六年级奥数竞赛试题及答案
- 格式:docx
- 大小:38.62 KB
- 文档页数:3
六年级能学的奥数题及答案奥数,即奥林匹克数学竞赛,是一种旨在培养学生数学思维和解决问题能力的竞赛形式。
六年级学生学习奥数,不仅可以锻炼他们的数学能力,还能提高逻辑推理和创新思维。
以下是一些适合六年级学生的奥数题目及答案:题目1:小明有3个红球和2个蓝球,他随机从袋子里拿出一个球,然后放回袋子里再拿一次。
请问小明两次都拿到红球的概率是多少?答案:第一次拿到红球的概率是3/5,因为总共有5个球,其中3个是红球。
由于每次拿球后都放回,第二次拿到红球的概率也是3/5。
两次都拿到红球的概率是两个独立事件同时发生的概率,所以是(3/5) * (3/5) = 9/25。
题目2:一个数字钟的时针和分针在12点整重合。
请问在接下来的12小时内,时针和分针会再次重合多少次?答案:在12小时内,时针和分针会重合11次。
因为时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟)。
每小时分针都会超过时针,除了12点整之外,它们会在每个小时的某个时刻再次重合。
题目3:一个长方形的长是宽的两倍,如果长和宽都增加10厘米,新的长方形的面积比原来的长方形面积大300平方厘米,求原来的长方形的长和宽。
答案:设原来的长方形宽为x厘米,那么长就是2x厘米。
原来的面积是x * 2x = 2x^2平方厘米。
增加后的长为2x + 10厘米,宽为x +10厘米,面积为(2x + 10) * (x + 10)平方厘米。
根据题意,我们有方程:(2x + 10) * (x + 10) - 2x^2 = 300。
解这个方程,我们可以得到x = 5厘米,所以原来的长方形的长是10厘米,宽是5厘米。
题目4:一个数字序列如下:2, 4, 7, 11, ...。
这个序列的第20项是多少?答案:这个序列是一个等差数列,第一项a1=2,公差d=2。
根据等差数列的通项公式an = a1 + (n - 1) * d,我们可以计算出第20项的值:a20 = 2 + (20 - 1) * 2 = 2 + 19 * 2 = 2 + 38 = 40。
六年级奥数竞赛数学竞赛试卷及答案一、拓展提优试题1.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.2.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.3.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.4.如图所示的“鱼”形图案中共有个三角形.5.若质数a,b满足5a+b=2027,则a+b=.6.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.7.若一个十位数是99的倍数,则a+b=.8.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.9.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).10.被11除余7,被7除余5,并且不大于200的所有自然数的和是.11.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)12.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.13.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.14.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.15.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.【参考答案】一、拓展提优试题1.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.2.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.3.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.4.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.5.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.6.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.7.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.8.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.9.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.10.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.11.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.12.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.13.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.14.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.15.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.。
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。
A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。
第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。
此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。
题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。
两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。
完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。
题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。
分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。
题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。
六年级奥数竞赛试题姓名 成绩一.计算: ⑴. =⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 ⑵.13471711613122374⨯+⨯+⨯=⑶. 222345567566345567+⨯⨯+= ⑷. 4513612812111511016131+++++++=二.填空:⑴.甲、乙两数是自然数,如果甲数的65恰好是乙数的41.那么甲、乙两数之和的最小值是 .⑵.某班学生参加一次考试,成绩分优、良、及格、不及格四等.已知该班有21的学生得优,有31的学生得良,有71的学生得及格.如果该班学生人数不超过60人,则该班不及格的学生有人.⑶.一条公路,甲队独修24天完成,乙队独修30天完成.甲乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了 天.⑷. 用0,1,2,3,4,5,6,7,8,9十个数字,能够组成 个没有重复数字的三位数. ⑸.“IMO ”是国际数学奥林匹克的缩写,把这三个字母写成三种不同颜色,现有五种不同颜色的笔,按上述要求能写出 种不同颜色搭配的“IMO ”.⑹不定方程172112=+y x 的整数解是 .⑺一个正方体的表面积是384平方分米,体积是512立方分米,这个 正方体棱长的总和是 .⑻. 把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立方体的表面积是 平方厘米.⑼.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距 千米.⑽.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有 人.⑾.从学校到少年宫有4条东西的马路和3条南北的马路相通(如图),李楠从学校出发,步行到少年宫(只许向东或向南行进),最多有 种走法.⑿.算出圆内正方形的面积为 .⒀.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周 长是 厘米.)14.3(=π⒁.一付扑克牌共有54张(包括大王、小王),至少从中取 张牌,才能保证其中必有3 种花色.⒂.规定:6※2=6+66=72,2※3=2+22+222=246,1※4=1+11+111+1111=1234.7※5= .⒃.甲、乙、丙、丁四位学生在广场上踢足球,打碎了玻璃窗,有人问他们时,他们这样说: 甲:“玻璃是丙也可能是丁打碎的”; 乙:“是丁打碎的”;丙:“我没有打坏玻璃”; 丁:“我才不干这种事”;深深了解学生的老师说:“他们中有三位决不会说谎话”。
六年级奥数试题及解析〔精选12篇〕假设干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?分析^p :设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的'盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.所以将42分拆成假设干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.解:设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.将42分拆成假设干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.答:一共有7只、4只或3只盒子.点评:解答此题的关键是将问题归结为把42分拆成假设干个连续整数的和.篇8:六年级奥数模拟试题六年级奥数模拟试题一、填空题。
六年级小升初奥数竞赛题100道及答案(完整版)题目1:甲、乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行60 千米,乙车每小时行80 千米,经过 3 小时两车相遇。
A、B 两地相距多少千米?答案:(60 + 80)×3= 140×3= 420(千米)答:A、B 两地相距420 千米。
题目2:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2,这个长方体的体积是多少立方厘米?答案:80÷4 = 20(厘米)5 + 3 + 2 = 10长:20×5/10 = 10(厘米)宽:20×3/10 = 6(厘米)高:20×2/10 = 4(厘米)体积:10×6×4 = 240(立方厘米)答:这个长方体的体积是240 立方厘米。
题目3:在比例尺是1 : 5000000 的地图上,量得甲、乙两地的距离是8 厘米。
一辆汽车从甲地开往乙地,每小时行80 千米,几小时能到达乙地?答案:实际距离:8×5000000 = 40000000(厘米)= 400(千米)时间:400÷80 = 5(小时)答:5 小时能到达乙地。
题目4:一项工程,甲单独做10 天完成,乙单独做15 天完成。
甲乙合作,几天可以完成这项工程?答案:1÷(1/10 + 1/15)= 1÷(3/30 + 2/30)= 1÷5/30= 6(天)答:甲乙合作,6 天可以完成这项工程。
题目5:小明看一本120 页的故事书,第一天看了全书的1/4,第二天看了全书的1/3。
还剩下多少页没有看?答案:第一天看的页数:120×1/4 = 30(页)第二天看的页数:120×1/3 = 40(页)剩下的页数:120 - 30 - 40 = 50(页)答:还剩下50 页没有看。
题目6:一个圆形花坛的周长是31.4 米,这个花坛的半径是多少米?答案:31.4÷3.14÷2 = 5(米)答:这个花坛的半径是5 米。
小学六年级数学奥林匹克竞赛题(含答案)某市举行小学数学竞赛.结果不低于80分的人数比80分以下的人数的4倍还多2人.及格的人数比不低于80分的人数多22人.恰是不及格人数的6倍.求参赛的总人数?解:设不低于80分的为A人.则80分以下的人数是(A-2)/4.及格的就是A+22.不及格的就是A+(A-2)/4-(A+22)=(A-90)/4.而6*(A-90)/4=A+22.则A=314.80分以下的人数是(A-2)/4.也即是78.参赛的总人数314+78=392电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思.为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1.则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1.则原来应收入1x元.而现在增加了原来的五分之一.就应该再*(1+5/1).减缩后得到(1+1/5x)}如此计算后得到总收入.使方程左右相等甲乙在银行存款共9600元.如果两人分别取出自己存款的40%.再从甲存款中提120元给乙。
这时两人钱相等.求乙的存款答案取40%后.存款有9600×(1-40%)=5760(元)这时.乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)由奶糖和巧克力糖混合成一堆糖.如果增加10颗奶糖后.巧克力糖占总数的60%。
再增加30颗巧克力糖后.巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖.巧克力占总数的60%.说明此时奶糖占40%.巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力.巧克力占75%.奶糖占25%.巧克力是奶糖的3倍增加了3-1.5=1.5倍.说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗小明和小亮各有一些玻璃球.小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6.我就比你多2个了。
奥数比赛六年级试题及答案1. 计算题问题:计算 \((2^3 + 3^2) \times 5\) 的值。
答案:首先计算括号内的值,\(2^3 = 8\),\(3^2 = 9\),然后将它们相加得到 \(8 + 9 = 17\)。
最后,将结果乘以5,即 \(17\times 5 = 85\)。
2. 应用题问题:一个班级有48名学生,其中男生人数是女生人数的两倍。
问这个班级有多少男生和女生?答案:设女生人数为 \(x\),则男生人数为 \(2x\)。
根据题意,\(x + 2x = 48\),解得 \(3x = 48\),所以 \(x = 16\)。
因此,女生有16人,男生有 \(2 \times 16 = 32\) 人。
3. 几何题问题:一个直角三角形,两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,斜边的长度 \(c\) 可以通过公式 \(c =\sqrt{a^2 + b^2}\) 计算,其中 \(a\) 和 \(b\) 分别是两条直角边的长度。
将3厘米和4厘米代入公式,得到 \(c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5\) 厘米。
4. 逻辑推理题问题:如果一个数的个位数是6,那么这个数的两倍的个位数是什么?答案:设这个数为 \(10a + 6\),其中 \(a\) 是十位数。
那么这个数的两倍就是 \(2(10a + 6) = 20a + 12\)。
个位数是2,因为\(20a\) 是10的倍数,不影响个位数。
5. 组合计数题问题:有5个不同的球和3个不同的盒子,将球放入盒子中,每个盒子至少有一个球,有多少种不同的放法?答案:首先,从5个球中选择2个球放入一个盒子,有 \(C_5^2 = 10\) 种选择方式。
剩下的3个球分别放入另外两个盒子,有 \(3! = 6\) 种排列方式。
但是,由于盒子是不同的,所以需要考虑盒子的排列,因此总的放法是 \(10 \times 6 = 60\) 种。
小学六年级奥数计算题竞赛试题(含解析)(时间:30分钟 满分:100分)姓名 得分一、口算训练(60题,每题0.5分,共计30分)=÷54855 =-85531 28.6+1.98==+213911 =⨯43431 9036÷18=521411+ =-8125.4510.2×45==+52454 =⨯75611 =-3298 =-437510041253+= 66.4+878.5==÷231321 =+41525.341.25×4==⨯34454534 =⨯9731 1.01×99==⨯3294 =+4.3532 =÷4334 =-125.0811 =+4325.033×21==-2145 0.75÷0.25==+12967 =+5451 128÷3.2==⨯1112432 =÷211411 1.5×4.2==-53213 =÷1213323 =-3275.0 =+5165 11.12-9.88==⨯152145 =+6913452 =÷211431 =-53213 5.12÷40==⨯72431 =⨯3287= 12.37-3.25==+8173 6872-676==+9272 3.81×11==⨯54197 25×12==-75721 =⨯6134857.7-12.91==-8321 =+5.22211 =⨯3294二、计算题(12题,每题5分,共计60分)要求:能用简便算法的就用简便算法,递等式呈现过程。
1.列竖式计算2. 239898- 79.58×9.57 =3.列竖式计算4. 9997397953973753533⨯+⨯++⨯+⨯+⨯ 14.22836÷156.7 =5. ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-+⨯65481125.4657321 6. 37336637513733663751⨯÷⨯7.182271562512765211+--+- 8.1191731781131110173⨯+⨯-⨯9. 618617617617÷ 10. ⎪⎭⎫ ⎝⎛-++⨯10016881311127371239197 11.2712694224159853⨯⨯+⨯⨯⨯⨯+⨯⨯ 12. 20×20-19×19+18×18-17×17+…+2×2-1×1三、解决问题。
小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。
2. 一个圆的半径扩大3 倍,它的面积扩大()倍。
A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。
3. 甲数的2/3 等于乙数的3/4,甲数()乙数。
A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。
4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。
6. 要反映某地气温变化情况,应绘制()统计图。
A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。
7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。
小学六年级奥数竞赛100道测试题!附答案解析1、有28位小朋友排成一行.从左边开始数第10位是学豆,从右边开始数他是第几位?2、纽约时间是香港时间减13小时.你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通电话,那么在香港你应几月几日几时给他打电话?3、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?4、请找出下面哪个图形与其他图形不一样.5、四个房间,每个房间里不少于2人,任何三个房间里的人数不少8人,这四个房间至少有多少人?6、在1998的约数(或因数)中有两位数,其中最大的是哪个数?7、英文测验,小明前三次平均分是88分,要想平均分达到90分,他第四次最少要得几分?8、相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?9、将0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同.□+□□=□□□问算式中的三位数最大是什么数?10、有一个号码是六位数,前四位是2857,后两位记不清,即2857□□但是我记得,它能被11和13整除,请你算出后两位数.11、观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?12、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.13、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.14、幼儿园的老师把一些画片分给A, B, C三个班,每人都能分到6张.如果只分给B班,每人能得15张,如果只分给C班,每人能得14张,问只分给A班,每人能得几张?15、两人做一种游戏:轮流报数,报出的数只能是1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?16、四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第五次交换位子后,小兔坐在第几号位子上?17、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
世少赛小学六年级奥数试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的质数?A. 1B. 2C. 3D. 4答案:B2. 一个数的因数的个数是无限的,这个数是:A. 0B. 1C. 2D. 3答案:A3. 一个长方体的长、宽、高分别是6cm、4cm、3cm,那么它的体积是:A. 24cm³B. 48cm³C. 72cm³D. 96cm³答案:C4. 一个数的最小倍数是它本身,这个数是:A. 0B. 1C. 2D. 3答案:B5. 一个数的约数包括1和它本身,这个数是:A. 0B. 1C. 2D. 3答案:B6. 一个数的因数和约数是同一个概念,这个说法:A. 正确B. 错误答案:B7. 一个数的因数个数是奇数,这个数是:A. 质数B. 合数C. 0D. 1答案:A8. 一个数的约数个数是偶数,这个数是:A. 质数B. 合数C. 0D. 1答案:B9. 一个数的最小公倍数是它本身,这个数是:A. 质数B. 合数C. 0D. 1答案:D10. 一个数的最小公约数是它本身,这个数是:A. 质数B. 合数C. 0D. 1答案:D二、填空题(每题4分,共40分)11. 一个数的因数和约数是同一个概念,这个说法是____。
答案:错误12. 一个数的最小倍数是它本身,这个数是____。
答案:013. 一个数的约数包括1和它本身,这个数是____。
答案:114. 一个数的因数个数是奇数,这个数是____。
答案:质数15. 一个数的约数个数是偶数,这个数是____。
答案:合数16. 一个数的最小公倍数是它本身,这个数是____。
答案:117. 一个数的最小公约数是它本身,这个数是____。
答案:118. 一个长方体的长、宽、高分别是6cm、4cm、3cm,那么它的体积是____cm³。
答案:7219. 一个数的因数的个数是无限的,这个数是____。
六年级奥数试题及答案1. 已知一个三位数的各位数字之和为18,且这个三位数能被3整除。
求这个三位数是多少?2. 有一个数列:1, 3, 6, 10, 15, ...,请写出这个数列的第10项和第20项。
3. 甲、乙、丙三个同学在玩一个猜数字游戏。
甲说:“我猜的数字比乙大。
”乙说:“我猜的数字比丙大。
”丙说:“我猜的数字比甲大。
”请问这三个同学猜的数字谁最大?4. 一个长方体的长、宽、高分别为4cm、3cm、2cm。
现将一个体积为1立方厘米的小正方体放入长方体中,使得小正方体与长方体的六个面都相接触。
问:小正方体有几个面与长方体接触?5. 某校举行一次数学竞赛,共有15道题目。
满分100分,每道题目分值相同。
已知小华答对了12题,小刚答对了10题。
请问小华和小刚分别得了多少分?二、答案及解析1. 解:设这个三位数为abc,其中a、b、c分别为百位、十位和个位数字。
根据题意,有以下两个条件:① a + b + c = 18② 100a + 10b + c 能被3整除由条件②可知,a + b + c 必须能被3整除。
结合条件①,我们可以得出以下结论:a +b +c = 18,能被3整除,所以a + b + c = 3k(k为正整数)又因为a、b、c为0-9之间的数字,所以a + b + c ≤ 27,即k ≤ 9。
因此,我们可以得出以下可能的三位数:108, 117, 126, 135, 144, 153, 162, 171, 180。
但是,我们需要找到一个三位数,使得a、b、c 三个数字的和为18。
经过筛选,我们可以得出这个三位数为:153。
2. 解:观察数列可以发现,每一项的值等于前一项的值加上一个递增的整数。
具体来说,第n项的值等于n*(n+1)/2。
因此,第10项为10*(10+1)/2 = 55,第20项为20*(20+1)/2 = 210。
3. 解:根据甲、乙、丙三个同学的说法,我们可以得出以下结论:甲 > 乙,乙 > 丙,丙 > 甲这三个条件构成了一个闭环,因此这三个同学猜的数字不可能有大小关系。
世少赛小学六年级奥数试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 32. 一个长方体的长、宽、高分别是4cm、3cm、2cm,那么它的体积是多少立方厘米?A. 24B. 26C. 28D. 303. 一个数的3倍加上5等于22,这个数是多少?A. 5B. 6C. 7D. 84. 一个数的4倍减去8等于16,这个数是多少?A. 8B. 9C. 10D. 115. 一个数加上它的一半等于20,这个数是多少?A. 10B. 12C. 14D. 166. 一个数的2倍加上3等于15,这个数是多少?A. 6B. 5C. 4D. 37. 一个数的3倍减去4等于10,这个数是多少?A. 6B. 5C. 4D. 38. 一个数的5倍加上10等于30,这个数是多少?A. 4B. 5C. 6D. 79. 一个数的4倍减去6等于18,这个数是多少?A. 6B. 7C. 8D. 910. 一个数的3倍加上7等于19,这个数是多少?A. 4B. 5C. 6D. 7二、填空题(每题4分,共20分)1. 一个数的平方是36,这个数是______。
2. 如果一个数与它的相反数相加等于0,那么这个数是______。
3. 一个数的5倍是25,这个数是______。
4. 一个数的6倍是48,这个数是______。
5. 一个数的7倍是63,这个数是______。
三、解答题(每题5分,共50分)1. 一个长方体的长是5cm,宽是4cm,高是3cm,求它的体积。
2. 一个数的3倍加上4等于21,求这个数。
3. 一个数的4倍减去5等于15,求这个数。
4. 一个数的5倍加上6等于25,求这个数。
5. 一个数的6倍减去7等于21,求这个数。
四、附加题(每题10分,共20分)1. 一个长方体的长、宽、高分别是a、b、c,求它的体积公式。
2. 一个数的平方加上它的平方根等于10,求这个数。
答案:一、选择题1. C2. A3. B4. C5. B6. A7. A8. B9. B10. B二、填空题1. ±62. 03. 54. 85. 9三、解答题1. 体积 = 长× 宽× 高= 5cm × 4cm × 3cm = 60立方厘米2. 这个数 = (21 - 4) ÷ 3 = 17 ÷ 3 = 5.67(保留两位小数)3. 这个数= (15 + 5) ÷ 4 = 20 ÷ 4 = 54. 这个数 = (25 - 6) ÷ 5 = 19 ÷ 5 = 3.85. 这个数= (21 + 7) ÷ 6 = 28 ÷ 6 = 4.67(保留两位小数)四、附加题1. 体积公式= a × b × c2. 这个数 = 3(因为3的平方是9,3的平方根是√3,9 + √3 ≈ 10)。
人教版【精选】小学六年级数学奥数竞赛试卷及答案图文百度文库一、拓展提优试题1.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.2.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.3.分子与分母的和是2013的最简真分数有个.4.图中的三角形的个数是.5.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.6.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.7.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.8.甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的,丙花的钱是乙的,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙元.9.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.10.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)11.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.12.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.13.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.14.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.15.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.【参考答案】一、拓展提优试题1.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.2.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.3.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.4.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.5.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.6.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.7.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.8.解:丙花钱是甲的×=甲:乙:丙=1::=13:12:8(13+12+8)÷3=11每份:9÷(11﹣8)=3(元)甲:(13﹣11)×3=6(元)乙:(12﹣11)×3=3(元)答:分给甲6元,分给乙3元.故答案为:6,3.9.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.10.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.11.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.12.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.13.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.14.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.15.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.。
六年级奥数试题及答案一、选择题(每题3分,共15分)1. 一个数的3倍是45,这个数是多少?A. 15B. 45C. 30D. 5答案:A2. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,它的体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A3. 一个数除以5余2,除以7余3,这个数最小是多少?A. 23B. 32C. 37D. 43答案:C4. 一个数的5倍加上3等于这个数的7倍减去5,这个数是多少?A. 4B. 5C. 6D. 8答案:A5. 一个数的4倍减去8等于这个数的3倍加上4,这个数是多少?A. 4B. 6C. 8D. 10答案:B二、填空题(每题4分,共20分)6. 一个数的2倍是36,这个数是______。
答案:187. 一个数的3倍与4的和是40,这个数是______。
答案:328. 一个数的4倍加上这个数等于35,这个数是______。
答案:79. 一个数的5倍减去这个数等于40,这个数是______。
答案:810. 一个数的6倍加上这个数等于54,这个数是______。
答案:8三、解答题(每题10分,共50分)11. 一个数的3倍加上这个数等于48,求这个数。
解:设这个数为x,则3x + x = 48,解得x = 12。
答:这个数是12。
12. 一个数的4倍减去这个数等于36,求这个数。
解:设这个数为y,则4y - y = 36,解得y = 12。
答:这个数是12。
13. 一个数的5倍加上这个数等于60,求这个数。
解:设这个数为z,则5z + z = 60,解得z = 10。
答:这个数是10。
14. 一个数的6倍减去这个数等于48,求这个数。
解:设这个数为w,则6w - w = 48,解得w = 8。
答:这个数是8。
15. 一个数的7倍加上这个数等于72,求这个数。
解:设这个数为v,则7v + v = 72,解得v = 9。
答:这个数是9。
六年级奥数竞赛试题及答案
六年级奥数竞赛试题
一. 计算:
⑴.
⑶.
二. 填空: 1111412114+++⋅⋅⋅+= ⑵. ⨯23+16⨯+⨯=
1⨯22⨯33⨯499⨯[1**********]67+345⨯[1**********]= ⑷. +++++++=
567⨯345+[**************]45
51恰好是乙数的. 那么甲、乙两数之和的最小值是 . 64
111⑵. 某班学生参加一次考试, 成绩分优、良、及格、不及格四等. 已知该班有的学生得优, 有的学生得良, 有的学237⑴. 甲、乙两数是自然数, 如果甲数的
生得及格. 如果该班学生人数不超过60人, 则该班不及格的学生有人.
⑶. 一条公路, 甲队独修24天完成, 乙队独修30天完成. 甲乙两队合修若干天后, 乙队停工休息, 甲队继续修了6天完成, 乙队修了天.
⑷. 用0,1,2,3,4,5,6,7,8,9十个数字, 能够组成个没有重复数字的三位数.
_______种不同颜色搭配的“IMO ”.
⑹不定方程12x +21y =17的整数解是 .
⑺一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是 .
1 ⑸. “IMO ”是国际数学奥林匹克的缩写, 把这三个字母写成三种不同颜色, 现有五种不同颜色的笔, 按上述要求能写出
⑻. 把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体, 这个立方体的表面积是平方厘米.
⑼. 两车同时从甲乙两地相对开出, 甲每小时行48千米, 乙车每小时行54千米, 相遇时两车离中点36千米, 甲乙两地相距千米.
⑽. 六一班有学生46人, 其中会骑自行车的17人, 会游泳的14人, 既会骑车又会游泳的4人, 问两样都不会的有 _人.
⑾. 从学校到少年宫有4条东西的马路和3条南北的马路相通(如图), 李楠从学校出发, 步行到少年宫(只许向东或向南行进), 最多有种走法.
学校
⑿. 算出圆内正方形的面积为 .
⒀. 如图所求, 圆的周长是16.4厘米, 圆的面积与长方形的面积正好相等. 图中阴影部分的周
长是厘米. (π=3. 14)
⒁. 一付扑克牌共有54张(包括大王、小王), 至少从中取张牌, 才能保证其中必有3种花色.
⒂. 规定:6※2=6+66=72,2※3=2+22+222=246, 1※4=1+11+111+1111=1234.7※5= .
⒃. 甲、乙、丙、丁四位学生在广场上踢足球,打碎了玻璃窗,有人问他们时,他们这样说:
甲:“玻璃是丙也可能是丁打碎的”;乙:“是丁打碎的”;
丙:“我没有打坏玻璃”;丁:“我才不干这种事”;
深深了解学生的老师说:“他们中有三位决不会说谎话”。
那么,到底是谁打碎了玻璃?
答: 是打碎了玻璃。
2 北
六年级奥数竞赛试题答案
一. 计算:
⑴. 4⎛121⎫499. ⑵. 原式=⨯ 23+4+⎪=⨯28=16 7⎝1313⎭7100
⑶. 原式=567+345⨯566567+345⨯566567+345⨯566===1
566+1⨯345+222345⨯566+345+222345⨯566+567
2222 +++⋅⋅⋅+2⨯33⨯44⨯59⨯10
⎡⎛11⎫⎛11⎫⎛11⎫⎛11⎫⎤⎛11⎫4-⎪+ -⎪+ -⎪+⋅⋅⋅+ -⎪⎥=2 -⎪=.
⎝910⎭⎦⎝210⎭5⎣⎝23⎭⎝34⎭⎝45⎭⑷. 原式= =2⎢
二. 填空:
⑴. 甲数是乙数的
是3, 和为13. 153313÷=, 甲乙两数之和是乙数的1+=, 要使甲乙两数之和最小, 乙只能是10, 从而甲数46101010
11111, 因该班学生人数不超过60人. 故不及格人数是42⨯--==1(人). 2374242⑵. 不及格人数占1-
⑶. 1-⎛
⎝11⎫⎫⎛1⨯6⎪÷ +⎪=10(天). 24⎭⎝2430⎭
⑷. 第一步, 排百位数字, 有9种方法(0不能作首位); 第二步, 排十位数字, 有9种方法; 第三步, 排个位数字, 有8种方法. 根据乘法原理, 一共有9×9×8=648(个) 没有重复数字的三位数.
⑸. 先写I , 有5种方法; 再写M , 有4种方法; 最后写O , 有3种方法. 一共有5×4×3=60(种) 方法.
⑹. 没有整数解. 若方程有整数解, 则3x , 321y , 因此3x +21y , 且3|17,产生矛盾, 因此原方程没有整数解. ⑺. 正方体的底面积为384÷6=64(平方分米). 故棱长为512÷64=8(分米), 棱长总和为8×12=96(分米). ⑻. 这个立方体的表面由
3×3×2+8×2+10×2=54个小正方形组成, 故表面积为4×54=216(平方厘米).
⑼. 乙每小时比甲多行54-48=6(千米), 而乙相遇时比甲多行36⨯2=72(千米), 故相遇时的时间为72÷6=12(小时), 从而甲乙两地相距12⨯(48+54)=1224(千米).
⑽. 所求人数=全班人数-(会骑车人数+会游泳人数-既会骑车又会游泳人数)=46-(17+14-4)=19(人)
⑾. 如图, 用标数法累加得, 共有10条路线. ⑿. 18
⒀ .设圆的半径为r , 则圆面积即长方形面积为πr 2, 故长方形的长为DC =πr . 155⌒ 阴影部分周长=DC +BC +BA +AD =πr +r +(πr -r ) +⨯2πr =⨯2πr =⨯16.
4=20. 5(厘米). 444
⒁. 将4种花色看作4个抽屉, 为了保证取出3张同色花, 那么应取尽2个抽屉由的2⨯13张牌及大、小王与一张另一种花色牌. 计共取2⨯13+2+1=29(张) 才行.
⒂. 86415. 7※5=7+77+777+7777+77777=86415. ⒃. 丁
3。