=0或x=4时,正方形MNEF的面积最大.最大值是16.(2)先将矩形纸片ABCD分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形.9.(2016•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.9.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,【备考真题过关】一、选择题1.(2016•铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(2016•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.(2013•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25B.20C.15D.104.(2016•重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm 5.(2016•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.123D.1636.(2016•巴中)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是()A.24B.16C.43D.237(2016•茂名)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC 的长是()A.2B.4C.2 3D.438.(2016•成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.4 9.(2016•包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S210.(2016•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°11.(2016•绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.2825cm B.2120cm C.2815cm D.2521cm12.(2016•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5二、填空题13.(2016•宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为------度时,两条对角线长度相等.14.(2016•淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是.15.(2013•无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.16.(2016•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.17.(2016•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan ∠DBE的值是.18.(2016•南充)如图,正方形ABCD的边长为2,过点A作AE⊥AC,AE=1,连接BE,则tanE= .19.(2016•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).20.(2016•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.21.(2016•北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.22.(2016•南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.23.(2016•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.24.(2016•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD 上一动点,分别以AP 、PB 为边向上、向下作正方形APEF 和PHKB ,设正方形对角线的交点分别为O 1、O 2,当点P 从点C 运动到点D 时,线段O 1O 2中点G 的运动路径的长是 .25.(2016•荆州)如图,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连结AD 1、BC 1.若∠ACB=30°,AB=1,CC 1=x ,△ACD 与△A 1C 1D 1重叠部分的面积为s ,则下列结论:①△A 1AD 1≌△CC 1B ;②当x=1时,四边形ABC 1D 1是菱形;③当x=2时,△BDD 1为等边三角形;④s=38(x -2)2 (0<x <2); 其中正确的是 (填序号).三、解答题26.(2016•南通)如图,AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE .求证:四边形BCDE 是矩形.26.证明:∵∠BAD=∠CAE ,∴∠BAD -∠BAC=∠CAE -∠BAC ,∴∠BAE=∠CAD ,∵在△BAE 和△CAD 中AE AD BAE CAD AB AC =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CAD (SAS ), ∴∠BEA=∠CDA ,BE=CD ,∵DE=BC ,∴四边形BCDE 是平行四边形,∵AE=AD ,∴∠AED=∠ADE ,∵∠BEA=∠CDA ,∴∠BED=∠CDE ,∵四边形BCDE 是平行四边形,∴BE ∥CD ,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE 是矩形.27.(2016•广州)如图,四边形ABCD 是菱形,对角线AC 与BD相交于O ,AB=5,AO=4,求BD 的长.27.解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO=2254-=3,∴BD=2BO=2×3=6.28.(2013•厦门)如图所示,在正方形ABCD 中,点G 是边BC 上任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG=DE+HG ,连接BH .求证:∠ABH=∠CDE .28.证明:如图,在正方形ABCD 中,AB=AD ,∠ABG=∠DAF=90°,∵DE ⊥AG ,∴∠2+∠EAD=90°,又∵∠1+∠EAD=90°,∴∠1=∠2,在△ABG 和△DAF 中, 1 290AB AD ABG DAF =⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABG ≌△DAF (ASA ),∴AF=BG ,AG=DF ,∠AFD=∠BGA ,∵AG=DE+HG ,AG=DE+EF ,∴EF=HG ,在△AEF 和△BHG 中,AF BG AFD BGA EF HG =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BHG (SAS ),∴∠1=∠3,∴∠2=∠3,∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE .29.(2013•黔东南州)如图,在正方形ABCD 中,点M 是对角线BD 上的一点,过点M 作ME ∥CD 交BC 于点E ,作MF ∥BC 交CD 于点F .求证:AM=EF .29.证明:过M 点作MQ ⊥AD ,垂足为Q ,作MP 垂足AB ,垂足为P ,∵四边形ABCD 是正方形,∴四边形MFDQ 和四边形PBEM 是正方形,四边形APMQ 是矩形,∴AP=QM=DF=MF ,PM=PB=ME ,∵在△APM 和△FME 中,AP MF APM FME PM ME =⎧⎪∠=∠⎨⎪=⎩, ∴△APM ≌△FME (SAS ), ∴AM=EF .30.(2016•铁岭)如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,连接AE ,BE .(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.30.(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,∴四边形AEBD 是平行四边形,∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC ,∴∠ADB=90°,∴平行四边形AEBD 是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC ,AD 是△ABC 的角平分线,∴AD=BD=CD ,∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.31.(2016•南宁)如图,在菱形ABCD 中,AC 为对角线,点E 、F 分别是边BC 、AD 的中点.(1)求证:△ABE ≌△CDF ;(2)若∠B=60°,AB=4,求线段AE 的长.31.解:(1)∵四边形ABCD 是菱形,∴AB=BC=AD=CD ,∠B=∠D ,∵点E 、F 分别是边BC 、AD 的中点,∴BE=DF ,在△ABE 和△CDF 中,∵AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS );(2)∵∠B=60°,∴△ABC 是等边三角形,∵点E 是边BC 的中点,∴AE ⊥BC ,在Rt △AEB 中,∠B=60°,AB=4,sin60°=4AE AE AB =, 解得AE=23.32.(2016•贵阳)已知:如图,在菱形ABCD 中,F 是BC 上任意一点,连接AF 交对角线BD 于点E ,连接EC .(1)求证:AE=EC ;(2)当∠ABC=60°,∠CEF=60°时,点F 在线段BC 上的什么位置?说明理由.32.(1)证明:如图,连接AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE=EC ;(2)解:点F 是线段BC 的中点.理由如下:在菱形ABCD 中,AB=BC ,又∵∠ABC=60°,∴△ABC 是等边三角形,∴∠BAC=60°,∵AE=EC ,∠CEF=60°,∴∠EAC=12∠BAC=30°, ∴AF 是△ABC 的角平分线,∵AF 交BC 于F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点.33.(2016•曲靖)如图,点E 在正方形ABCD 的边AB 上,连接DE ,过点C 作CF ⊥DE 于F ,过点A 作AG ∥CF 交DE 于点G .(1)求证:△DCF ≌△ADG .(2)若点E 是AB 的中点,设∠DCF=α,求sinα的值.33.(1)证明:在正方形ABCD 中,AD=DC ,∠ADC=90°,∵CF ⊥DE ,∴∠CFD=∠CFG=90°,35.(2016•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为22,对角线AE,DF相交于点O,连接OC.求OC的长度.35.证明:(1)∵∠BAC=90°,∠ABC=45°,线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.(1)如图 ,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图 ,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.36.解:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠PBA=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FPC=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)结论:四边形EPCF是平行四边形,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,。
中考试题专题之19-矩形、菱形、正方形试题及答案一、选择题1.(湖北荆州)如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中 点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm2..(山西省)如图(1),把一个长为、宽为的长方形()沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .B .C .D .3.( 黑龙江大兴安岭)在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③CH CA =;④ED BE 3=,正确的( ) A .②③ B .③④ C .①②④D .②③④4.(河北)如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20B .15C .10D .55.(兰州)如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展m n m n >2m n -m n -2m2nmnnn (2)(1)N M FEBABAC D开后是6.(济南)如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( ) A .1.6 B .2.5 C .3 D .3.47.(凉山州)如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A .AD BC '=B .EBD EDB ∠=∠C .ABE CBD △∽△ D .sin AEABE ED∠=8.(济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是 A .12 B . 14 C . 15D .9.(衡阳市) 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确 的个数为( )①DE =3cm ; ②EB =1cm ; ③2A BCD 15S cm =菱形. A .3个B .2个C .1个D .0个C D C 'A BEA .B .C .D .10.(衡阳市)如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B .34 C .23D .211.(广西南宁)如图2,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ) A .210cmB .220cmC .240cmD .280cm12.(宁波市)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形AB CDEA ′G DB CAABCD图2DBCANM O13.(桂林百色)如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放 在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿 图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从B 点 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止,在这个 过程中,线段QR 的中点M 所经过的路线围成的图形的面积为 ( ).A .2B .C .D .14.(河池)已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( ) A . 23cmB . 24cmC .2 D .215.(杭州市)如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( ) A .35° B .45° C .50° D .55°16.(义乌)如图,一块砖的外侧面积为x ,那么图中残留部分墙面的面积为 A .4x A .12x A .8x A .16x17.(台湾) 如图(八),长方形ABCD 中,E 点在上,且平分∠BAC 。
中考数学专题训练:矩形、菱形、正方形(附参考答案)1.下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形2.如图,D ,E ,F 分别是△ABC 各边的中点,则以下说法错误的是( )A .△BDE 和△DCF 的面积相等B .四边形AEDF 是平行四边形C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形3.如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,CE ,DF 交于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠AGE =∠CDF .其中正确的结论是( )A .①②B .①③C .②③D .①②③4.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接EO 并延长交AD 于点F ,∠ABC =60°,BC =2AB .下列结论:①AB ⊥AC ;②AD =4OE ;③四边形AECF 是菱形;④S △BOE =14S △ABC .其中正确结论的个数是( )A .4B .3C .2D .15.如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点E,F分别在边AB,BC上,AE=2 cm,BD,EF交于点G.若G是EF的中点,则BG的长为______cm.6.如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC的中点,则EF的长为_____.7.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.8.如图,在菱形ABCD中,E,F,G,H分别是AB,BC,CD,AD上的点,且BE =BF=CG=AH.若菱形的面积等于24,BD=8,则EF+GH=_____.9.如图,在矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.10.(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC 到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.参考答案1.A 2.C 3.A 4.D5.√13 6.5 7.(1)证明略 (2)略8.6解析:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是菱形,BD =8,∴AB =BC =AD =CD ,AC ⊥BD ,AO =OC =12AC ,BO =OD =12BD =4. ∵S 菱形ABCD =12AC ·BD =24,∴AC =6,∴AO =3,∴AB =√AO 2+BO 2=5=AD .∵BE =BF =CG =AH ,∴AE =CF =DH =DG ,∴BE AE =BF CF ,∴EF ∥AC .同理可得GH ∥AC ,设BE =BF =CG =AH =a ,则有DH =5-a ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴BE AB =EF AC ,即a 5=EF 6,∴EF =65a ,同理可得DH DA =GH CA ,即5−a 5=GH 6,∴GH =6-65a ,∴EF +GH =6.9.(1)证明略(2)与△OBF相似的三角形有△ECF,△BAF,理由略(3)DE=3+√1910.(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°.∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF.(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°.∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF.∵CH=DE,∴CF=CH.∵点H在BC的延长线上,∴∠DCH=∠DCF=90°.又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H.∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H.(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG. ∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11.∵CF+CG=FG,∴CF=FG-CG=11-8=3,即CF的长为3.。
2011年全国各地中考数学真题分类汇编—矩形、菱形与正方形1. (2011福建福州,21,12分)已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中, ①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.【答案】(1)证明:①∵四边形ABCD 是矩形∴AD ∥BC∴CAD ACB ∠=∠,AEF CFE ∠=∠ ∵EF 垂直平分AC ,垂足为O ∴OA OC = ∴AOE ∆≌COF ∆ ∴OE OF =∴四边形AFCE 为平行四边形 又∵EF AC ⊥ABC DE图10-1O图10-2备用图∴四边形AFCE 为菱形②设菱形的边长AF CF xcm ==,则(8)BF x cm =- 在Rt ABF ∆中,4AB cm =由勾股定理得2224(8)x x +-=,解得5x =∴5AF cm =(2)①显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC QA = ∵点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒 ∴5PC t =,124QA t =- ∴5124t t =-,解得43t = ∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,43t =秒.②由题意得,以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,点P 、Q 在互相平行的对应边上. 分三种情况:i)如图1,当P 点在AF 上、Q 点在CE 上时,AP CQ =,即12a b =-,得12a b += ii)如图2,当P 点在BF 上、Q 点在DE 上时,AQ CP =, 即12b a -=,得12a b +=iii)如图3,当P 点在AB 上、Q 点在CD 上时,AP CQ =,即12a b -=,得12a b +=综上所述,a 与b 满足的数量关系式是12a b +=(0)ab ≠2. (2011广东广州市,18,9分)如图4,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE =AF . 求证:△ACE ≌△ACF .【答案】∵四边形ABCD 为菱形 ∴∠BAC=∠DAC 又∵AE=AF ,AC=AC ∴△ACE ≌△ACF (SAS )3. (2011山东滨州,24,10分)如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN ∥BC .设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF 。
中考数学复习《矩形、菱形与正方形》考点及重点题型知识点一:特殊平行四边形的性质与判定1.矩形1)性质:(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形另说法:(1)四个角都是直角(2)对角线相等且互相平分.即AO=CO=BO=DO.(3)面积=长×宽=2S△ABD =4S△AOB.2)判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形变式练习:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__22.5__度.,2.菱形1)性质:(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形另说法(1)四边相等(2)对角线互相垂直、平分,一条对角线平分一组对角(3)面积=底×高=对角线_乘积的一半2)判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形变式练习1:如图,菱形ABCD的对角线AC,BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为__24__.第1题图) ,第2题图)变式练习2:如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件_AC⊥BD或∠AOB=90°或AB=BC_使其成为菱形(只填一个即可).变式练习3:如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是______.第3题图【解析】∵四边形ABCD是菱形,∴AB=BC=6,∵∠ABC=60°,∴AC=AB=BC=6.变式练习4:如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于( ) A. 18 B. 16 C. 15 D. 14【解析】B∵四边形ABCD是菱形,∴BO=OD=12BD=3,AO=OC=12AC=4,∴AB=5,∴△ABD的周长为:5+5+6=16.3正方形1)性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
矩形菱形与正方形一、选择题1. (?安徽省,第10题4分)如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A. 1 B. 2 C. 3 D. 4考点:正方形的性质.分析:连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O 的距离小于是本题的关键.2. (?福建泉州,第5题3分)正方形的对称轴的条数为()A.1B.2C.3D.4考点:轴对称的性质分析:根据正方形的对称性解答.解答:解:正方形有4条对称轴.故选D.点评:本题考查了轴对称的性质,熟记正方形的对称性是解题的关键.3. (?珠海,第2题3分)边长为3cm的菱形的周长是()A.6cm B.9cm C.12cm D.15cm考点:菱形的性质.分析:利用菱形的各边长相等,进而求出周长即可.解答:解:∵菱形的各边长相等,∴边长为3cm的菱形的周长是:3×4=12(cm).故选:C.点评:此题主要考查了菱形的性质,利用菱形各边长相等得出是解题关键.4.(?广西玉林市、防城港市,第6题3分)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形考点:命题与定理.分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、四个角相等的四边形是矩形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为真命题;C、对角线垂直的平行四边形是菱形,所以C选项为假命题;D、对角线垂直的平行四边形是菱形,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.(?毕节地区,第8题3分)如图,菱形ABCD中,对角线AC、BC相交于点O,H为AD 边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4C.7D.14考点:菱形的性质;直角三角形斜边上的中线;三角形中位线定理分析:根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.解答:解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选A.点评:本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.6.(?襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④考点:翻折变换(折叠问题);矩形的性质分析:求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,判断出④正确.解答:解:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF>2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选D.点评:本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.7.(?孝感,第9题3分)如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D(5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是()A .(2,10)B .(﹣2,0)C .(2,10)或(﹣2,0)D .(10,2)或(﹣2,0)考点:坐标与图形变化-旋转.分析:分顺时针旋转和逆时针旋转两种情况讨论解答即可.解答:解:∵点D (5,3)在边AB 上,∴BC=5,BD =5﹣3=2,①若顺时针旋转,则点D ′在x 轴上,OD ′=2,所以,D ′(﹣2,0),②若逆时针旋转,则点D ′到x 轴的距离为10,到y 轴的距离为2,所以,D ′(2,10),综上所述,点D ′的坐标为(2,10)或(﹣2,0).故选C .点评:本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.8.(·台湾,第12题3分)如图,D 为△ABC 内部一点,E 、F 两点分别在AB 、BC 上,且四边形DEBF 为矩形,直线CD 交AB 于G 点.若CF =6,BF =9,AG =8,则△ADC 的面积为何?()A.16 B.24 C.36 D.54分析:由于△ADC=△AGC﹣△ADG,根据矩形的性质和三角形的面积公式计算即可求解.解:△ADC=△AGC﹣△ADG=12×AG×BC﹣12×AG×BF=12×8×(6+9)﹣12×8×9=60﹣36=24.故选:B.点评:考查了三角形的面积和矩形的性质,本题关键是活用三角形面积公式进行计算.9.(·台湾,第27题3分)如图,矩形ABCD中,AD=3AB,O为AD中点,是半圆.甲、乙两人想在上取一点P,使得△PBC的面积等于矩形ABCD的面积其作法如下:(甲) 延长BO交于P点,则P即为所求;(乙) 以A为圆心,AB长为半径画弧,交于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确分析:利用三角形的面积公式进而得出需P甲H=P乙K=2AB,即可得出答案.解:要使得△PBC的面积等于矩形ABCD的面积,需P甲H=P乙K=2AB.故两人皆错误.故选:B.点评:此题主要考查了三角形面积求法以及矩形的性质,利用四边形与三角形面积关系得出是解题关键.10.(?浙江宁波,第6题4分)菱形的两条对角线长分别是6和8,则此菱形的边长是()A.10 B.8C.6D.5考点:菱形的性质;勾股定理.分析:根据菱形的性质及勾股定理即可求得菱形的边长.解答:解:∵四边形ABCD是菱形,AC=8,BD=6,∴OB=OD=3,OA=OC=4,AC⊥BD,在Rt△AOB中,由勾股定理得:AB===5,即菱形ABCD的边长AB=BC=CD=AD=5,故选D.点评:本题考查了菱形的性质和勾股定理,关键是求出OA、OB的长,注意:菱形的对角线互相平分且垂直.11.(?浙江宁波,第11题4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.分析:连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.11.(?呼和浩特,第9题3分)已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定考点:矩形的性质;全等三角形的判定与性质;线段垂直平分线的性质.分析:根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.解答:解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△ABF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选B.点评:本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.12. (?湘潭,第7题,3分)以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等考点:命题与定理分析:利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案.解答:解:A、不在同一直线上的三点确定一个圆,故错误;B、菱形的对角线垂直但不一定相等,故错误;C、正确;D、平行四边形的四条边不一定相等.故选C.点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质,难度一般.13. (?株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.点评:本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.14. (年江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(第3题图)A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。
第19讲矩形、菱形和正方形考纲要求命题趋势1.掌握平行四边形与矩形、菱形、正方形之间的关系.2.掌握矩形、菱形、正方形的概念、判定和性质.3.灵活运用特殊平行四边形的判定与性质进行有关的计算和证明.特殊的平行四边形是中考的重点内容之一,常以选择题、填空题、计算题、证明题的形式出现,也常与折叠、平移和旋转问题相结合,出现在探索性、开放性的题目中.知识梳理一、矩形的性质与判定1.定义有一个角是直角的____________是矩形.2.性质(1)矩形的四个角都是________.(2)矩形的对角线________.(3)矩形既是轴对称图形,又是中心对称图形,它有两条对称轴;它的对称中心是__________.3.判定(1)有三个角是________的四边形是矩形.(2)对角线________的平行四边形是矩形.二、菱形的性质与判定1.定义一组邻边相等的__________叫做菱形.2.性质(1)菱形的四条边都________.(2)菱形的对角线__________,并且每一条对角线平分一组对角.3.判定(1)对角线互相垂直的________是菱形.(2)四条边都相等的________是菱形.三、正方形的性质与判定1.定义一组邻边相等的________叫做正方形.2.性质(1)正方形的四条边都________,四个角都是______.(2)正方形的对角线______,且互相________;每条对角线平分一组对角.(3)正方形是轴对称图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴;正方形是中心对称图形,对角线的交点是它的对称中心.3.判定(1)一组邻边相等并且有一个角是直角的__________是正方形.(2)一组邻边相等的________是正方形.(3)对角线互相垂直的________是正方形.(4)有一个角是直角的________是正方形.(5)对角线相等的________是正方形.自主测试1.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=5,则AD 的长是( )A .52B .5 3C .5D .102.在菱形ABCD 中,AB =5 cm ,则此菱形的周长为( ) A .5 cm B .15 cm C .20 cm D .25 cm3.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .C .32D .24.下列命题中是真命题的是( )A .对角线互相垂直且相等的四边形是正方形B .有两边和一角对应相等的两个三角形全等C .两条对角线相等的平行四边形是矩形D .两边相等的平行四边形是菱形5.如图,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,∠AOF =90°.求证:BE =CF .考点一、矩形的性质与判定【例1】如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN ∥BC .设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE ,AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.分析:判定一个四边形是矩形,可以先判定四边形是平行四边形,再找一个内角是直角或说明对角线相等.解:当点O 运动到AC 的中点(或OA =OC )时, 四边形AECF 是矩形.证明:∵CE平分∠BCA,∴∠1=∠2.又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO.同理,FO=CO,∴EO=FO.又OA=OC,∴四边形AECF是平行四边形.又∵∠1=∠2,∠4=∠5,∴∠1+∠5=∠2+∠4.又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,即∠ECF=90°.∴四边形AECF是矩形.方法总结矩形的定义既可以作为性质,也可以作为判定.矩形的性质是求证线段或角相等时常用的知识点.证明一个四边形是矩形的方法:(1)先证明它是平行四边形,再证明它有一个角是直角;(2)先证明它是平行四边形,再证明它的对角线相等;(3)证明有三个内角为90°.触类旁通1 如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD 于点F,连接AE.求证:(1)BF=DF;(2)AE∥BD.考点二、菱形的性质与判定【例2】如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的面积为83,求AC的长.分析:(1)先证明四边形OCED是平行四边形,然后证明它的一组邻边相等;(2)因为△DOC是等边三角形,根据菱形的面积计算公式可以求菱形的边长,从而求出AC的长.解:(1)证明:∵DE∥OC,CE∥OD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴四边形OCED是菱形.(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°.又∵OD=OC,∴△OCD是等边三角形.过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.,在Rt△DFC中,tan 60°=DFFC∴DF=FC·tan 60°=3x.由已知菱形OCED的面积为83得OC·DF=83,即2x·3x=8 3.解得x=2.∴AC=4×2=8.方法总结菱形的定义既可作为性质,也可作为判定.证明一个四边形是菱形的一般方法:(1)四边相等;(2)首先证明是平行四边形,然后证明有一组邻边相等;(3)对角线互相垂直平分;(4)对角线垂直的平行四边形.触类旁通2 如图,在ABCD中,对角线AC,BD相交于点O,过点O作直线EF⊥BD,分别交AD,BC于点E和点F,求证:四边形BEDF是菱形.考点三、正方形的性质与判定【例3】如图①,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图②,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图③的方式拼接成一个四边形.若正方形ABCD的边长为3 cm,HA=EB=FC=GD=1 cm,则图③中阴影部分的面积为__________cm2.分析:根据题目的条件可先证△AEH,△BFE,△CGF,△DHG四个三角形全等,证得四边形EFGH的四边相等,然后由全等再证一个角是直角.解:(1)四边形EFGH是正方形.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA.∵HA=EB=FC=GD,∴AE=BF=CG=DH.∴△AEH≌△BFE≌△CGF≌△DHG.∴EF=FG=GH=HE.∴四边形EFGH是菱形.由△DHG≌△AEH,知∠DHG=∠AEH.∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°.∴∠GHE=90°.∴菱形EFGH是正方形.(2)1方法总结证明一个四边形是正方形可从以下几个方面考虑:(1)“平行四边形”+“一组邻边相等”+“一个角为直角”(定义法);(2)“矩形”+“一组邻边相等”;(3)“矩形”+“对角线互相垂直”;(4)“菱形”+“一个角为直角”;(5)“菱形”+“对角线-相等”.1.(四川成都)如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC2.(山东滨州)若菱形的周长为8 cm,高为1 cm,则菱形两邻角的度数比为()A.3:1 B.4:1 C.5:1 D.6:13.(江苏泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有() A.1个 B.2个 C.3个 D.4个4.(江苏苏州)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()A.4B.6C.8D.105.(贵州铜仁)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A,B两点,则线段AB的最小值是__________.6.(山东临沂)如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形?1.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直 B.对角线相等C.对角线互相平分 D.对角互补2.如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()A.BA=BCB.AC,BD互相平分C.AC=BDD.AB∥CD3.已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A.∠D=90° B.AB=CD C.AD=BC D.BC=CD4.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A.4 3 B.3 3C.4 2 D.85.如图,两条笔直的公路l1,l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A,B,D,已知AB=BC=CD=DA=5千米,村庄C到公路l1的距离为4千米,则村庄C到公路l2的距离是()(第5题图)A.3千米 B.4千米 C.5千米 D.6千米6.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是__________.(第6题图)7.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于E,F,那么阴影部分的面积是矩形ABCD面积的__________.(第7题图)8.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别是AB,BC边上的中点,MP+NP的最小值是__________.(第8题图)9.如图(1)所示,在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中“M是AB的中点”改为“M是AB上任意一点”,其余条件不变,如图(2)所示,则结论“MD=MN”还成立吗?若成立,给出证明;若不成立,请说明理由.参考答案导学必备知识自主测试1.B2.C3.C∵设AG=A′G=x,∴x2+22=(4-x)2,解得x=32,故选C.4.C5.证明:如题图,∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°.∴∠EAB+∠AEB=90°.∵∠EOB=∠AOF=90°,∴∠FBC+∠AEB=90°.∴∠EAB=∠FBC.∴△ABE≌△BCF.∴BE=CF.探究考点方法触类旁通1.证明:(1)在矩形ABCD中,AD∥BC,AD=BC,∴∠1=∠2.∵∠2=∠3,∴∠1=∠3,∴BF=DF.(2)∵AD=BC=BE,BF=DF,∴AF=EF,∴∠AEB=∠EAF.∵∠AFE=∠BFD,∠1=∠3,∴∠AEB=∠3,∴AE∥BD.触类旁通2.证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∵EF⊥BD,∴四边形BEDF是菱形.品鉴经典考题1.B因为菱形的对边平行且相等,所以A正确;对角线互相平分且垂直,但不一定相等,所以C,D正确,B错误.2.C根据已知可得到菱形的边长为2 cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选C.3.B①一组对边平行且一组对角相等的四边形是平行四边形是真命题;②对角线互相垂直且相等的四边形是正方形是假命题;③顺次连接矩形四边中点得到的四边形是菱形是真命题;④正五边形既是轴对称图形又是中心对称图形是假命题.故选B.4.C∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形.∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为4OC=4×2=8.故选C. 5.2 如图:∵四边形CDEF 是正方形,∴∠OCD =∠ODB =45°,∠COD =90°,OC =OD .∵AO ⊥OB ,∴∠AOB =90°,∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°,∴∠COA =∠DOB .∵在△COA 和△DOB 中,有⎩⎪⎨⎪⎧∠OCA =∠ODB ,OC =OD ,∠AOC =∠DOB ,∴△COA ≌△DOB ,∴OA =OB .∵∠AOB =90°,∴△AOB 是等腰直角三角形, 由勾股定理得:AB =OA 2+OB 2=2OA ,要使AB 最小,只需OA 取最小值即可.根据垂线段最短,OA ⊥CD 时,O A 最小.此时OA =12CF =1,即AB = 2.6.解:(1)证明:∵AF =DC ,∴AF +FC =DC +FC ,即AC =DF . 又∵∠A =∠D ,AB =DE ,∴△ABC ≌△DEF . ∴BC =EF ,∠ACB =∠DFE .∴BC ∥EF .∴四边形BCEF 是平行四边形.(2)若四边形BCEF 是菱形,连接BE ,交CF 于点G ,∴BE ⊥CF ,FG =CG .∵∠ABC =90°,AB =4,BC =3, ∴AC =AB 2+BC 2 =42+32=5.∵∠BGC =∠ABC =90°,∠ACB =∠BCG , ∴△ABC ∽△BGC .∴BC AC =CG BC ,即35=CG 3.∴CG =95.∴FC =2CG =185. ∴AF =AC -FC =5-185=75.因此,当AF =75时,四边形BCEF 是菱形.研习预测试题1.A 2.B 3.D4.A ∵点E 是CD 的中点,∴DE =CE =12CD =3.∵四边形ABCD 是矩形,∴AB =CD =6. 由折叠性质可知,AE =AB =6,BF =EF , 在Rt △ADE 中,AD =AE 2-DE 2=33,∴BC =3 3.设CF =x ,BF =EF =33-x , 在Rt △CEF 中,(33-x )2=x 2+32, ∴x = 3.∴BF =2 3.在Rt △ABF 中,AF =4 3.5.B 6.22.5° 7.148.1 在DC 上找N 点关于AC 的对称点N ′,连接MN ′,则MN ′的长即为MP +NP 的最小值,此时MN ′=AD =1.9.分析:(1)证MD =MN ,可证它们所在的三角形全等,易知MN 在钝角△MBN 中,而MD 在直角△AMD 中,显然需添加辅助线构造全等三角形,由△MBN 的特征想到可在AD 上取AD 的中点F ,构造△MDF ≌△NMB ;(2)可参照第(1)题的方法.(1)证明:取AD 的中点F ,连接MF . ∵M 是AB 的中点,F 是AD 的中点,∴MB =AM =12AB ,DF =AF =12AD .∵AB =AD ,∴AF =AM =DF =MB ,∴∠1=45°, ∴∠DFM =135°.∵BN 平分∠CBE ,∴∠CBN =45°. ∴∠MBN =135°.∴∠MBN =∠DFM . ∵∠DMN =90°,∴∠NMB +∠DMA =90°. ∵∠A =90°,∴∠ADM +∠DMA =90°. ∴∠NMB =∠ADM .∴△DFM ≌△MBN .∴MD =MN . (2)解:结论MD =MN 仍成立.证明:在AD 上取点F ,使AF =AM ,连接MF .由(1)中证法可得:DF =BM ,∠DFM =∠MBN ,∠FDM =∠BMN ,∴△DFM≌△MBN,∴MD=MN.11 / 11。
2010---2011全国各地中考模拟数学试题重组汇编实验与操作一、选择题1.(2010年河南省南阳市中考模拟数学试题)将如图①的矩形ABCD 纸片沿EF 折叠得到图②,折叠后DE 与BF 相交于点P ,如果∠BPE=130°,则∠PEF 的度数为( ) A .60° B .65° C .70° D .75°答:B2.(2010年河南中考模拟题4)分别剪一些边长相同的①正三角形,②正方形,③正五边形,如果用其中一种正多边形镶嵌,可以镶嵌成一个平面图案的有 ( )A.①②B.②③C.①③D.①②③都可以答案:A3.(2010年西湖区月考)有一张矩形纸片ABCD ,其中AD=4cm ,上面有一个以AD 为直径的半园,正好与对边BC 相切,如图(甲).将它沿DE 折叠,是A 点落在BC 上,如图(乙).这时,半圆还露在外面的部分(阴影部分)的面积是( )A.(π-32)cm 2B.(21π+3)cm 2C.(34π-3)cm 2D.(32π+3)cm 2答案:C4.(2010 河南模拟)某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是( )A 正三角形B 正五边形C 等腰梯形D 菱形PFEDCBA FED CB A① ②(3)(2)(1)答案:D5.(2010年广西桂林适应训练)、在1,2,3,4,…,999,1000,这1000个自然数中,数字“0”出现的次数一共是( )次.A.182B.189C.192D.194 答案:C6.(2010年 中考模拟)(大连市)将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )答案:A二、填空题1.(2010年吉林中考模拟题)将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去.则图⑨中共有 个正方形. 答案:252.(2010年河南中考模拟题4)将图(1)所示的正六边形进行分割得到图(2),再将图(2)里的三个小正六边形的其中之一按同样的方式进行分割得到图(3),接着再将图(3)中最小的三个正六边形的其中之一按同样的方DC BA②①式进行分割…,则第n 图形中共有个六边形.(提示:可设y=an 2+bn+c,把 代入求a,b,c.再求y=?) 答案:3n-23.(2010天水模拟)用一版权法宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边殂ABCDE ,其中∠BAC= 度。
(2012年1月最新最细)2011全国中考真题解析120考点汇编菱形的性质与判定一、选择题1.(2011江苏无锡,5,3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补考点:矩形的性质;菱形的性质。
专题:推理填空题。
分析:根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.解答:解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项错误;B、菱形和矩形的对角线都相等;故本选项正确;C、菱形和矩形的对角线都互相平分;故本选项正确;D、菱形对角相等,但不互补;故本选项正确;故选A.点评:此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.2.(2011江苏淮安,5,3分)在菱形ABCD中,AB=5cm,则此菱形的周长为()A. 5cmB. 15cmC. 20cmD. 25cm考点:菱形的性质。
专题:计算题。
分析:根据菱形的四条边长都相等的性质、菱形的周长=边长×4解答解答:解:∵在菱形ABCD中,AB=BC=CD=DA,AB=5cm,∴菱形的周长=AB×4=20cm;故选C.点评:本题主要考查了菱形的基本性质.菱形的四条边都相等,菱形的对角线互相垂直平分.3.(2011云南保山,5,3分)如图,在菱形ABCD中,∠BAD=60°,BD=4,则菱形ABCD 的周长是___________.考点:菱形的性质。
分析:由四边形ABCD是菱形,即可得AB=BC=CD=AD,又由∠BAD=60°,BD=4,即可证得△ABD是等边三角形,即可求得菱形的边长,继而求得菱形ABCD的周长.解答:解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠BAD=60°,∴△ABD是等边三角形,∴AB=AD=BD=4,∴菱形ABCD的周长是:4×4=16.故答案为:16.点评:此题考查了菱形的性质与等边三角形的判定与性质.注意菱形的四条边都相等,注意数形结合思想的应用.4.(2011•西宁)用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A、一组临边相等的四边形是菱形B、四边相等的四边形是菱形C、对角线互相垂直的平行四边形是菱形D、每条对角线平分一组对角的平行四边形是菱形考点:菱形的判定;作图—复杂作图。
2011年全国各地中考数学试卷试题分类汇编
第19章 图形的展开与叠折
1. (2011山东德州16,4分)长为1,宽为a 的矩形纸片(12
1<<a ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为
正方形,则操作终止.当n =3时,
a 的值为_____________.
【答案】
35或34
2. (2011浙江绍兴,15,5分) 取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,那剪下的①这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为
.
2
3. (2011甘肃兰州,20,4分)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
已知第一个矩形的面积为1,则第n 个矩形的面积为 。
第一次操作
第二次操作
【答案】
1
14n
4. (2011四川绵阳17,4)如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为
_____cm.
【答案】25
……。
选择题(每小题x 分,共y 分)(2011•安徽省)10.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是…………………………………………………………【 C 】〔2011•湖北省武汉市〕 12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论: ①△AED ≌△DFB ; ②S四边形B C D G =43CG 2; ③若AF=2DF ,则BG=6GF.其中正确的结论D 只有①②. B.只有①③.C.只有②③. D.①②③.〔2011•山东省烟台市〕7、如图,小区的一角有一块形状为等梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是CA 、等腰梯形B 、矩形C 、菱形D 、正方形(2011•重庆市潼南县)10. 如图,在平面直角坐标系中,四边形OABC 是菱形, 点C 的坐标为(4,0),∠AOC = 60°,垂直于x 轴的 直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长 度的速度向右平移,设直线l 与菱形OABC 的两边分 别交于点M,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则 能大致反映S 与t 的函数关系的图象是C 第10题图〔2011•大理〕6.用两块边长为a 的等边三角形纸片拼成的四边形是【 B 】 A .等腰梯形 B .菱形 C .矩形 D . 正方形〔2011•德州市〕8.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是C(A )2n (B )4n (C )12n + (D )22n +二、填空题(每小题x 分,共y分)(2011●河北省)14.如图6,已知菱形ABCD ,其顶点A 、B 在数轴上对应的数分别为-4和1,则BC =___5__.1. 〔2011•凉山州〕已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,连接BE 与对角线AC 相交于点M ,则MC AM 的值是 85或811。
44矩形、菱形、正方形一、选择题1.(浙江舟山、嘉兴3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为(A )48cm(B )36cm (C )24cm (D )18cm 【答案】A 。
【考点】菱形的性质,平行四边形的性质。
【分析】根据①②③④四个平行四边形面积的和为14cm2,四边形ABCD 面积是11cm2,从图可求出⑤的面积: 2ABCD 1S S S 2cm ⑤四边形①+②+③+④=-=11-7=4。
从而可求出菱形的面积:2EFGH S S 14418cm ==+=①+②+③+④+⑤菱形。
又∵∠EFG=30°,∴菱形的边长为6cm 。
从而根据菱形四边都相等的性质得:①②③④四个平行四边形周长的总和=2(AE+AH+HD+DG+GC+CF+FB+BE ) =2(EF+FG+GH+HE )=48cm 。
故选A 。
2.(浙江温州4分)如图,在矩形ABCD 中,对角线AC ,BD 交与点O .已知∠AOB=60°,AC=16,则图中长度为8的线段有A 、2条B 、4条C 、5条D 、6条 【答案】D 。
【考点】矩形的性质。
等边三角形的判定和性质。
【分析】因为矩形的对角线相等且互相平分,AC=16,所以AO=BO=CO=DO=8;又由∠AOB=60°,所以三角形AOB 是等边三角形,所以AB=AO=8;又根据矩形的对边相等得,CD=AB=AO=8.从而可求出线段为8的线段有6条。
故选D 。
3.(辽宁大连3分)如图,矩形ABCD 中,AB =4,BC =5,AF 平分∠DAE,EF⊥AE,则CF 等于A .23B .1C .32D .2【答案】C 。
4.(黑龙江哈尔滨3分)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB=600,AB=5,则AD 的长是.(A)53 (B )52 (C )5 (D)10【答案】A 。
第4题图矩形、菱形、正方形一 选择题 A 组1、(2011浙江杭州模拟14)下列命题中的真命题是( ).A. 对角线互相垂直的四边形是菱形B. 中心对称图形都是轴对称图形C. 两条对角线相等的梯形是等腰梯形D. 等腰梯形是中心对称图形 答案:C2、(2011浙江杭州模拟16)下列图形中,周长不是32的图形是( )答案:B3.(2011浙江省杭州市8模)如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H ,且HE ·HB =4-BD 、AF 交于M ,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AF 、GD 所夹的锐角为45°;③;④ 若BE 平分∠DBC ,则正方形ABCD 的面积为4。
其中正确的结论个数有( )A. 1个B. 2个C. 3个D. 4个 答案:D 4、(2011年黄冈中考调研六)矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( ) M H G F ED C B A 第3题图 A .B .C丙丙甲乙乙甲答案A5、(2011年浙江杭州三模)如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连结PG,PC。
若∠ABC=∠BEF=60°,则=PCPG()A.2B. 3C.22D.33答案:B6、(2011年浙江杭州八模)如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HE·HB=4-BD、AF交于M,当E在线段CD(不与C、D重合)上运动时,下列四个结论:① BE⊥GD;② AF、GD所夹的锐角为45°;③;④若BE平分∠DBC,则正方形ABCD的面积为4。
其中正确的结论个数有()A. 1个B. 2个C. 3个D. 4个答案:DB组1. (2011浙江慈吉模拟)如图, 将一个正方体分割成甲、乙、丙三个长方体, 且三个长方体的长和宽均与正方体的棱长相等; 若已知甲、乙、丙三个长方体的表面积之比为2∶3∶4, 则它们的体积之比等于()A. 2∶3∶4B. 2∶5∶7C. 1∶10∶23D. 1∶6∶11答案:D第5题图2、(2011北京四中一模)下列命题中,真命题是( )(A)有两边相等的平行四边形是菱形 (B)有一个角是直角的四边形是矩形(C)四个角相等的菱形是正方形 (D)两条对角线互相垂直且相等的四边形是正方形3(2011深圳市中考模拟五)下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形 答案:D4. (2011深圳市全真中考模拟一)如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =10,DF =4,则菱形ABCD 的边长为(C)6.(D)9.(第4题) 答案:D5.(安徽芜湖2011模拟)如图,边长为1的正方形ABCD 绕点A 逆时针旋转45度后得到正方形'''D C AB ,边''C B 与DC 交于点O ,则四边形OD AB '的周长..是 ( ) A .22 B .3 C .2 D .21+ 答案: A6.(浙江杭州金山学校2011模拟)(原创)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ▲ )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 答案:D7.(浙江杭州金山学校2011模拟)(引黄冈市 2010年秋期末考试九年级数学模拟试题)正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为( )A、10 B、12 C、14 D、16 答案:D8.(河南新乡2011模拟)如图,菱形ABCD 的周长为40cm ,DE AB ⊥,垂足为E ,3sin 5A =,则下列结论正确的有( ) ①6cm DE =②2cm BE = ③菱形面积为260cm④BD =A.1个B.2个C.3个D.4个答案:C9.(浙江杭州进化2011一模)下列命题中的真命题是( ).A. 对角线互相垂直的四边形是菱形B. 中心对称图形都是轴对称图形C. 两条对角线相等的梯形是等腰梯形D. 等腰梯形是中心对称图形 答案:C10、(2011年黄冈市浠水县)如图所示,将边长为8cm 的正方形纸片ABCDBC 中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是… ( )A. 2B. 3C. 4D. 5答案:B11、(2011年北京四中33模)如图,四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是( )A .AB=CD B. AD=BC C. AB=BC D. AC=BD答案C12.(2011年杭州市上城区一模)如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =6,DF =4,则菱形ABCD 的边长为( )C.5D.7答案:D13.(2011年杭州市上城区一模)已知下列命题:①若00a b >>,,则0a b +>;②若22a b ≠,则a b ≠;③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是( ) A. ① ③④B. ①②④C. ③④⑤D. ②③⑤答案:C14. (2011年杭州市模拟)如图,矩形的长与宽分别为a 和b ,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a 和b 要满足的数量关系是A.121+=πb a B.122+=πb a C.221+=πb a D.12+=πb a 答案:D15. (2011年海宁市盐官片一模)如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC上有一点P ,使PD PE +的和最小,则这个最小值为( ▲ ) A. B. C .3 DD ABCDEFO 第12题)第14题AE PBC第15题图)……答案:A二填空题1、(2011浙江杭州模拟16)同学们在拍照留念的时候最喜欢做一个“V”字型的动作。
我们将宽为cm2的长方形如图进行翻折,便可得到一个漂亮的“V”。
如果“V”所成的锐角为600,那么折痕AB的长是。
答案:3342.(2011.河北廊坊安次区一模)如图6,菱形ABCD的对角线相交于点O,请你添加一个条件:,使得该菱形为正方形.答案: 定义或判定3.(2011.河北廊坊安次区一模)如图8,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为.答案:4. (2011湖北省天门市一模)如图4(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图4(2));以此下去···,则正方形A4B4C4D4的面积为__________。
第3题图上A1B1C1D1A BCDD2B2C2D1C1B1A1A BCD(第6题图) AFDBE 第9题图5.(浙江杭州金山学校2011模拟)(原创)如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为 ▲ . 答案:答案: 6256.(2011浙江杭州模拟7) 如图,在矩形ABCD 中,AD =6,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于________.7.(2011年宁夏银川)如图,已知正方形ABCD的边长为3,E为CD 边上一点, 1DE =.以点A 为中心,把△ADE 顺时针旋转90︒,得△ABE ',连接EE ',则EE '的长等于 . 答案:8.(2011年青岛二中)如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .答案:17 9(2011年浙江仙居)如图在ABC △中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ∥,DF BA ∥.下列四种说法:①四边形AEDF 是平行四边形;(第14题图)②如果90BAC ∠=,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有 .(只填写序号) 答案:①②③④10、(2011山西阳泉盂县月考)如图,在矩形ABCD 中,E 、F 分别是边AD 、BC 的中点,G 、H 在DC 边上,且GH=21DC ,AB=10,BC=12,则阴影 部分的面积为 35 。
11.(2011年江苏盐都中考模拟)如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于 °.答案50 12、(2011年北京四中中考模拟19)在正方形的截面中,最多可以截出 边形 答案4 13、(2011年浙江杭州三模) 如图,边长为2的正方形ABCD 中,点E 是对角线BD 上的一点,且BE=BC ,点P 在EC 上,PM⊥BD 于M ,PN⊥BC 于N ,则PM+PN= 答案:214、(2011年浙江杭州七模)如图,在矩形ABCD 中,AD =6,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于 答案:7 B 组1.(2011安徽中考模拟)如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC上的A (第5题)一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是_____________. 答案:52. (2011湖北武汉调考模拟二)如图,菱形ABCD 中,AB=2,∠C=60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心D 所经过的路径总长为(结果保留π)___.答案:(83,+4)π3、(北京四中2011中考模拟14)要使一个平行四边形成为正方形,则需添加的条件为____________(填上一个正确的结论即可). 答案:对角线垂直且相等4. (2011年杭州市模拟)菱形OABC 在平面直角坐标系中的位置如图所示,45AOC OC ∠==°,B 的坐标为. 答案:2,2)5.(2011年海宁市盐官片一模)如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .答案:166、(赵州二中九年七班模拟)若菱形ABCD 的对角线AC =24,BD =10,则菱形的周长为 。