北京市各城区二模数学(理科)导数解答题含答案
- 格式:docx
- 大小:630.91 KB
- 文档页数:11
海淀区2023—2024学年第二学期期末练习高三数学2024.05本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,0,1,2,{3}A B x a x =-=≤<∣.若A B ⊆,则a 的最大值为()A.2 B.0C.1- D.-2【答案】C 【解析】【分析】根据集合的包含关系可得1a ≤-求解.【详解】由于A B ⊆,所以1a ≤-,故a 的最大值为1-,故选:C2.在52()x x-的展开式中,x 的系数为()A.40B.10C.40-D.10-【答案】A 【解析】【分析】利用二项式定理的性质.【详解】设52(x x-的通项1k T +,则()5115C 2k k k k T x x --+=-,化简得()5215C 2k kk k T x -+=⋅-⋅,令2k =,则x 的系数为()225C 240-=,即A 正确.故选:A3.函数()3,0,1,03x x x f x x ⎧≤⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩是()A.偶函数,且没有极值点B.偶函数,且有一个极值点C.奇函数,且没有极值点D.奇函数,且有一个极值点【答案】B 【解析】【分析】根据函数奇偶性定义计算以及极值点定义判断即可.【详解】当0x ≤时,0x ->,则1()(3()3xx f x f x --===,当0x >时,0x -<,则1()3()()3xx f x f x --===,所以函数()f x 是偶函数,由图可知函数()f x 有一个极大值点.故选:B.4.已知抛物线24x y =的焦点为F ,点A 在抛物线上,6AF =,则线段AF 的中点的纵坐标为()A.52B.72C.3D.4【答案】C 【解析】【分析】根据抛物线定义求得点A 的纵坐标,再求AF 中点纵坐标即可.【详解】抛物线24x y =的焦点()0,1F ,又16A AF y =+=,解得5A y =,故线段AF 的中点的纵坐标为1532+=.故选:C.5.在ABC 中,34,5,cos 4AB AC C ===,则BC 的长为()A.6或32B.6C.3+D.3【答案】A 【解析】【分析】根据余弦定理即可求解.【详解】由余弦定理可得222222543cos 2104AC CB ABCB C AC BCBC+-+-===⋅,故22151806CB BC BC -+=⇒=或32,故选:A6.设,R,0a b ab ∈≠,且a b >,则()A.b a a b< B.2b a a b+>C.()sin a b a b -<- D.32a b>【答案】C 【解析】【分析】举反例即可求解ABD,根据导数求证()sin ,0,x x x <∈+∞即可判断C.【详解】对于A ,取2,1a b ==-,则122b aa b=->=-,故A 错误,对于B ,1,1a b ==-,则2b aa b+=,故B 错误,对于C ,由于()sin 0,cos 10y x x x y x '=->-≤=,故sin y x x =-在()0,∞+单调递减,故sin 0x x -<,因此()sin ,0,x x x <∈+∞,由于a b >,所以0a b ->,故()sin a b a b -<-,C 正确,对于D,3,4a b =-=-,则11322716a b =<=,故D 错误,故选:C7.在ABC 中,π,2C CA CB ∠===,点P 满足()1CP CA CB λλ=+- ,且4CP AB ⋅= ,则λ=()A.14-B.14C.34-D.34【答案】B 【解析】【分析】用CB ,CA 表示AB ,根据0CA CB ⋅=,结合已知条件,以及数量积的运算律,求解即可.【详解】由题可知,0CA CB ⋅=,故CP AB ⋅()()()()2211881168CA CB CB CA CA CB λλλλλλλ⎡⎤=+-⋅-=-+-=-+-=-+⎣⎦,故1684λ-+=,解得14λ=.故选:B.8.设{}n a 是公比为()1q q ≠-的无穷等比数列,n S 为其前n 项和,10a >.则“0q >”是“n S 存在最小值”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件、必要条件的判定以及等比数列前n 项和公式判断即可【详解】若10a >且公比0q >,则110n n a a q -=>,所以n S 单调递增,n S 存在最小值1S ,故充分条件成立.若10a >且12q =-时,11112211013212n nn a S a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-->⎢⎥ ⎪⎛⎫⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭,当n 为奇数时,121132nn S a ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,n S 单调递减,故最大值为1n =时,11S a =,而123n S a <,当n 为偶数时,121132n n S a ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,n S 单调递增,故最小值为2n =,122aS =,所以n S 的最小值为112a ,即由10a >,n S 存在最小值得不到公比0q >,故必要性不成立.故10a >公比“0q >”是“n S 存在最小值”的充分不必要条件.故选:A9.设函数()f x 的定义域为D ,对于函数()f x 图象上一点()00,x y ,若集合()(){}0,k k x x y f x x D ≤∈-+∀∈R∣只有1个元素,则称函数()f x 具有性质0x P .下列函数中具有性质1P 的是()A.()1f x x =- B.()lg f x x=C.()3f x x = D.()πsin2f x x =-【答案】D 【解析】【分析】根据性质1P 的定义,结合各个函数的图象,数形结合,即可逐一判断各选择.【详解】根据题意,要满足性质1P ,则()f x 的图象不能在过点()()1,1f 的直线的上方,且这样的直线只有一条;对A :()1f x x =-的图象,以及过点()1,0的直线,如下所示:数形结合可知,过点()1,0的直线有无数条都满足题意,故A 错误;对B :()lg f x x =的图象,以及过点()1,0的直线,如下所示:数形结合可知,不存在过点()1,0的直线,使得()f x 的图象都在该直线的上方,故B 错误;对C :()3f x x =的图象,以及过点()1,1的直线,如下所示:数形结合可知,不存在过点()1,1的直线,使得()f x 的图象都在该直线的上方,故C 错误;对D :()πsin2f x x =-的图象,以及过点()1,1-的直线,如下所示:数形结合可知,存在唯一的一条过点()1,1-的直线1y =-,即0k =,满足题意,故D 正确.故选:D.10.设数列{}n a 的各项均为非零的整数,其前n 项和为n S .若()*,j i i j -∈N为正偶数,均有2ji aa ≥,且20S =,则10S 的最小值为()A.0B.22C.26D.31【答案】B 【解析】【分析】因为2120S a a =+=,不妨设120,0a a ><,由题意求出3579,,,a a a a 的最小值,46810,,,a a a a 的最小值,10122S a =,令11a =时,10S 有最小值.【详解】因为2120S a a =+=,所以12,a a 互为相反数,不妨设120,0a a ><,为了10S 取最小值,取奇数项为正值,取偶数项为负值,且各项尽可能小,.由题意知:3a 满足312a a ≥,取3a 的最小值12a ;5a 满足51531224a a a a a ≥⎧⎨≥≥⎩,因为1110,42a a a >>,故取5a 的最小值14a ;7a 满足717317531224248a a a a a a a a a≥⎧⎪≥≥⎨⎪≥≥≥⎩,取7a 的最小值18a ;同理,取9a 的最小值116a ;所以135791111112481631a a a a a a a a a a a ++++=++++=,4a 满足422a a ≥,取4a 的最小值22a ;6a 满足62642224a a a a a ≥⎧⎨≥≥⎩,因为20a <,所以2224a a >,取6a 的最小值12a ;8a 满足828418641224248a a a a a a a a a≥⎧⎪≥≥⎨⎪≥≥≥⎩,因为20a <,所以222482a a a >>,取8a 的最小值12a ;同理,取10a 的最小值12a ;所以24681022222222229a a a a a a a a a a a ++++=++++=,所以101211131931922S a a a a a =+=-=,因为数列{}n a 的各项均为非零的整数,所以当11a =时,10S 有最小值22.故选:B【点睛】关键点点睛:10S 有最小值的条件是确保各项最小,根据递推关系2j i a a ≥分析可得奇数项的最小值与偶数项的最小值,从而可得10S 的最小值.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.若()2(i)2i R x x +=∈,则x =__________.【答案】1【解析】【分析】利用复数的四则运算,结合复数相等的性质得到关于x 的方程组,解之即可得解.【详解】因为2(i)2i x +=,所以222i i 2i x x ++=,即212i 2i x x -+=,所以21022x x ⎧-=⎨=⎩,解得1x =.故答案为:1.12.已知双曲线22:14x C y -=,则C 的离心率为__________;以C 的一个焦点为圆心,且与双曲线C 的渐近线相切的圆的方程为__________.(写出一个即可)【答案】①.②.22(1x y ++=或(22(1x y +=)【解析】【分析】根据离心率的定义求解离心率,再计算焦点到渐近线的距离,结合圆的标准方程求解即可.【详解】22:14x C y -==,又渐近线为12y x =,即20x y -=,故焦点)与()到20x y -=1=,则以C 的一个焦点为圆心,且与双曲线C 的渐近线相切的圆的方程为22(1xy ++=或22(1x y -+=,故答案为:2;22(1xy ++=或(22(1x y +=)13.已知函数()2cos sin f x x a x =+.(i )若0a =,则函数()f x 的最小正周期为__________.(ii )若函数()f x 在区间()0,π上的最小值为2-,则实数=a __________.【答案】①.π②.2-【解析】【分析】根据二倍角公式即可结合周期公式求解,利用二次函数的性质即可求解最值.【详解】当0a =时,()2cos 21cos 2x f x x +==,所以最小正周期为2ππ2T ==,()2222cos sin sin sin 1sin 124a a f x x a x x a x x ⎛⎫=+=-++=--++⎪⎝⎭,当()0,πx ∈时,(]sin 0,1x ∈,且二次函数开口向下,要使得()f x 在区间()0,π上的最小值为2-,则需要1022a a-≥-,且当sin 1x =时取最小值,故112a -++=-,解得2a =-,故答案为:π,2-14.二维码是一种利用黑、白方块记录数据符号信息的平面图形.某公司计划使用一款由()2*nn ∈N 个黑白方块构成的n n ⨯二维码门禁,现用一款破译器对其进行安全性测试,已知该破译器每秒能随机生成162个不重复的二维码,为确保一个n n ⨯二维码在1分钟内被破译的概率不高于1512,则n 的最小值为__________.【答案】7【解析】【分析】根据题意可得21615260122n⨯≤,即可由不等式求解.【详解】由题意可知n n ⨯的二维码共有22n 个,由21615260122n⨯≤可得2216153126022602n n -⨯⨯≤⇒≤,故2231637n n -≥⇒≥,由于*n ∈N ,所以7n ≥,故答案为:715.如图,在正方体1111ABCD A B C D -中,P 为棱AB 上的动点,DQ ⊥平面1,D PC Q 为垂足.给出下列四个结论:①1D Q CQ =;②线段DQ 的长随线段AP 的长增大而增大;③存在点P ,使得AQ BQ ⊥;④存在点P ,使得PQ //平面1D DA .其中所有正确结论的序号是__________.【答案】①②④【解析】【分析】根据给定条件,以点D 为原点,建立空间直角坐标系,求出平面1D PC 的法向量坐标,进而求出点Q 的坐标,再逐一计算判断各个命题即得答案.【详解】在正方体1111ABCD A B C D -中,令1AB =,以点D 为原点,建立如图所示的空间直角坐标系,设(01)AP t t =≤≤,则1(0,0,0),(0,1,0),(0,0,1),(1,,0)D C D P t ,1(0,1,1),(1,1,0)CD CP t =-=-,令平面1D PC 的法向量(,,)n x y z = ,则10(1)0n CD y z n CP x t y ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,取1y =,得(1,1,1)n t =- ,由DQ ⊥平面1D PC 于Q ,得((1),,)DQ n t λλλλ==-,即((1),,)Q t λλλ-,((1),1,)CQ t λλλ=-- ,显然2(1)10CQ n t λλλ⋅=-+-+=,解得21(1)2t λ=-+,于是222111(,,)(1)2(1)2(1)2t Q t t t --+-+-+,对于①,222222221||(1)(1)(1)(1)||D Q t t CQ λλλλλλ=-++--+-+,①正确;对于②,2221||(1)11(1)2(1)2DQ t t t =-++-+-+在[0,1]上单调递增,②正确;对于③,而(1,0,0),(1,1,0)A B ,((1)1,,),((1)1,1,)AQ t BQ t λλλλλλ=--=---,若2222[(1)1](1)(23)(32)10AQ BQ t t t t λλλλλλ⋅=--+-+=-+--+=,显然22(32)4(23)430t t t t ∆=---+=--<,即不存在[0,1]t ∈,使得0AQ BQ ⋅=,③错误;对于④,平面1D DA 的一个法向量(0,1,0)DC =,而((1)1,,)PQ t t λλλ=--- ,由0PQ DC t λ⋅=-=,得t λ=,即21(1)2t t =-+,整理得322310t t t -+-=,令32()231,[0,1]f t t t t t =-+-∈,显然函数()f t 在[0,1]上的图象连续不断,而(0)10,(1)10f f =-<=>,因此存在(0,1)t ∈,使得()0f t =,此时PQ ⊄平面1D DA ,因此存在点P ,使得//PQ 平面1D DA ,④正确.所以所有正确结论的序号是①②④.故答案为:①②④【点睛】思路点睛:涉及探求几何体中点的位置问题,可以建立空间直角坐标系,利用空间向量证明空间位置关系的方法解决.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知函数2()2cos(0)2xf x x ωωω=+>,从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在且唯一确定.(1)求ω的值;(2)若不等式()2f x <在区间()0,m 内有解,求m 的取值范围.条件①:(2π)3f =;条件②:()y f x =的图象可由2cos2y x =的图象平移得到;条件③:()f x 在区间ππ(,36-内无极值点,且ππ()2(263f f -=-+.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)条件选择见解析,2ω=;(2)π(,)3+∞.【解析】【分析】(1)选条件①,由ππ1cos()332ω-=的解不唯一,此条件不符合题意;选条件②,由周期求出ω;选条件③,由给定等式确定最大最小值条件,求出周期范围,由给定区间内无极值点求出周期即可.(2)由(1)求出函数()f x 的解析式,再借助不等式有解列式求解即得.【小问1详解】依题意,π()cos 12cos()13f x x x x ωωω=++=-+,选条件①,由(2π)3f =,得ππ2cos()1233ω-+=,即ππ1cos()332ω-=,于是πππ2π,N 333k k ω-=+∈或πππ2π,N 333k k ω*-=-+∈,显然ω的值不唯一,因此函数()f x 不唯一,不符合题意.选条件②,()y f x =的图象可由2cos2y x =的图象平移得到,因此()y f x =的最小正周期为函数2cos2y x =的最小正周期π,而0ω>,则2ππω=,所以2ω=.选条件③,()f x 在区间ππ(,36-内无极值点,且ππ()2(263f f -=-+,则ππ(()463f f --=,即函数()f x 分别在ππ,63x x ==-时取得最大值、最小值,于是()f x 的最小正周期ππ2[(π63T ≤⨯--=,由()f x 在区间ππ(,36-内无极值点,得()f x 的最小正周期ππ2[()]π63T ≥⨯--=,因此πT =,而0ω>,所以2π2Tω==.【小问2详解】由(1)知π()2cos(213f x x =-+,由(0,)x m ∈,得πππ2(,2)333x m -∈--,由不等式()2f x <在区间(0,)m 内有解,即π1cos(2)32x -<在区间(0,)m 内有解,则有ππ233m ->,解得π3m >,所以m 的取值范围是π(,)3+∞.17.在三棱锥-P ABC 中,2,AB PB M ==为AP 的中点.(1)如图1,若N 为棱PC 上一点,且MN AP ⊥,求证:平面BMN ⊥平面PAC ;(2)如图2,若O 为CA 延长线上一点,且PO ⊥平面,2ABC AC ==,直线PB 与平面ABC 所成角为π6,求直线CM 与平面PBC 所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)根据BM AP ⊥和,MN AP ⊥可证线面垂直,即可求证面面垂直,(2)根据线面角的几何法可得π6PBO ∠=,建立空间直角坐标系,利用法向量与方向向量的夹角即可求解.【小问1详解】连接,,BM MN BN.因为,AB PB M =为AP 的中点,所以BM AP ⊥.又,MN AP ⊥,,MN BM M MN BM ⋂=⊂平面BMN ,所以AP ⊥平面BMN .因为AP ⊂平面,PAC 所以平面BMN ⊥平面PAC .【小问2详解】因为PO ⊥平面,ABC OB ⊂平面,ABC OC ⊂平面ABC ,所以,,PO OB PO OC PBO ∠⊥⊥为直线PB 与平面ABC 所成的角.因为直线PB 与平面ABC 所成角为π6,所以π6PBO ∠=.因为2PB =,所以1,PO OB ==.2=,所以1OA =.又2AB =,故222AB OB OA =+.所以OB OA ⊥.如图建立空间直角坐标系O xyz -.则())0,1,0,A B,()()0,3,0,0,0,1C P ,110,,22M ⎛⎫⎪⎝⎭.所以()0,3,1PC =-,()BC = ,510,,22MC ⎛⎫=- ⎪⎝⎭.设平面PBC 的法向量为(),,n x y z =,则0,0,n PC n BC ⎧⋅=⎪⎨⋅=⎪⎩即30,330.y z x y -=⎧⎪⎨+=⎪⎩令1y =,则)3,1,3n = .设CM 与平面PBC 所成角为θ,则2sin cos ,132511344MC n MC n MC nθ⋅====⋅+⋅.所以直线CM 与平面PBC 所成角的正弦值为213.18.图象识别是人工智能领域的一个重要研究方向.某中学人.工智能兴趣小组研发了一套根据人脸照片识别性别的程序.在对该程序的一轮测试中,小组同学输入了200张不同的人脸照片作为测试样本,获得数据如下表(单位:张):识别结果真实性别男女无法识别男902010女106010假设用频率估计概率,且该程序对每张照片的识别都是独立的.(1)从这200张照片中随机抽取一张,已知这张照片的识别结果为女性,求识别正确的概率;(2)在新一轮测试中,小组同学对3张不同的男性人脸照片依次测试,每张照片至多测一次,当首次出现识别正确或3张照片全部测试完毕,则停止测试.设X 表示测试的次数,估计X 的分布列和数学期望EX ;(3)为处理无法识别的照片,该小组同学提出上述程序修改的三个方案:方案一:将无法识别的照片全部判定为女性;方案二:将无法识别的照片全部判定为男性;方案三:将无法识别的照片随机判定为男性或女性(即判定为男性的概率为50%,判定为女性的概率为50%).现从若干张不同的人脸照片(其中男性、女性照片的数量之比为1:1)中随机抽取一张,分别用方案一、方案二、方案三进行识别,其识别正确的概率估计值分别记为123,,p p p .试比较123,,p p p 的大小.(结论不要求证明)【答案】(1)34(2)分布列见解析;()2116E X =(3)231p p p >>【解析】【分析】(1)利用用频率估计概率计算即可(2)由题意知X 的所有可能取值为1,2,3,分别求出相应的概率,然后根据期望公式求出即可(3)分别求出方案一、方案二、方案三进行识别正确的概率,然后比较大小可得【小问1详解】根据题中数据,共有206080+=张照片被识别为女性,其中确为女性的照片有60张,所以该照片确为女性的概率为603804=.【小问2详解】设事件:A 输入男性照片且识别正确.根据题中数据,()P A 可估计为9031204=.由题意知X 的所有可能取值为1,2,3.()()()31331111,2,3444164416P X P X P X ====⨯===⨯=.所以X 的分布列为X123P34316116所以()331211234161616E X =⨯+⨯+⨯=.【小问3详解】231p p p >>.19.已知椭圆E 的焦点在x 轴上,中心在坐标原点.以E 的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为(1)求栯圆E 的方程;(2)设过点()2,0M 的直线l (不与坐标轴垂直)与椭圆E 交于不同的两点,A C ,与直线16x =交于点P .点B 在y 轴上,D 为坐标平面内的一点,四边形ABCD 是菱形.求证:直线PD 过定点.【答案】(1)22186x y +=(2)证明见解析【解析】【分析】(1)根据焦点三角形的周长以及等边三角形的性质可得22a c +=且12c a =,即可求解,,a b c 得解,(2)联立直线与椭圆方程得韦达定理,进而根据中点坐标公式可得2286,3434t N t t ⎛⎫-⎪++⎝⎭,进而根据菱形的性质可得BD 的方程为22683434t y t x t t ⎛⎫+=-- ⎪++⎝⎭,即可求解220,34t B t ⎛⎫ ⎪+⎝⎭,221614,3434t D t t ⎛⎫- ⎪++⎝⎭.进而根据点斜式求解直线PD 方程,即可求解.【小问1详解】由题意可设椭圆E 的方程为22222221(0),x y a b c a b a b+=>>=-.因为以E 的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为所以22a c +=且12c a =,所以a c ==.所以26b =.所以椭圆E 的方程为22186x y +=.【小问2详解】设直线l 的方程为()20x ty t =+≠,令16x =,得14y t =,即1416,P t ⎛⎫ ⎪⎝⎭.由223424,2x y x ty ⎧+=⎨=+⎩得()223412120t y ty ++-=.设()()1122,,,A x y C x y ,则1212221212,3434t y y y y t t +=-=-++.设AC 的中点为()33,N x y ,则12326234y y ty t +==-+.所以3328234x ty t =+=+.因为四边形ABCD 为菱形,所以N 为BD 的中点,AC BD ⊥.所以直线BD 的斜率为t -.所以直线BD 的方程为22683434t y t x t t ⎛⎫+=-- ⎪++⎝⎭.令0x =得222862343434t t t y t t t =-=+++.所以220,34t B t ⎛⎫ ⎪+⎝⎭.设点D 的坐标为()44,x y ,则4343222162142,2343434t t x x y y t t t ===-=-+++,即221614,3434t D t t ⎛⎫-⎪++⎝⎭.所以直线PD 的方程为()221414143416161634tt t y x t t ++-=--+,即()746y x t =-.所以直线PD 过定点()4,0.【点睛】方法点睛:圆锥曲线中定点问题的两种解法:(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.20.已知函数()()ln 0)f x x a a =-+>.(1)若1a =,①求曲线()y f x =在点()()22f ,处的切线方程;②求证:函数()f x 恰有一个零点;(2)若()ln 2f x a a ≤+对(),3x a a ∈恒成立,求a 的取值范围.【答案】(1)①2y =;②证明见解析(2)[)1,+∞【解析】【分析】(1)①求导,即可求解斜率,进而可求直线方程,②根据函数的单调性,结合零点存在性定理即可,(2)求导后构造函数()()(),,3g x x a x a a =-∈,利用导数判断单调性,可得()f x 的最大值为()()()000ln 2f x x a x a =-+-,对a 分类讨论即可求解.【小问1详解】当1a =时,()()ln 1f x x =-+.①()11f x x =--'.所以()()22,20f f =='.所以曲线()y f x =在点()()22f ,处的切线方程为2y =.②由①知()()(]()1ln 11,3,1f x x x f x x =-=-'+∈,且()20f '=.当()1,2x ∈时,因为111x >>-()0f x ¢>;当()2,3x ∈时,因为111x <<-,所以()0f x '<.所以()f x 在区间()1,2上单调递增,在区间()2,3上单调递减.因为()()()322,3ln20,1e 330f f f -==>+=-+<-+<.所以函数()f x 恰有一个零点.【小问2详解】由()()ln f x x a =-+得()f x -='.设()()(),,3g x x a x a a =-∈,则()10g x '=-<.所以()g x 是(),3a a 上的减函数.因为()()0,320g a g a a =>=-<,所以存在唯一()()()000,3,0x a a g x x a ∈=-=.所以()f x '与()f x 的情况如下:x()0,a x 0x ()0,3x a ()f x '+-()f x极大所以()f x 在区间(),3a a 上的最大值是()()()()0000ln ln 2f x x a x a x a =-+=-+-.当1a ≥时,因为()20g a a =-≤,所以02x a ≤.所以()()()0ln 222ln 2f x a a a a a a ≤-+-=+.所以()()0ln 2f x f x a a ≤≤+,符合题意.当01a <<时,因为()20g a a =>,所以02x a >.所以()()()0ln 222ln 2f x a a a a a a >-+-=+,不合题意.综上所述,a 的取值范围是[)1,+∞.【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.21.设正整数2n ≥,*,i i a d ∈N ,(){}1,1,2,i i i A x x a k d k ==+-= ,这里1,2,,i n = .若*12n A A A ⋃⋃⋃=N ,且()1i j A A i j n ⋂=∅≤<≤,则称12,,,n A A A 具有性质P .(1)当3n =时,若123,,A A A 具有性质P ,且11a =,22a =,33a =,令123m d d d =,写出m 的所有可能值;(2)若12,,,n A A A 具有性质P :①求证:()1,2,,i i a d i n ≤= ;②求1nii ia d =∑的值.【答案】(1)27或32(2)①证明见解析②12n +【解析】【分析】(1)对题目中所给的12,,,n A A A ,我们先通过分析集合中的元素,证明()1,2,,i i a d i n ≤= ,111ni i d ==∑,以及112ni i i a n d =+=∑,然后通过分类讨论的方法得到小问1的结果;(2)直接使用(1)中的这些结论解决小问2即可.【小问1详解】对集合S ,记其元素个数为S .先证明2个引理.引理1:若12,,,n A A A 具有性质P ,则()1,2,,i i a d i n ≤= .引理1的证明:假设结论()1,2,,i i a d i n ≤= 不成立.不妨设11a d >,则正整数111a d A -∉,但*12n A A A ⋃⋃⋃=N ,故11a d -一定属于某个()2i A i n ≤≤,不妨设为2A .则由112a d A -∈知存在正整数k ,使得()11221a d a k d -=+-.这意味着对正整数1112c a d d d =-+,有()111212111c a d d d a d d A =-+=+-∈,()()11122212212211c a d d d a k d d d a k d d A =-+=+-+=++-∈,但12A A =∅ ,矛盾.所以假设不成立,从而一定有()1,2,,i i a d i n ≤= ,从而引理1获证.引理2:若12,,,n A A A 具有性质P ,则111ni i d ==∑,且112ni i ia n d =+=∑.证明:取集合{}121,2,...,...n T d d d =.注意到关于正整数k 的不等式()1201...i i n a k d d d d <+-≤等价于12...11i i n i i ia a d d dk d d d -<≤-+,而由引理1有i i a d ≤,即011iia d ≤-<.结合12...n i d d d d 是正整数,知对于正整数k ,12...11i i n i i i a a d d d k d d d -<≤-+当且仅当12...n i iT d d dk d d ≤=,这意味着数列()()11,2,...k i i x a k d k =+-=恰有iT d 项落入集合T ,即i iT T A d ⋂=.而12,,,n A A A 两两之间没有公共元素,且并集为全体正整数,故T 中的元素属于且仅属于某一个()1i A i n ≤≤,故12...n T A T A T A T ⋂+⋂++⋂=.所以1212......n nT T T T A T A T A T d d d +++=⋂+⋂++⋂=,从而12111...1nd d d +++=,这就证明了引理2的第一个结论;再考虑集合T 中全体元素的和.一方面,直接由{}121,2,...,...n T d d d =知T 中全体元素的和为()1212 (12)n n d d d d d d +,即()12T T +.另一方面,i T A ⋂的全部iT d 个元素可以排成一个首项为i a ,公差为i d 的等差数列.所以i T A ⋂的所有元素之和为11122i i i i i i i iTT TT T a a d T d d d d d ⎛⎫⎛⎫⋅+-=+- ⎪ ⎪⎝⎭⎝⎭.最后,再将这n 个集合()1,2,...,i T A i n ⋂=的全部元素之和相加,得到T 中全体元素的和为112ni i i i T Ta T d d =⎛⎫⎛⎫+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑.这就得到()11122ni i i i T T T Ta T d d =⎛⎫+⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑,所以有()221111111222222nnn ni i i i i i i i i iiiT T T TTn TTn T a a a T TT d d d d d ====⎛⎫+⎛⎫=+-=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑.即1122ni i iT T na d =+-=+∑,从而112ni i i a n d =+=∑,这就证明了引理2的第二个结论.综上,引理2获证.回到原题.将123,,d d d 从小到大排列为123r r r ≤≤,则123123m d d d r r r ==,由引理2的第一个结论,有1231231111111r r r d d d ++=++=.若13r ≥,则1231111111111311r r r r r r r =++≤++=≤,所以每个不等号都取等,从而1233r r r ===,故12327m r r r ==;情况1:若11r =,则23111110r r r +=-=,矛盾;情况2:若12r =,则231111112r r r +=-=,所以232221111122r r r r r =+≤+=,得24r ≤.此时如果22r =,则3211102r r =-=,矛盾;如果24r =,则32111124r r =-=,从而34r =,故12332m r r r ==;如果23r =,由于12r =,设()()123123,,,,i i i r r r d d d =,{}{}123,,1,2,3i i i =,则12i d =,23i d =.故对于正整数对()()2121212112331212211i i i i i i i i k a a a a k a a a a ⎧=+--+--⎪⎨=+--+--⎪⎩,有2112231i i k k a a -=--,从而12121223i i i i a k a k A A +=+∈⋂,这与12i i A A ⋂=∅矛盾.综上,m 的取值只可能是27或32.当()()123,,3,3,3d d d =时,27m =;当()()123,,4,2,4d d d =时,32m =.所以123m d d d =的所有可能取值是27和32.【小问2详解】①由引理1的结论,即知()1,2,,i i a d i n ≤= ;②由引理2的第二个结论,即知112nii ia n d=+=∑.【点睛】关键点点睛:本题的关键点在于,我们通过两个方面计算了一个集合的各个元素之和,从而得到了一个等式,这种方法俗称“算二次”法或富比尼定理.。
2020-2021学年北京市⾼考数学⼆模试卷(理)及答案解析北京市⾼考数学⼆模试卷(理科)⼀、选择题(本⼤题共8⼩题,每⼩题5分,共40分.在每⼩题列出的四个选项中,选出符合题⽬要求的⼀项.)1.复数=()A.B.C.﹣D.﹣2.已知双曲线C:mx2﹣ny2=1的⼀个焦点为F(﹣5,0).,实轴长为6,则双曲线C的渐近线⽅程为()A.y=±x B.y=±x C.y=±x D.y=±x3.若x,y满⾜.则z=2x﹣y的最⼩值为()A.4 B.1 C.0 D.﹣4.设α、β是两个不同的平⾯,b是直线且b?β,“b⊥α”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.过点A和圆⼼O的直线交⊙O于B,C两点(AB<AC),AD与⊙O切于点D,DE⊥AC于E,AD=3,AB=3,则BE的长度为()A.1 B.C.2 D.6.如图所⽰的程序框图,如果输出的S值为3,则判断框内应填⼊的判断条件为()A.i<2 B.i<3 C.i<4 D.i<57.函数f(x)是定义在[﹣3,0)∪(0,3]上的奇函数,当x∈(0,3]时,f(x)的图象如图所⽰,那么满⾜不等式f(x)≥2x ﹣1 的x的取值范围是()A.[﹣3,﹣2]∪[2,3] B.[﹣3,﹣2]∪(0,1] C.[﹣2,0)∪[1,3] D.[﹣1,0)∪(0,1]8.将⼀个圆的⼋个等分点分成相间的两组,连接每组的四个点得到两个正⽅形.去掉两个正⽅形内部的⼋条线段后可以形成⼀正⼋⾓星,如图所⽰.设正⼋⾓星的中⼼为O,并且=,=,若将点O到正⼋⾓星16个顶点的向量,都写成为λ+µ,λ,µ∈R 的形式,则λ+µ的最⼤值为()A.B.2 C.1+D.2⼀、填空题(本⼤题共6⼩题,每⼩题5分,共30分)9.已知S n是等⽐数列{a n}(n∈N*)的前n项和,若S3=14,公⽐q=2,则数列{a n}的通项公式a n= .10.极坐标系中,O为极点,点A为直线l:ρsinθ=ρcosθ+2上⼀点,则|OA|的最⼩值为.11.如图,点D是△ABC的边BC上⼀点,AB=,AD=2,BD=1,∠ACB=45°,那么∠ADB= ,AC=12.某三棱锥的三视图如图所⽰,则该三棱锥中最长棱的棱长为.13.2016年3⽉12⽇,第四届北京农业嘉年华在昌平拉开帷幕.活动设置了“三馆两园⼀带⼀⾕”七⼤板块.“三馆”即精品农业馆、创意农业馆、智慧农业馆;“两园”即主题狂欢乐园、农事体验乐园;“⼀带”即草莓休闲体验带;“⼀⾕”即延寿⽣态观光⾕.某校学⽣准备去参观,由于时间有限,他们准备选择其中的“⼀馆⼀园⼀带⼀⾕”进⾏参观,那么他们参观的不同路线最多有种.(⽤数字作答)14.已知数列{a n}中,a1=a(0<a≤1),a n+1=(n∈N*)=,则a= ;①若a3=a1+a2+…+a n,则S2016= .②记Sn三、解答题(本⼤题共6⼩题,共80分.解答应写出⽂字说明,证明过程或演算步骤.)15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所⽰.(Ⅰ)写出函数f(x)的解析式及x0的值;(Ⅱ)求函数f(x)在区间[﹣,]上的最⼤值与最⼩值.16.为了解⾼⼀新⽣数学基础,甲、⼄两校对⾼⼀新⽣进⾏了数学测试.现从两校各随机抽取10名新⽣的成绩作为样本,他们的测试成绩的茎叶图如下:(1)⽐较甲、⼄两校新⽣的数学测试样本成绩的平均值及⽅差的⼤⼩;(只需要写出结论)(2)如果将数学基础采⽤A、B、C等级制,各等级对应的测试成绩标准如表:(满分100分,所有学⽣成绩均在60分以上)测试成绩[85,100] [70,85)(60,70)基础等级 A B C假设每个新⽣的测试成绩互相独⽴.根据所给数据,以事件发⽣的频率作为相应事件发⽣的概率.从甲、⼄两校新⽣中各随机抽取⼀名新⽣,求甲校新⽣的数学基础等级⾼于⼄校新⽣的数学基础等级的概率.17.如图,三棱柱ABC﹣A1B1C1中,BC垂直于正⽅形A1ACC1所在平⾯,AC=2,BC=1,D为AC中点,E为线段BC1上的⼀点(端点除外),平⾯AB1E与BD交于点F(Ⅰ)若E不是BC1的中点,求证:AB1∥EF;(Ⅱ)若E是BC1的中点,求AE与平⾯BC1D所成⾓的正弦值;(Ⅲ)在线段BC1上是否存在点E,使得A1E⊥CE,若存在,求出的值,若不存在,请说明理由.18.已知函数f(x)=e ax,g(x)=﹣x2+bx+c(a,b,c∈R),且曲线y=f(x)与曲线y=g(x)在它们的交点(0,c)处具有公共切线.设h(x)=f(x)﹣g(x).(Ⅰ)求c的值,及a,b的关系式;(Ⅱ)求函数h(x)的单调区间;(Ⅲ)设a≥0,若对于任意x1,x2∈[0,1],都有|h(x1)﹣h(x2)|≤e﹣1,求a的取值范围.19.已知椭圆M:+=1(a>b>0)的焦距为2,点D(0,)在椭圆M上,过原点O作直线交椭圆M于A、B两点,且点A不是椭圆M的顶点,过点A作x轴的垂线,垂⾜为H,点C是线段AH的中点,直线BC交椭圆M于点P,连接AP(Ⅰ)求椭圆M的⽅程及离⼼率;(Ⅱ)求证:AB⊥AP.20.定义max{x1,x2,x3,…,x n}表⽰x1,x2,x3,…,x n中的最⼤值.已知数列a n=,b n=,c n=,其中n+m+p=200,m=kn,n,m,p,k∈N*.记d n=max{a n,b n,c n}(Ⅰ)求max{a n,b n}(Ⅱ)当k=2时,求d n的最⼩值;(Ⅲ)?k∈N*,求d n的最⼩值.参考答案与试题解析⼀、选择题(本⼤题共8⼩题,每⼩题5分,共40分.在每⼩题列出的四个选项中,选出符合题⽬要求的⼀项.)1.复数=()A.B.C.﹣D.﹣【考点】复数代数形式的混合运算.【分析】把分⼦分母同时乘以1+i,直接利⽤复数的除法运算求解.【解答】解:=.故选:C.2.已知双曲线C:mx2﹣ny2=1的⼀个焦点为F(﹣5,0).,实轴长为6,则双曲线C的渐近线⽅程为()A.y=±x B.y=±x C.y=±x D.y=±x【考点】双曲线的简单性质.【分析】利⽤双曲线的焦点坐标与实轴,求出双曲线的⼏何量,然后求解双曲线的渐近线⽅程.【解答】解:双曲线C:mx2﹣ny2=1的⼀个焦点为F(﹣5,0),实轴长为6,可得c=5,a=3,b===4,双曲线的渐近线⽅程为:y=±x.故选:A.3.若x,y满⾜.则z=2x﹣y的最⼩值为()A.4 B.1 C.0 D.﹣【考点】简单线性规划.【分析】由约束条件作出可⾏域,化⽬标函数为直线⽅程的斜截式,数形结合得到最优解,联⽴⽅程组求得最优解的坐标,代⼊⽬标函数得答案.【解答】解:由约束条件作出可⾏域如图,联⽴,解得A(),化⽬标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A()时,直线在y轴上的截距最⼤,z有最⼩值为2×.故选:D.4.设α、β是两个不同的平⾯,b是直线且b?β,“b⊥α”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】α、β是两个不同的平⾯,b是直线且b?β“b⊥α”可得:α⊥β;反之不成⽴,即可判断出关系.【解答】解:α、β是两个不同的平⾯,b是直线且b?β“b⊥α”?α⊥β;反之不成⽴,若α⊥β,b?β,b⊥α不⼀定成⽴.故选:A.5.过点A和圆⼼O的直线交⊙O于B,C两点(AB<AC),AD与⊙O切于点D,DE⊥AC于E,AD=3,AB=3,则BE的长度为()A.1 B.C.2 D.【考点】与圆有关的⽐例线段.【分析】连接OD.AD与⊙O切于点D,可得AD2=AB?AC,解出AC.在Rt△ADO中,S△=ADO=,解得DE.由DE⊥BC,可得BE?EC=DE2,即BE?(BC﹣BE)=DE2,解出BE即可得出.【解答】解:连接OD.∵AD与⊙O切于点D,∴AD2=AB?AC,∴AC==15.∴BC=15﹣3=12,∴⊙O的半径r=6.在Rt△ADO中,S△==,解得DE==2.ADO∵DE⊥BC,∴BE?EC=DE2,即BE?(BC﹣BE)=DE2,∴BE2﹣BC?BE+DE2=0,∴BE2﹣12BE+20=0,解得BE=2或10(舍去).∴BE=2,故选:C.6.如图所⽰的程序框图,如果输出的S值为3,则判断框内应填⼊的判断条件为()A.i<2 B.i<3 C.i<4 D.i<5【考点】程序框图.【分析】由题意,若输出S的值为3,可得退出循环时S的值为6,即S=6,i=3时,应该不满⾜条件,退出循环,从⽽可得判断框内应填⼊的判断条件为i<3.【解答】解:由题意,若输出S的值为3,可得:3=log2(S+2),即退出循环时S的值为6.模拟程序框图的运⾏过程,得S=0,i=1满⾜条件,执⾏循环体,S=2,i=2满⾜条件,执⾏循环体,S=6,i=3此时,由题意,应该不满⾜条件,退出循环,输出S的值为6,故判断框内应填⼊的判断条件为i<3.故选:B.7.函数f(x)是定义在[﹣3,0)∪(0,3]上的奇函数,当x∈(0,3]时,f(x)的图象如图所⽰,那么满⾜不等式f(x)≥2x ﹣1 的x的取值范围是()A.[﹣3,﹣2]∪[2,3] B.[﹣3,﹣2]∪(0,1] C.[﹣2,0)∪[1,3] D.[﹣1,0)∪(0,1]【考点】函数的图象.【分析】由图象可知,当x∈(0,3]时,f(x)单调递减,当x∈[﹣3,0)时,f(x)单调递减,分别利⽤函数的图象,结合不等式f(x)≥2x﹣1,即可得出结论.【解答】解:由图象可知,x=0时,2x﹣1=0,∴f(x)≥0,成⽴;当x∈(0,3]时,f(x)单调递减,当0<x≤1时,f(x)>1,2x﹣1≤1,满⾜不等式f(x)≥2x﹣1;当1<x<3时,f(x)<1,1<2x﹣1<7,不满⾜不等式f(x)≥2x﹣1;∵函数f(x)是定义在[﹣3,0)∪(0,3]上的奇函数,∴当x∈[﹣3,0)时,f(x)单调递减,当﹣3<x≤﹣2时,﹣≤f(x)<0,﹣<2x﹣1≤﹣,满⾜不等式f(x)≥2x﹣1;当x>﹣2时,f(x)<﹣,2x﹣1>﹣,不满⾜不等式f(x)≥2x﹣1;∴满⾜不等式f(x)≥2x﹣1 的x的取值范围是[﹣3,﹣2]∪[0,1].故选:B.8.将⼀个圆的⼋个等分点分成相间的两组,连接每组的四个点得到两个正⽅形.去掉两个正⽅形内部的⼋条线段后可以形成⼀正⼋⾓星,如图所⽰.设正⼋⾓星的中⼼为O,并且=,=,若将点O到正⼋⾓星16个顶点的向量,都写成为λ+µ,λ,µ∈R 的形式,则λ+µ的最⼤值为()A.B.2 C.1+D.2【考点】向量在⼏何中的应⽤.【分析】根据题意找出使得λ+µ最⼤的顶点C,根据向量加法的平⾏四边形法则可作出平⾏四边形OBCD,这样结合图形及向量数乘的⼏何意义便可得出,这样由平⾯向量基本定理即可求出λ+µ的最⼤值.【解答】解:如图,根据图形及向量加法的平⾏四边形法则可看出O到顶点C的向量,此时λ+µ最⼤;作平⾏四边形OBCD,设BC=a,根据题意得,OA=;∴;∴;∴=;⼜;∴;即λ+µ的最⼤值为.故选C.⼀、填空题(本⼤题共6⼩题,每⼩题5分,共30分)9.已知S n是等⽐数列{a n}(n∈N*)的前n项和,若S3=14,公⽐q=2,则数列{a n}的通项公式a n= 2n(N*).【考点】等⽐数列的通项公式;等⽐数列的前n项和.【分析】根据等⽐数列的前n项和公式和通项公式求解即可.【解答】解:∵S n是等⽐数列{a n}(n∈N*)的前n项和,若S3=14,公⽐q=2,∴,解得:a1=2,∴N*).故答案为:2n(N*).10.极坐标系中,O为极点,点A为直线l:ρsinθ=ρcosθ+2上⼀点,则|OA|的最⼩值为.【考点】简单曲线的极坐标⽅程.【分析】求出极坐标⽅程的普通⽅程,利⽤点到直线的距离公式求解即可.【解答】解:直线l:ρsinθ=ρcosθ+2的普通⽅程为:y=x+2,极坐标系中,O为极点,点A为直线l:ρsinθ=ρcosθ+2上⼀点,则|OA|的最⼩值就是原点到直线的距离:d==.故答案为:.11.如图,点D是△ABC的边BC上⼀点,AB=,AD=2,BD=1,∠ACB=45°,那么∠ADB= ,AC=【考点】余弦定理;正弦定理.【分析】由已知及余弦定理可求cos∠ADB=﹣,结合范围∠ADB∈(0,π),即可求得∠ADB=,求得∠ADC,利⽤正弦定理即可得解AC的值.【解答】解:∵AB=,AD=2,BD=1,∠ACB=45°,∴由余弦定理可得:cos∠ADB===﹣,∵∠ADB∈(0,π),∴∠ADB=,∴∠ADC=π﹣∠ADB=,∴由正弦定理可得:AC===.故答案为:,.12.某三棱锥的三视图如图所⽰,则该三棱锥中最长棱的棱长为.【考点】由三视图求⾯积、体积.【分析】由三视图可知:该⼏何体为三棱锥.AC⊥侧⾯PBC.即可得出.【解答】解:由三视图可知:该⼏何体为三棱锥,AC⊥侧⾯PBC.∠PCB=135°,BC=1,PC=.则该三棱锥中最长棱的棱长为PB===.故答案为:.13.2016年3⽉12⽇,第四届北京农业嘉年华在昌平拉开帷幕.活动设置了“三馆两园⼀带⼀⾕”七⼤板块.“三馆”即精品农业馆、创意农业馆、智慧农业馆;“两园”即主题狂欢乐园、农事体验乐园;“⼀带”即草莓休闲体验带;“⼀⾕”即延寿⽣态观光⾕.某校学⽣准备去参观,由于时间有限,他们准备选择其中的“⼀馆⼀园⼀带⼀⾕”进⾏参观,那么他们参观的不同路线最多有144 种.(⽤数字作答)【考点】排列、组合的实际应⽤.【分析】先选择⼀馆⼀园⼀带⼀⾕,再进⾏排序,即可得出结论.【解答】解:由题意,先选择⼀馆⼀园⼀带⼀⾕,再进⾏排序,即=144种.故答案为:144.14.已知数列{a n}中,a1=a(0<a≤1),a n+1=(n∈N*)=,则a= ;①若a3=a1+a2+…+a n,则S2016= 1512 .②记Sn【考点】数列递推式;数列的求和.【分析】①由a1=a(0<a≤1),a n+1=(n∈N*),可得a2=﹣a+.对a分类讨论:当时,当时,即可得出.=a(0<a≤1),a n+1=(n∈N*),a2=﹣a1+=﹣a+.对a分类讨论:②a1当时,可得:a n+2=a n.当时,可得a n+4=a n.即可得出.【解答】解:①∵a1=a(0<a≤1),a n+1=(n∈N*),∴a2=﹣a1+=﹣a+.当时,a3=﹣a2+=a=,舍去;当时,a3=a2﹣1=﹣a+=,解得a=,满⾜条件.∴a=.=a(0<a≤1),a n+1=(n∈N*),②a1∴a2=﹣a1+=﹣a+.当时,a3=﹣a2+=a,∴a4=﹣a2+=﹣a,∴a n+2=a n.S2016=(a1+a2)×1008=1512.当时,a3=a2﹣1=﹣a+=﹣a+,∴a4=﹣a3+=﹣+=a+1>1,∴a5=a4﹣1=a.∴a n+4=a n.∴S2016=(a1+a2+a3+a4)×504=3×504=1512.综上可得:S2016=1512.故答案分别为:;1512.三、解答题(本⼤题共6⼩题,共80分.解答应写出⽂字说明,证明过程或演算步骤.)15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所⽰.(Ⅰ)写出函数f(x)的解析式及x0的值;(Ⅱ)求函数f(x)在区间[﹣,]上的最⼤值与最⼩值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;三⾓函数的最值.【分析】(I)由函数图象可知A,T=π,利⽤周期公式可求ω,⼜函数过点(,2),结合范围|φ|<,解得φ,可求函数解析式,由函数图象可得2sin(2x0+)=,可解得x0=kπ﹣,k∈Z,⼜结合范围﹣<x0<,从⽽可求x0的值.(II)由x∈[﹣,],可求范围2x+∈[﹣,],利⽤正弦函数的图象和性质即可求其最值.【解答】(本⼩题满分13分)解:(I)∵A>0,ω>0,由函数图象可知,A=2,T==2[x0﹣(x0﹣)]=π,解得ω=2,⼜∵函数过点(,2),可得:2=2sin(2×+φ),解得:2×+φ=2kπ+,k∈Z,⼜|φ|<,∴可得:φ=,∴f(x)=2sin(2x+),∵由函数图象可得:2sin(2x0+)=,解得:2x0+=2kπ+,k∈Z,可得:x0=kπ﹣,k∈Z,⼜∵﹣<x0<,∴x0=,…(II)由x∈[﹣,],可得:2x+∈[﹣,],…当2x+=﹣时,即x=﹣,f(x)min=f(﹣)=﹣1,当2x+=时,即x=,f(x)max=f()=2.…16.为了解⾼⼀新⽣数学基础,甲、⼄两校对⾼⼀新⽣进⾏了数学测试.现从两校各随机抽取10名新⽣的成绩作为样本,他们的测试成绩的茎叶图如下:(1)⽐较甲、⼄两校新⽣的数学测试样本成绩的平均值及⽅差的⼤⼩;(只需要写出结论)(2)如果将数学基础采⽤A、B、C等级制,各等级对应的测试成绩标准如表:(满分100分,所有学⽣成绩均在60分以上)测试成绩[85,100] [70,85)(60,70)基础等级 A B C假设每个新⽣的测试成绩互相独⽴.根据所给数据,以事件发⽣的频率作为相应事件发⽣的概率.从甲、⼄两校新⽣中各随机抽取⼀名新⽣,求甲校新⽣的数学基础等级⾼于⼄校新⽣的数学基础等级的概率.【考点】相互独⽴事件的概率乘法公式;古典概型及其概率计算公式.【分析】(1)利⽤均值与⽅差的定义分别求出甲、⼄两校新⽣的数学成绩的均值与⽅差,从⽽得出结论.(2)分类讨论,求得甲校新⽣的数学基础等级⾼于⼄校新⽣的数学基础等级的概率.【解答】解:(1)两校新⽣的数学测试样本成绩的平均值相同;甲校新⽣的数学测试样本成绩的⽅差⼩于⼄校新⽣的数学测试样本成绩的⽅差.(2)设事件D=“从甲、⼄两校新⽣中各随机抽取⼀名新⽣,甲校新⽣的数学基础等级⾼于⼄校新⽣的数学基础等级”.设事件E1=“从甲校新⽣中随机抽取⼀名新⽣,其数学基础等级为A”,P(E1)=,设事件E2=“从甲校新⽣中随机抽取⼀名新⽣,其数学基础等级为B”,P(E2)=,设事件F1=“从⼄校新⽣中随机抽取⼀名新⽣,其数学基础等级为B”,P(F1)=,设事件F2=“从⼄校新⽣中随机抽取⼀名新⽣,其数学基础等级为C”,P(F2)=,根据题意,D=E1F1∪E1F2∪E2F2,所以P(D)=P(=E1F1)+P(E1F2)+P(E2F2)=++?=,因此,从甲、⼄两校新⽣中各随机抽取⼀名新⽣,甲校新⽣的数学基础等级⾼于⼄校新⽣的数学基础等级的概率为.17.如图,三棱柱ABC﹣A1B1C1中,BC垂直于正⽅形A1ACC1所在平⾯,AC=2,BC=1,D为AC中点,E为线段BC1上的⼀点(端点除外),平⾯AB1E与BD交于点F(Ⅰ)若E不是BC1的中点,求证:AB1∥EF;(Ⅱ)若E是BC1的中点,求AE与平⾯BC1D所成⾓的正弦值;(Ⅲ)在线段BC1上是否存在点E,使得A1E⊥CE,若存在,求出的值,若不存在,请说明理由.【考点】直线与平⾯所成的⾓;直线与平⾯平⾏的性质.【分析】(I)连接B1C,交BC1于点G,连接GD,则由中位线定理得出GD∥AB1,于是AB1∥平⾯BC1D,由线⾯平⾏的性质得出AB1∥EF;。
海淀区高三年级第二学期期末练习数学(理科) 2009.05一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)已知集合{}12A x y x==-,集合{}1B xx = ,则A B 等于( )(A )112x x 禳镲镲#睚镲镲铪 (B ){}1x x ?(C )112x x 禳镲镲-#睚镲镲铪(D ){}1x x ³ (2)某行业主管部门所属的企业有800家,按企业固定资产规模分为大型企业﹑中型企业﹑小型企业. 大﹑中﹑小型企业分别有80家,320家和400家,该行业主管部门要对所属企业的第一季度生产状况进行分层抽样调查,共抽查100家企业. 其中大型企业中应抽查 ( )(A )20家 (B )16家 (C )10家 (D )8家 (3)若102a b <<<,则 ( )(A )22aba> (B )22abb> (C )2log ()1ab >- (D )2log ()2ab <-(4)在ABC ∆中,,,A B C 行 所对的边长分别为,,a b c ,如果cos cos a B b A =,那么ABC∆一定是()(A )锐角三角形 (B )钝角三角形 (C )直角三角形 (D )等腰三角形(5)若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点 ( )(A )()0,4 (B )()0,2 (C )()2,4- (D )()4,2-(6)某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲乙同时参加,则他们发言时不能相邻.那么不同的发言顺序种数为 ( )(A )360 (B )520 (C )600 (D )720(7)在棱长均为2的正四棱锥P ABCD -中,点E 为PC 的中点,则下列命题正确的是 ( )(A )BE ∥平面PAD ,且BE 到平面PAD 3(B )BE ∥平面PAD ,且BE 到平面PAD 26(C )BE 与平面PAD 不平行,且BE 与平面PAD 所成的角大于30︒(D )BE 与平面PAD 不平行,且BE 与平面PAD 所成的角小于30︒(8)已知点M 是矩形ABC D 所在平面内任意一点,则下列结论中正确的是( )(A )MB MD MA MC -=-(B )()()0MB MD MA MC -?(C )MB MDMA MC ?(D )MA MD MB MC 壮二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.(9)已知等比数列{}n a 中,12a =,26S =,那么5S 的值为 .(10)已知函数()120,0x x f x x a x +ìï>ï=íï+ ïî 是连续函数,则实数a 的值是 .(11)已知tan =2α,则3cos 22πα⎛⎫+⎪⎝⎭的值等于______ _ . (12)已知函数()()sin (0,)2f x x πωφωφ=+><的导函数()'y f x =的部分图象如图所示,且导函数()'f x 有最小值2-,则ω= ,E DCBAPO yxπ6-2-1()'y f x =φ= .(13)以双曲线的一个顶点为圆心的圆经过该双曲线的一个焦点,且与该双曲线的一条准线相切,则该双曲线的离心率为 . (14)下图展示了一个由区间(0,1)到实数集R 的映射过程:区间()0,1中的实数m 对应数轴上的点M ,如图1;将线段AB 围成一个圆,使两端点A 、B 恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为()0,1,如图3.图3中直线AM 与x 轴交于点(),0N n ,则m 的象就是n ,记作()f m n =.(ⅰ)方程()0f x =的解是x = ;(ⅱ)下列说法中正确命题的序号是 .(填出所有正确命题的序号) ①114f ⎛⎫=⎪⎝⎭; ②()f x 是奇函数; ③()f x 在定义域上单调递增; ④()f x 的图象关于点1,02⎛⎫ ⎪⎝⎭对称.1NMM AB A xyO 图1 图2 图3三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. (15)(本小题共13分)已知数列{}n a 的前n 项和为n S ,11a =, 21(1)n n nS n S n cn +-+=+(c ∈R ,1,2,3,...n =).且1S ,22S ,33S 成等差数列. (Ⅰ)求c 的值;(Ⅱ)求数列{}n a 的通项公式.(16)(本小题共13分)检测部门决定对某市学校教室的空气质量进行检测,空气质量分为A、B、C三级.每间教室的检测方式如下:分别在同一天的上、下午各进行一次检测,若两次检测中有C级或两次都是B级,则该教室的空气质量不合格. 设各教室的空气质量相互独立,且每次检测的结果也相互独立. 根据多次抽检结果,一间教室一次检测空气质量为A、B、C三级的频率依次为311 488,,.(Ⅰ)在该市的教室中任取一间,估计该间教室的空气质量合格的概率;(Ⅱ)如果对该市某中学的4间教室进行检测,记在上午检测空气质量为A级的教室间数为ξ,并以空气质量为A级的频率作为空气质量为A级的概率,求ξ的分布列及期望.如图,斜三棱柱111ABC A B C -的底面是直角三角形,90ACB ∠=︒,点1B 在底面ABC 上的射影恰好是BC 的中点,且1BC CA AA ==.(Ⅰ)求证:平面11ACC A ⊥平面11B C CB ; (Ⅱ)求证:1BC 1AB ⊥;(Ⅲ)求二面角11B AB C --的大小.B 1C 1A 1CBA已知:函数()xe f x x a=-(其中常数0a <).(Ⅰ)求函数()f x 的定义域及单调区间; (Ⅱ)若存在实数(],0x a ∈,使得不等式()12f x ≤成立,求a 的取值范围.已知抛物线C :2y x =,过定点()0,0A x 01()8x ≥,作直线l 交抛物线于,P Q (点P 在第一象限).(Ⅰ)当点A 是抛物线C 的焦点,且弦长2PQ =时,求直线l 的方程;(Ⅱ)设点Q 关于x 轴的对称点为M ,直线PM 交x 轴于点B ,且BQ BP ⊥.求证:点B 的坐标是0(,0)x -并求点B 到直线l 的距离d 的取值范围.已知)(x f 定义域为R ,满足:①)1(1)1(->=f f ;②对任意实数y x ,,有)1()1()()()1(--+=+-y f x f y f x f x y f . (Ⅰ)求)0(f ,(3)f 的值; (Ⅱ)求21(16)(3)2f x f x -+的值; (Ⅲ)是否存在常数B A ,,使得不等式2|)2()(|≤++-+B Ax x f x f 对一切实数x 成立.如果存在,求出常数B A ,的值;如果不存在,请说明理由.海淀区高三年级第二学期期末练习数学(理科) 参考答案及评分标准2009.05一、选择题(本大题共8小题,每小题5分,共40分)ACDDB CDC二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)(9)62 (10)2 (11)45 (12)2,π3(1321 (14)12,③④ 三、解答题(本大题共6小题,共80分) (15)(本小题共13分)解:(Ⅰ)∵21(1)n n nS n S n cn +-+=+(1,2,3,...n =), ∴()2111n n S S n cnn n n n ++-=++(1,2,3,...n =). ………………………………………1分∵1S ,22S ,33S 成等差数列, ∴32122132S S S S -=-. ………………………………………3分 ∴14226c c++=. ………………………………………5分 ∴1c =. ………………………………………6分(Ⅱ)由(Ⅰ)得111n nS S n n+-=+(1,2,3,...n =). ∴数列{}n Sn为首项是11S ,公差为1的等差数列. ………………………………………8分∴1(1)11n S S n n n =+-⋅=. ∴2n S n =. ………………………………………10分 当2n ≥时,221(1)21n n n a S S n n n -=-=--=-. ………………………………………12分当1n =时,上式也成立. ………………………………………13分∴21n a n =-(1,2,3,...n =).(16)(本小题共13分)解:(Ⅰ)该间教室两次检测中,空气质量均为A 级的概率为3394416?.………………………………2分 该间教室两次检测中,空气质量一次为A 级,另一次为B 级的概率为31324816创=. …………………………………4分设“该间教室的空气质量合格”为事件E .则 …………………………………5分()33313244484P E =?创=. …………………………………6分答:估计该间教室的空气质量合格的概率为34. (Ⅱ)由题意可知,ξ的取值为0,1,2,3,4. …………………………………7分()443C )4i ii P i ξ-==3()(1-4()0,1,2,3,4i =. 随机变量ξ的分布列为:ξ0 1 2 3 4P1256 364 27128 2764 81256…………………………………12分解法一: ∴132********+3432566412864256E ξ=??创+?. …………………………………13分解法二: 344B ξ~(,), ∴3434E ξ=?. …………………………………13分(17)(本小题共14分)(Ⅰ)证明:设BC 的中点为M .在斜三棱柱111ABC A B C -中,点1B 在底面ABC 上的射影恰好是BC 的中点, 1B M ∴⊥平面ABC. ……………………1分AC Ì平面ABC ,1B M AC ∴⊥. ……………………2分90ACB ∠=︒, ∴BC AC ⊥. 1B M BC M = ,∴AC ⊥平面11B C CB . ……………………4分AC ⊂平面11ACC A ,∴平面11ACC A ⊥平面11B C CB . ………………………………………5分解法一:(Ⅱ)连接1B C , AC ⊥平面11B C CB ,1B C∴是直线1AB 在平面11B C CB上的射影. ………………………………………5分1BC CC =,∴四边形11B C CB 是菱形.11B C BC ∴⊥. ………………………………………7分11AB BC ∴⊥. …………………………MB 1C 1A 1CB A……………9分(Ⅲ)过点B 作1BH AB ⊥交1AB 于点H ,连接1C H .11AB BC ⊥ ,1AB ∴⊥平面1BHC . 11AB C H ∴⊥.1BHC ∴∠是二面角11B ABC --的平面角. ………………………………………11分设2BC =,则12,BC CA AA === 1,B M BC BM MC ⊥=,112B C B B ∴==. 112BB B C BC ∴===.160.B BC ∴∠=︒ 1120BCC ∴∠=︒. 123BC ∴=.AC ⊥ 平面1BC ,1B C Ì平面1BC , 1AC B C ∴⊥. 122B A ∴=.在1BB A ∆中,可求142BH =∵11111,B B B C B H B H ==,∴111Rt Rt BB H C B H ∆≅∆. ∴1142C H BH ==. 1141412544cos 71414222BHC +-∴∠==-⨯⨯. ………………………………………13分MHB 1C 1A 1CBA15arccos 7BHC π∴∠=-.∴二面角11B ABC --的大小为5arccos 7π-. ………………………………………14分解法二:(Ⅱ)因为点1B 在底面ABC 上的射影是BC 的中点,设BC 的中点为O ,则1B M ⊥平面ABC.以O 为原点,过O 平行于CA 的直线为x 轴,BC 所在直线为y 轴,1OB 所在直线为z 轴,建立如图所示的空间直角坐标系. 设11BC CA AA ===,由题意可知,11131(0,,0),(0,,0),(0,0,(1,,0)2222B C B A --.设1(,,)C x y z ,由11BC B C = ,得13(0,1,2C - ………………………………………7分133(0,,22BC ∴=- .又113(1,,22AB =- . 11133310022AB BC ⎛⎫∴⋅=-⨯+⨯-+= ⎪⎝⎭ .11AB BC ∴⊥. ………………………………………9分(Ⅲ)设平面1ABB 的法向量为111(,,1)x y =n .则1110,0.BA BB ⎧⋅=⎪⎨⋅=⎪⎩n n∴1110,130.22x y y -=⎧⎪⎨-+=⎪⎩ 1(3,3,1)∴=n .z yxOB 1C 11BA设平面11AB C 的法向量为222(,,1)x y =n .则21210,0.AB AC ⎧⋅=⎪⎨⋅=⎪⎩n n∴2222130,2130.22x y x y ⎧-+=⎪⎪⎨⎪--+=⎪⎩ 23(2∴=n . ………………………………………12分1212125cos ,7⋅∴<>==n n n n n n . ………………………………………13分∴二面角11B AB C --的大小为5arccos 7π-. ………………………………………14分(18)(本小题共13分) 解:(Ⅰ)函数()f x 的定义域为{}x x a≠. ………………………………………1分 ()()()()()2211x x x e x a e x a e f x x a x a -+⎡⎤--⋅⎣⎦'==--. ………………………………………3分由()0f x '>,解得1x a >+.由()0f x '<,解得1x a <+且x a ≠.∴()f x 的单调递增区间为()1,a ++∞,单调递减区间为(),a -∞,(),1a a +.………………………………………6分(Ⅱ)由题意可知,0a <,且()x e f x x a =-在(],0a 上的最小值小于等于12时,存在实数(],0x a ∈,使得不等式()12f x ≤成立. ………………………………………7分 若10a +<即1a <-时,x(),1a a +a +1 ()1,0a +()f x ' - 0 + ()f x↘极小值↗∴()f x 在(],0a 上的最小值为()11a f a e ++=.则112a e +≤,得1ln 12a ≤-. ………………………………………10分 若10a +≥即1a ≥-时,()f x 在(],0a 上单调递减,则()f x 在(],0a 上的最小值为()10f a=-.由112a -≤得2a ≤-(舍). ………………………………………12分综上所述,1ln12a ≤-. ………………………………………13分 (19)(本小题共13分)解:(Ⅰ)由抛物线C :2y x =得抛物线的焦点坐标为1(,0)4,设直线l 的方程为:14x ny =+,()()1122,,,P x y Q x y . ………………………………………1分由2,14y x x ny ìï=ïïíï=+ïïî得2104y ny --=. 所以210n ∆=+>,12y y n+=.因为112211,44x ny x ny =+=+, …………………………………3分 所以()12121211112442PQ x x x x n y y =+++=++=++=.所以21n =.即1n = . 所以直线l的方程为:104x y --=或104x y +-=. ………………………………………5分 (Ⅱ)设0:(0)l x my x m =+≠,1122(,),(,)P x y Q x y ,则22(,)M x y -.由02,x my x y x=+⎧⎨=⎩得200y my x --=.因为018x ≥,所以2040m x ∆=+>,12120,y y m y y x +==-. ……………………………………7分 (ⅰ)设(,0)B B x ,则2211(,),(,)B B BM x x y BP x x y =--=-.由题意知:BM ∥BP,211122B B x y y x x y x y ∴-=-+.即2212122112211212()()B y y x x y x y y y y y y y y y +=+=+=+. 显然10,By y += ………………………………………9分(ⅱ)由题意知:BMQ ∆为等腰直角三角形,1PB k ∴=,即12121y y x x +=-,即1222121y y y y +=-. 2212121201. ()4 1. 41y y y y y y m x ∴-=∴+-=∴+=. 20140m x ∴=->.014x ∴<.018x ≥,01184x ∴≤<. ………………………………………11分 002220002261[)2241111()2()(1)1d x m x x x ∴====-+---. 即d的取值范围是61)2. ………………………………………13分 (20)(本小题共14分)解:(Ⅰ)取1==y x ,得(111)(1)(1)(11)(f f f f f -+=?-?,即22(1)(1)(0)f f f =+.因为(f =,所以(0)0f =. ………………………………………1分取0==y x ,得21(1)(1)f f ==-.因为)1(1)1(->=f f ,所以(1)1f -=-. 取2,0==y x ,得(3)(0)(2)(1)(1)f f f f f =?- ,所以(3)1f =-.………………………………………3分(Ⅱ)在)1()1()()()1(--+=+-y f x f y f x f x y f 中取1=y 得)()2(x f x f =-.所以(1)(1)f x f x +=-. 在)1()1()()()1(--+=+-y f x f y f x f x y f 中取xy =,得1)1()(22=-+x f x f .在)1()1()()()1(--+=+-y f x f y f x f x y f 中取0x =, 得(1)(0)()(1)(1)(1)f y f f y f f y f y +=+--=--. 所以(2)0f -=.在)1()1()()()1(--+=+-y f x f y f x f x y f 中取1y =-, 得()()(1)(1)(2)f x f x f f x f -=-+--. 所以()()f x f x -=-.在)1()1()()()1(--+=+-y f x f y f x f x y f 中取y x =-, 得()()()()()1211f x f x f x f x f x -=-+---()()()211f x f x f x =---+()()()()()()222211112f x f x f x f x f x f x =----=-+-=-.所以211(12)()22f x f x -+=对任意实数x 均成立. 所以211(16)(3)22f x f x -+=. ………………………………………9分(Ⅲ)由(Ⅱ)知)()2(x f x f =-,2|)2()(|≤++-+∴B Ax x f x f 2|)(2|≤++⇔B Ax x f在2|)(2|≤++B Ax x f 中,取1-=x ,得222≤+--≤-B A ,即222A B -?- ① 取1=x ,得222≤++≤-B A ②取3=x ,得2322≤++-≤-B A ,即2232A B -?- ③②+①得0≤A ,②+③得0≥A . ∴0=A .将0=A 代入①得0≥B . 将0=A 代入②得0≤B . ∴0=B .由(Ⅱ)知1)1()(22=-+x f x f ,所以|()|1f x £对一切实数x 成立. 故当0==B A 时,2|)(2|≤++B Ax x f 对一切实数x 成立.∴存在常数0==B A ,使得不等式2|)2()(|≤++-+B Ax x f x f 对一切实数x 成立,且0==B A 为满足题设的唯一一组值. ………………………………………14分说明:其它正确解法按相应步骤给分.。
【关键字】精品17年各城区摸底17年东城二模理(18)(共13分)解:(Ⅰ)当时,因为,所以,.又因为,所以曲线在点处的切线方程为,即.……………………4分(Ⅱ)“对任意的,存在使得成立”等价于“在区间上,的最大值大于或等于的最大值”.因为,所以在上的最大值为.令,得或.① 当,即时,在上恒成立,在上为单调递加函数,的最大值为,由,得.② 当,即时,当时,,为单调递减函数,当时,,为单调递加函数.所以的最大值为或,由,得;由,得.又因为,所以.③ 当,即时,在上恒成立,在上为单调递减函数,的最大值为,由,得,又因为,所以.综上所述,实数的值范围是或.…13分17年东城一模理(18)(共13分)解:(Ⅰ)的定义域为.当时,,所以.因为且,所以曲线在点处的切线方程为.…………4分(Ⅱ)若函数在上为单调递减,则在上恒成立.即在上恒成立.即在上恒成立. 设, 则. 因为,所以当时,有最大值.所以的取值范围为. ……………………9分(Ⅲ)因为,不等式等价于.即,令,原不等式转化为. 令,由(Ⅱ)知在上单调递减, 所以在上单调递减. 所以,当时,. 即当时,成立.所以,当时,不等式成立.……………………13分 17年西城一模理18.(本小题满分13分)解:(Ⅰ)对求导数,得, [ 1分]所以切线的斜率为, [ 2分] 由此得切线的方程为:,即000020(e )(1)1e 2x x x x y x x =+-+-. [ 4分](Ⅱ)依题意,切线方程中令1x =,得 00020000011e e )22(e )(1)(2)(x x x y x x x x x =+=--+--. [ 5分]所以 (1,)A y ,(1,0)B .所以 1||||2AOB S OB y =⋅△000(1)(11|e )|22x x x =--,0[1,1]x ∈-. [ 7分]设 ()(111e )22)(x x g x x -=-,[1,1]x ∈-. [ 8分]则 11111e )(1)(e )(1)(e 1)22(2()22x x x x x x g x -+'=-----=-. [10分]令 ()0g x '=,得0x =或1x =. ()g x ,()g x '的变化情况如下表:所以 ()g x 在(1,0)-单调递减;在(0,1)单调递增, [12分] 所以 min ()(0)1g x g ==,从而 △AOB 的面积的最小值为1. [13分]17年西城二模理19.(本小题满分13分) 解:(Ⅰ)由 21()()e x f x x ax a -=+-⋅,得 121()(2)e ()e x x f x x a x ax a --'=+⋅-+-⋅1()(2)e x x a x -=-+-⋅. [ 2分]令 ()0f x '=,得2x =,或x a =-.所以 当2a =-时,函数()f x '有且只有一个零点:2x =;当2a ≠-时,函数()f x ' 有两个相异的零点:2x =,x a =-. [ 4分] (Ⅱ)① 当2a =-时,()0f x '≤恒成立,此时函数()f x 在(,)-∞+∞上单调递减,所以,函数()f x 无极值. [ 5分] ② 当2a >-时,()f x ',()f x 的变化情况如下表:所以,0a ≥时,()f x 的极小值为1()e a f a a +-=-⋅≤0. [ 7分]又 2x >时,222240x ax a a a a +->+-=+>,所以,当2x >时,21()()e 0x f x x ax a -=+-⋅>恒成立. [ 8分] 所以,1()e a f a a +-=-⋅为()f x 的最小值. [ 9分] 故0a ≥是函数()f x 存在最小值的充分条件. [10分] ③ 当5a =-时,()f x ',()f x 的变化情况如下表:因为 当5x >时,21()(55)e 0x f x x x -=-+⋅>,又 1(2)e 0f -=-<,所以,当5a =-时,函数()f x 也存在最小值. [12分]所以,0a ≥不是函数()f x 存在最小值的必要条件.综上,0a ≥是函数()f x 存在最小值的充分而不必要条件. [13分] 17年海淀一模理18.(本小题满分13分) 解:法1:(Ⅰ)由2()24(1)ln(1)f x x ax a x =-+-+可得函数定义域为(1,)-+∞,2(1)[(2)]1x x a x ---=+,由'()0f x =得121,2x x a ==-. 因为3a <,所以21a -<.当1a ≤时,21a -≤-,所以'()()f x f x ,的变化如下表:'()()f x f x ,的变化如下表:综上,1x =是函数()f x 的极值点,且为极小值点. (Ⅱ)易知(0)=0f ,由(Ⅰ)可知,当2a ≤时,函数()f x 在区间[0,1]上单调递减,所以有()0f x ≤恒成立;当23a <<时,函数()f x 在区间[0,2]a -上单调递增,所以(2)(0)0f a f ->=,所以不等式不能恒成立;所以2a ≤时有()0f x ≤在区间[0,1]上恒成立. 法2:(Ⅰ)由2()24(1)ln(1)f x x ax a x =-+-+可得函数定义域为(1,)-+∞,令2()(1)(2)g x x a x a =+-+-,经验证(1)0g =,因为3a <,所以()0g x =的判别式222(1)4(2)69(3)0a a a a a ∆=---=-+=->, {说明:写明222(1)4(2)69(3)0a a a a a ∆=---=-+=-≠也可以} 由二次函数性质可得,1是2()(1)(2)g x x a x a =+-+-的异号零点, 所以1是'()f x 的异号零点, 所以1x =是函数()f x 的极值点. (Ⅱ)易知(0)=0f ,因为2(1)[(2)]'()1x x a f x x ---=+,又因为3a <,所以21a -<,所以当2a ≤时,在区间[0,1]上'()0f x <,所以函数()f x 单调递减,所以有()0f x ≤恒成立;当23a <<时,在区间[0,2]a -上'()0f x >,所以函数()f x 单调递增,所以(2)(0)0f a f ->=,所以不等式不能恒成立;所以2a ≤时有()0f x ≤在区间[0,1]上恒成立. 17年海淀二模理19.(本小题满分13分) 解:(Ⅰ)'()e 1ax f x a =-,因为曲线()y f x =在(0,(0))f 处的切线与直线230x y ++=垂直, 所以切线l 的斜率为2, 所以'(0)2f =, 所以3a =.(Ⅱ)法1:当0a ≤时,显然有(1)e 101a f <-≤<,即存在实数0x 使0()1f x <; 当0,1a a >≠时,由'()0f x =可得11ln x a a=,所以在11(,ln )x a a ∈-∞时,'()0f x <,所以函数()f x 在11(,ln )a a -∞上递减;11(ln ,)x a a ∈+∞时,'()0f x >,所以函数()f x 在11(ln ,)a a +∞上递增 所以11(ln )f a a =1(1ln )a a+是()f x 的极小值.由函数()e ax f x x =-可得(0)1f =, 由1a ≠可得11ln 0a a ≠, 所以11(ln )(0)1f f a a<=,综上,若1a ≠,存在实数0x 使0()1f x <.(Ⅱ)法2:当0a ≤时,显然有(1)e 101a f <-≤<,即存在实数0x 使0()1f x <; 当0,1a a >≠时,由'()0f x =可得11ln x a a=,所以在11(,ln )x a a ∈-∞时,'()0f x <,所以函数()f x 在11(,ln )a a -∞上递减;11(ln ,)x a a ∈+∞时,'()0f x >,所以函数()f x 在11(ln ,)a a +∞上递增. 所以11(ln )f a a =1ln a a+是()f x 的极小值. 设1ln ()x g x +=,则2ln '()(0)xg x x -=>,令'()0g x =,得1x =所以当1x ≠时()(1)1g x g <=, 所以11(ln )1f a a<,综上,若1a ≠,存在实数0x 使0()1f x <. 17年朝阳一模理(18)(本小题满分13分) 解:(Ⅰ)由已知得0x >,11()axf x a x x-'=-=. (ⅰ)当0a ≤时,()0f x '>恒成立,则函数()f x 在(0,)+∞为增函数;(ⅱ)当0a >时,由()0f x '>,得10x a<<; 由()0f x '<,得1x a >; 所以函数()f x 的单调递增区间为1(0,)a ,单调递减区间为1(,)a+∞. ……4分(Ⅱ)因为21()()22g x xf x x x =++21(ln 1)22x x x x x =--++21ln 2x x x x =-+,则()ln 11g x x x '=+-+ln 2()3x x f x =-+=+.由(Ⅰ)可知,函数()g x '在(0,1)上单调递增,在(1,)+∞上单调递减.又因为2211()22e e g '=--+210e =-<,(1)10g '=>, 所以()g x '在(0,1)上有且只有一个零点1x .又在1(0,)x 上()0g x '<,()g x 在1(0,)x 上单调递减; 在1(,1)x 上()0g x '>,()g x 在1(,1)x 上单调递增. 所以1x 为极值点,此时0m =.又(3)ln310g '=->,(4)2ln 220g '=-<, 所以()g x '在(3,4)上有且只有一个零点2x .又在2(3,)x 上()0g x '>,()g x 在2(3,)x 上单调递增; 在2(,4)x 上()0g x '<,()g x 在2(,4)x 上单调递减. 所以2x 为极值点,此时3m =.综上所述,0m =或3m =. ……………………………………………………13分17年朝阳二模理(19)(本小题满分14分) 解:(Ⅰ)()e 2x F x x b =--,则()e 2xF x '=-.令()e 20,xF x '=->得ln 2x >,所以()F x 在(ln 2,)+∞上单调递增.令()e 20,x F x '=-<得ln 2x <,所以()F x 在(,ln 2)-∞上单调递减. …………4分 (Ⅱ)因为()e 21x f x x '=+-,所以(0)0f '=,所以l 的方程为1y =.依题意,12a-=,1c =. 于是l 与抛物线2()2g x x x b =-+切于点(1,1), 由2121b -+=得2b =.所以2,2, 1.a b c =-== …………8分(Ⅲ)设()()()e (1)xh x f x g x a x b =-=-+-,则()0h x ≥恒成立.易得()e (1).xh x a '=-+ (1)当10a +≤时,因为()0h x '>,所以此时()h x 在(,)-∞+∞上单调递增.①若10a +=,则当0b ≤时满足条件,此时1a b +≤-; ②若10a +<,取00x <且01,1bx a -<+ 此时0001()e (1)1(1)01xbh x a x b a b a -=-+-<-+-=+,所以()0h x ≥不恒成立. 不满足条件; (2)当10a +>时,令()0h x '=,得ln(1).x a =+由()0h x '>,得ln(1)x a >+; 由()0h x '<,得ln(1).x a <+所以()h x 在(,ln(1))a -∞+上单调递减,在(ln(1),)a ++∞上单调递增. 要使得“()e (1)0xh x a x b =-+-≥恒成立”,必须有“当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥”成立. 所以(1)(1)ln(1)b a a a ≤+-++.则2(1)(1)ln(1) 1.a b a a a +≤+-++- 令()2ln 1,0,G x x x x x =-->则()1ln .G x x '=- 令()0G x '=,得 e.x =由()0G x '>,得0e x <<;由()0G x '<,得 e.x >所以()G x 在(0,e)上单调递增,在(e,)+∞上单调递减, 所以,当e x =时,max ()e 1.G x =-从而,当e 1,0a b =-=时,a b +的最大值为e 1-.综上,a b +的最大值为e 1-. …………14分17年石景山一模理18.(本小题共13分) 解:(Ⅰ)1()f x x'=, (1)1f '=, 又(1)0f =,所以切线方程为1y x =-; ……3分 (Ⅱ)由题意知0x >,令11()()(1)ln 1g x f x x xx=--=-+. 22111'()x g x x x x -=-= ………5分 令21'()0x g x x-==,解得1x =. ………6分易知当1>x 时,'()0g x >,易知当01x <<时,'()0g x <.即()g x 在(0,1)单调递减,在(1,)+∞单调递增 ………7分 所以min ()(1)0g x g ==,()(1)0g x g ≥=即1()()(1)0g x f x x =--≥,即1()(1)f x x≥-. ……8分 (Ⅲ)设()1ln (1)h x x a x x =--≥,依题意,对于任意1,>x ()0h x >恒成立.'()1a x ah x x x-=-=, ………9分 1≤a 时,'(),h x >0()h x 在[1,)+∞上单调增, 当1>x 时,()(1)0h x h >=,满足题意. ………11分1>a 时,随x 变化,'()h x ,()h x 的变化情况如下表:()h x 在(,)a 1上单调递减, 所以()()<=g a g 10即当 1>a 时,总存在()0<g a ,不合题意.……12分 综上所述,实数a 的最大值为1. ……13分 17年顺义二模18.解:(Ⅰ)当e p =时,()11++=+-x ex f x ,()11+-='+-x e x f∴()31=f ,()01='f∴曲线()x f y =在点1=x 处的切线方程为3=y -----------------------------4分(Ⅱ)∵()1++=-x pex f x,∴()1+-='-x pe x f ---------------------------------5分①当0≤p 时,()0>'x f ,则函数()x f 在的单调递增区间为()+∞∞-,;------6分②当0>p 时,令()0f x '=,得p e x=,解得p x ln =.---------------------7分则当x 变化时,()x f '的变化情况如下表:------------------------------9分所以, 当0>p 时,()x f 的单调递增区间为 ()+∞,ln p , 单调递减区间为()p ln ,∞-.------------------------------10分 (Ⅲ)当1=p 时,()1++=-x ex f x,直线1+=mx y 与曲线()x f y =没有公共点,等价于关于x 的方程11++=+-x e mx x在()+∞∞-,上没有实数解,即关于x 的方程()xex m -=-1(*)在()+∞∞-,上没有实数解.①当1=m 时,方程(*)化为0=-xe ,显然在()+∞∞-,上没有实数解. --------------------------------12分 ②当1≠m 时,方程(*)化为11-=m xe x ,令()x xe x g =,则有()()xe x x g +='1. 令()0='x g ,得1-=x ,则当x 变化时,()g x '的变化情况如下表:当1x =-时,()min g x e =-,同时当x 趋于+∞时,()g x 趋于+∞, 从而()g x 的值域为1,e⎡⎫-+∞⎪⎢⎣⎭. -----------------------------------13分 所以当em 111-<-时,方程(*)无实数解,解得实数m 的取值范围是()1,1e -. 综合①②可知实数m 的取值范围是(]1,1e -. ----------------------------14分17年昌平二模(18)(本小题满分13分)解:(I )因为22()(1)xf x a x xe-=--,所以22'()2(1)()xx f x a x ex e --=---.因为()y f x =在点(2,(2))f 处的切线与x 轴平行, 所以'(2)0f =. 所以120a +=. 所以12a =-. ………………5分 (II )因为2'()(1)(2)xf x x e a -=-+,(1) 当0a ≥时,220xea -+>.所以2'()(1)(2)01xf x x e a x -=-+>⇔>,2'()(1)(2)01x f x x e a x -=-+<⇔<.所以函数()f x 的单调递增区间为(1,)+∞,文档从网络中收集,已重新整理排版.word 版本可编辑.欢迎下载支持.11word 版本可编辑.欢迎下载支持. 函数()f x 的单调递减区间为(,1)-∞.(2)当02e a -<<时, 令2'()(1)(2)0xf x x e a -=-+=得121,2ln(2)x x a ==--,且211ln(2)0x x a -=-->.当x 变化时,'()f x ,()f x 的变化情况如下表:所以函数()f x 的单调递增区间为(1,2ln(2))a --,函数()f x 的单调递减区间为(,1),(2ln(2),)a -∞--+∞; 综上所述:当0a ≥时,函数()f x 的单调递增区间为(1,)+∞,函数()f x 的单调递减区间为(,1)-∞;当02e a -<<时,函数()f x 的单调递增区间为(1,2ln(2))a --, 函数()f x 的单调递减区间为:(,1),(2ln(2),)a -∞--+∞.………………13分此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
2020北京各区高三一模二模数学分类汇编—导数一、解答题(共33小题)1.(2020•朝阳区二模)已知函数f(x)=2sin x﹣x cos x﹣ax(a∈R).(Ⅰ)若曲线y=f(x)在点(0,f(0))处的切线的斜率为1.(i)求a的值;(ii)证明:函数f(x)在区间(0,π)内有唯一极值点;(Ⅱ)当a≤1时,证明:对任意x∈(0,π),f(x)>0.2.(2020•西城区二模)设函数f(x)=axlnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线经过点(3,2).(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)证明:f(x)>﹣.3.(2020•房山区二模)已知函数f(x)=.(Ⅰ)求函数f(x)的定义域;(Ⅱ)求曲线f(x)在点(0,f(0))处的切线方程;(Ⅲ)求证:当x∈(﹣,)时,f(x)≥2.4.(2020•东城区二模)已知f(x)=e x+sin x+ax(a∈R).(Ⅰ)当a=﹣2时,求证:f(x)在(﹣∞,0)上单调递减;(Ⅱ)若对任意x≥0,f(x)≥1恒成立,求实数a的取值范围;(Ⅲ)若f(x)有最小值,请直接给出实数a的取值范围.5.(2020•丰台区二模)已知函数.(Ⅰ)求函数f(x)的极值;(Ⅱ)求证:当x∈(0,+∞)时,;(Ⅲ)当x>0时,若曲线y=f(x)在曲线y=ax2+1的上方,求实数a的取值范围.6.(2020•昌平区二模)已知函数f(x)=﹣ax+a,a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(0,1)处的切线方程;(Ⅱ)求函数y=f(x)的单调区间;(Ⅲ)当x∈(0,2)时,比较f(x)与﹣|1﹣a|的大小.7.(2020•海淀区二模)已知函数f(x)=e x(sin x+cos x).(Ⅰ)求f(x)的单调递增区间;(Ⅱ)求证:曲线y=f(x)在区间(0,)上有且只有一条斜率为2的切线.8.(2020•密云区二模)已知函数f(x)=x﹣alnx,a∈R.(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;(Ⅱ)设函数h(x)=f(x)+,试判断函数h(x)是否存在最小值,若存在,求出最小值,若不存在,请说明理由.(Ⅲ)当x>0时,写出xlnx与x2﹣x的大小关系.9.(2020•大兴区一模)已知函数.(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:函数f(x)有且只有一个零点.10.(2020•东城区一模)已知函数f(x)=x(lnx﹣ax)(a∈R).(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)有两个极值点,求实数a的取值范围;(Ⅲ)若a>1,求f(x)在区间(0,2a]上的最小值.11.(2020•海淀区一模)已知函数f(x)=e x+ax.(Ⅰ)当a=﹣1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(﹣2,0)时,曲线y=f(x)与y=1﹣lnx有且只有一个交点.12.(2020•通州区一模)已知函数f(x)=(x﹣a)e x+x+a,设g(x)=f'(x).(Ⅰ)求g(x)的极小值;(Ⅱ)若f(x)>0在(0,+∞)上恒成立,求a的取值范围.13.(2020•怀柔区一模)已知函数f(x)=lnx,g(x)=e x.(Ⅰ)求y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当x>0时,证明:f(x)<x<g(x);(Ⅲ)判断曲线f(x)与g(x)是否存在公切线,若存在,说明有几条,若不存在,说明理由.14.(2020•丰台区一模)已知函数f(x)=(x+a)lnx﹣x+1.(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线斜率为1,求实数a的值;(Ⅱ)当a=0时,求证:f(x)≥0;(Ⅲ)若函数f(x)在区间(1,+∞)上存在极值点,求实数a的取值范围.15.(2020•朝阳区一模)已知函数.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)判断函数f(x)的零点的个数,并说明理由;(Ⅲ)设x0是f(x)的一个零点,证明曲线y=e x在点处的切线也是曲线y=lnx的切线.16.(2020•房山区一模)已知函数f(x)=2x3﹣ax2+2.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)讨论函数f(x)的单调性;(Ⅲ)若a>0,设函数g(x)=|f(x)|,g(x)在[﹣1,1]上的最大值不小于3,求a的取值范围.17.(2020•顺义区二模)已知函数f(x)=e x﹣ax2,a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点A(0,f(0))处的切线方程;(Ⅱ)若f(x)在区间(0,+∞)上单调递增,求实数a的取值范围;(Ⅲ)当a=﹣1时,试写出方程f(x)=1根的个数.(只需写出结论)18.(2020•石景山区一模)已知函数,f(x)=x2(x>0),g(x)=alnx(a>0).(Ⅰ)若f(x)>g(x)恒成立,求实数a的取值范围;(Ⅱ)当a=1时,过f(x)上一点(1,1)作g(x)的切线,判断:可以作出多少条切线,并说明理由.19.(2020•密云区一模)已知函数f(x)=e x(ax+1),a∈R.(I)求曲线y=f(x)在点M(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)判断函数f(x)的零点个数.20.(2020•朝阳区模拟)已知函数f(x)=e x﹣ax2(a∈R).(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线与x轴平行,求a;(Ⅱ)已知f(x)在[0,1]上的最大值不小于2,求a的取值范围;(Ⅲ)写出f(x)所有可能的零点个数及相应的a的取值范围.(请直接写出结论)21.(2020•东城区校级模拟)设函数f(x)=me x﹣x2+3,其中m∈R.(Ⅰ)如果f(x)同时满足下面三个条件中的两个:①f(x)是偶函数;②m=1;③f(x)在(0,1)单调递减.指出这两个条件,并求函数h(x)=xf(x)的极值;(Ⅱ)若函数f(x)在区间[﹣2,4]上有三个零点,求m的取值范围.22.(2020•西城区一模)设函数f(x)=alnx+x2﹣(a+2)x,其中a∈R.(Ⅰ)若曲线y=f(x)在点(2,f(2))处切线的倾斜角为,求a的值;(Ⅱ)已知导函数f'(x)在区间(1,e)上存在零点,证明:当x∈(1,e)时,f(x)>﹣e2.23.(2020•延庆区一模)已知函数f(x)=,其中a≠0.(Ⅰ)当a=1时,求曲线y=f(x)在原点处的切线方程;(Ⅱ)若函数f(x)在[0,+∞)上存在最大值和最小值,求a的取值范围.24.(2020•门头沟区一模)已知函数f(x)=sin x+lnx﹣1.(Ⅰ)求f(x)在点(,f())处的切线方程;(Ⅱ)求证:f(x)在(0,π)上存在唯一的极大值;(Ⅲ)直接写出函数f(x)在(0,2π)上的零点个数.25.(2020•平谷区一模)已知函数,其中a∈R.(Ⅰ)当a=0时,求f(x)在(1,f(1))的切线方程;(Ⅱ)求证:f(x)的极大值恒大于0.26.(2020•顺义区一模)已知函数f(x)=x2﹣2alnx,其中a∈R.(Ⅰ)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(Ⅱ)若函数f(x)存在最小值Q,求证:Q≤1.27.(2020•西城区模拟)设函数f(x)=ae x+cos x,其中a∈R.(Ⅰ)已知函数f(x)为偶函数,求a的值;(Ⅱ)若a=1,证明:当x>0时,f(x)>2;(Ⅲ)若f(x)在区间[0,π]内有两个不同的零点,求a的取值范围.28.(2020•北京模拟)已知函数f(x)=+a2x+alnx,实数a>0.(1)讨论函数f(x)在区间(0,10)上的单调性;(2)若存在x∈(0,+∞),使得关于x的不等式f(x)<2+a2x成立,求实数a的取值范围.29.(2020•海淀区校级模拟)已知函数f(x)=x+alnx.(Ⅰ)求f(x)在(1,f(1))处的切线方程(用含a的式子表示)(Ⅱ)讨论f(x)的单调性;(Ⅲ)若f(x)存在两个极值点x1,x2,证明:.30.(2020•北京模拟)已知函数f(x)=e x(x﹣1)﹣e a x2,a<0.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的极小值;(Ⅲ)求函数f(x)的零点个数.31.(2020•北京模拟)已知函数,其中a>﹣1(1)当a=0时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)当a=1时,求函数f(x)的单调区间;)若对于)=+≤,求实数)=﹣)≤解集为空集.。
2019高三二模分类汇编—导数及其应用1.(本小题满分14分) 已知函数22()(),ax a f x e x a+=-,其中0a ≠. (Ⅰ)求曲线()y f x =在点 (1,(1))f 处切线的倾斜角;(Ⅱ)若函数()f x 的极小值小于0,求实数a 的取值范围.2.(本小题14分)已知函数()sin f x x x =+.(Ⅰ)求曲线()y f x =在点(,())22f ππ处的切线方程;(Ⅱ)若不等式()cos f x ax x ≥在区间π[0,]2上恒成立,求实数a 的取值范围.3.(本小题满分13分) 已知函数()(ln 1)f x x x =+,其中0a ≠.(Ⅰ)若曲线()y f x =在点 00(,())x f x 处的切线的斜率小于1,求0x 的取值范围;(Ⅱ)设整数k 使得1()()2f x k x ≥-对(0,)x ∈+∞恒成立,求整数k 的最大值.4. (本小题满分13分)已知函数22()(24)ln 4f x ax x x ax x =+--(a ∈R ,且0a ≠). (Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅰ)若函数()f x 的极小值为1a,试求a 的值. 5.(本小题13分)已知函数2()ln (21)1()f x x ax a x a =+-++≥0.(Ⅰ)当0a =时,求函数()f x 在区间[1,)+∞上的最大值;(Ⅱ)函数()f x 在区间(1,)+∞上存在最小值,记为()g a ,求证:1()14g a a<-.6. (本小题共13分) 设函数()ln ,f x x a R=∈.(I )若点()1,1在曲线()y f x =上,求在该点处曲线的切线方程; (II )若()f x 有极小值2,求a .7.(本小题13分)已知函数.(Ⅰ)当0k =时,求曲线()y f x =在点()()11f --,处的切线方程; (Ⅱ)当0k ≠时,(ⅰ)求()f x 的单调区间;(ⅱ)若()f x 在区间()01,内单调递减,求k 的取值范围.8.(本小题14分)已知函数21()2sin +1,()cos 2f x x xg x x m x =-=+. (Ⅰ)求曲线()y f x =在0x =处的切线方程;(Ⅱ)求()f x 在(0,)π上的单调区间;(Ⅲ)当1m >时,证明:()g x 在(0,)π上存在最小值.2019高三二模分类汇编—导数及其应用答案部分1.(共14分)解:(Ⅰ)因为22()e ()a x a f x x a+=-,所以2'()e (2(2))a x f x ax x a =+-+ 所以'(1)0f = 所以曲线()y f x =在点(1,(1))f 处切线的倾斜角为0(Ⅱ)方法1:()()2R kxe f x k x=∈因为2'()e (2(2))e ((2))(1)a x a x f x ax x a ax a x =+-+=++- 令()0f x '=,得到122,1a x x a+=-= 当0a >时,x ,'()f x ,()f x 的变化情况如下表:而222(1)e (1)e (11)e ()0aa a a f a a a +=-=--=-<,符合题意 当1a =-时,1221a x x a+=-==, 2'()e (1)0a x f x x =-+≤,()f x 没有极值,不符合题意当10a -<<时,x >11,'()f x ,()f x 的变化情况如下表而2(1)e ()0af a=->,不符合题意当1a <-时,x <11,'()f x ,()f x 的变化情况如下表:所以2()2122()e[()()]0a a aa a f x a a+-++=--<, 解得2a <- 综上,a 的取值范围是(,2)(0,)-∞-+∞U方法2:因为函数()f x 的极小值小于0,所以()0f x <有解,即220a x a+-<有解 所以20a a+>,所以有0a >或2a <- 因为2'()e (2(2))e ((2))(1)a x a x f x ax x a ax a x =+-+=++- 令()0f x '=,得到122,1a x x a+=-= 当0a >时, x ,'()f x ,()f x 的变化情况如下表:而222(1)e (1)e (11)e ()0aa a a f a a a+=-=--=-<,符合题意 当2a <-时,x <11,'()f x ,()f x 的变化情况如下表:而22()()212222(2)()e[()()]e 0a a a a aa a a a f x a a a ++--+++=--=<,符合题意综上,a 的取值范围是(,2)(0,)-∞-+∞U2.(共14分) 解: (Ⅰ)因为()sin f x x x =+,所以()1cos f x x '=+,()12f π'=,()122f ππ=+,所以曲线()y f x =在点(,())22f ππ处的切线方程为1.y x =+ ............................5分(Ⅱ)因为[0,]2x π∈,所以sin 0x ≥,cos 0x ≥,当0a ≤时,()sin 0f x x x =+≥恒成立,cos 0ax x ≤恒成立,所以不等式()cos f x ax x ≥在区间[0,]2π上恒成立.当0a >时,设()()cos sin cos g x f x ax x x x ax x=-=+-,()1cos cos sin 1(1)cos sin g x x a x ax x a x ax x '=+-+=+-+,若01a <≤,(1)cos 0a x -≥,sin 0ax x ≥,所以()0g x '>在区间[0,]2π上恒成立;若12a <≤,110a -≤-<,1(1)cos 0a x +-≥,sin 0ax x ≥,所以()0g x '>在区间[0,]2π上恒成立;所以()g x 在区间[0,]2π上单调递增,min()(0)0,g x g ==所以当2a ≤时,不等式()cos f x ax x ≥在区间[0,]2π上恒成立;当2a >时,令()()1(1)cos sin h x g x a x ax x '==+-+,()(21)sin cos h x a x ax x '=-+,()0h x '>在区间[0,]2π上恒成立,所以()g x '在区间[0,]2π上单调递增,min ()(0)20g x g a ''==-<,max ()()1022a g x g ππ''==+>,所以存在0[0,]2x π∈,使得0()0g x '=. 当00x x <<时,()0g x '<,()g x 单调递减; 当02x x π<<时,()0g x '>,()g x 单调递增; 当0x x =时,()0g x '=,()g x 取得极小值;而(0)0g =,所以0()0g x <,所以不等式()0g x ≥在区间[0,]2π上不能恒成立,所以不等式()cos f x ax x ≥在区间[0,]2π上恒成立时实数a 的取值范围是(,2].-∞ (14)分3.4. (本小题满分13分)解:由题意可知()4(1)ln f x ax x '=+,(0,)x ∈+∞. (Ⅰ)(1)0f '=,(1)4f a =--,所以曲线()yf x =在点(1,(1))f 处的切线方程为4y a =--. ………….3分(Ⅱ)①当1a <-时,x 变化时变化情况如下表:此时1()ln()f a a a a a -=+-=,解得1ea =->-,故不成立. ②当1a =-时,()0f x '≤在(0,)+∞上恒成立,所以()f x 在(0,)+∞单调递减.此时()f x 无极小值,故不成立.③当10a -<<时,x 变化时变化情况如下表:此时极小值(1)4f a =--,由题意可得4a a--=,解得2a =-+2a =--.因为10a -<<,所以2a =-.④当0a >时,x 变化时变化情况如下表:此时极小值(1)4f a =--,由题意可得4a a--=,解得2a =-+2a =--,故不成立.综上所述2a =-+. ………….13分 5.(共13分) 解:(Ⅰ)当0a =时,()ln 1f x x x =-+,则1()1f x x'=-, ..................2分 因为[1,)x ∈+∞,所以()0f x '≤. ..................3分 所以()f x 在区间[1,)+∞上单调递减, ..................4分 所以()f x 区间[1,)+∞上最大值为(1)0f = . (5)分(Ⅱ)由题可知1()2(21)f x ax a x'=+-+ 22(21)1ax a x x-++=(21)(1)ax x x--=. ………………6分①当0a =时,由(Ⅰ)知,函数()f x 在区间(1,)+∞上单调递减,所以函数()f x 无最小值,此时不符合题意;………………7分②当12a ≥时,因为(1,)x ∈+∞,所以210ax ->.此时函数()f x 在区间(1,)+∞上单调递增,所以函数()f x 无最小值,此时亦不符合题意; ……………8分③当102a <<时,此时112a <.函数()f x 在区间1(1,)2a上单调递减,在区间1(,)2a +∞上单调递增,所以min 111()()ln 224f x f a a a ==-, ………………9分即11()ln24g a a a =-. 要证1()14g a a<-,只需证当102a <<时,1()104g a a -+<成立. 即证111ln10(0)222a a a -+<<<, ………………10分 设12t a=,()ln 1(1)h t t t t =-+> ……………11分由(Ⅰ)知()(1)0h t h <= ………………12分即1()104g a a -+<成立. 所以1()14g a a<-. ………………13分6. 解:(I )因为点()1,1在曲线()y f x =上,所以1a =,()ln f x x------------------------------------------1分又()1f x x '==------------------------------------------3分 所以()112f '=-------------------------------------------4分在该点处曲线的切线方程为()1112y x -=--即230x y +-=-----------------5分(II )定义域为()0,+∞,()1222f x x x x '=-=-------------------------------6分 讨论:(1)当0a ≤时,()0f x '<此时()f x 在()0,+∞上单调递减,所以不存在极小值------------------------------8分 (2)当0a >时,令()=0f x '可得24=x a------------------------------------------9分 列表可得所以()f x 在240,a ⎛⎫ ⎪⎝⎭上单调递减,在24,a ⎛⎫+∞ ⎪⎝⎭上单调递增----------------------11分 所以()24=f x f a ⎛⎫⎪⎝⎭极小值=242ln a -,所以242ln a -=2解得()2a =舍负------13分 7.解: (Ⅰ)当0k =时,()221f x x x -==,()3322f x x x-'=-=-. ..........1分 所以()12f '-=, ()11f -=. .........2分所以曲线()y f x =在点()()11f --,处的切线方程为()()()()111y f f x ⎡⎤'--=---⎣⎦, .....................................3分即230x y -+=; .....................................4分 (Ⅱ)0k ≠时,(ⅰ)()f x =,定义域为, ..........................5分所以()f x '==. .......... ........ ..............7分 令()0f x '=,得2x k=. .......... ........ ..........8分 ①当0k >时,在()0-∞,和,()0f x '>;在,()0f x '<. 所以()f x 的单调递增区间为()0-∞,和,单调递减区间为;.........9分 ②当0k <时,在,()0f x '>;在和,()0f x '<. 所以()f x 的单调递增区间为,单调递减区间为2k ⎛⎫-∞ ⎪⎝⎭,和()0+∞,;....10分 (ⅱ)由()f x 在区间()01,内单调递减, ①当0k >时,()01,,有,所以; ..........11分 ②当0k <时, ()f x 在递减,符合题意. ..........12分 综上k 的取值范围是()(]002,,-∞U . ..........13分 8.(本小题13分) (Ⅰ)因为()2sin 1f x x x =-+,所以'()12cos f x x =-则(0)1f =,'(0)1f =-,所以切线方程为1y x =-+ ……………………4分(Ⅱ)令'()0f x =,即1cos 2x =,()0,x ∈π,得3x π= 当x 变化时,'(),()f x f x 变化如下:2xe kx{}0|≠x x 422x x e x ke kx kx ⋅-⋅42)2xx kx e kx -⋅(),2(+∞k )2,0(k),2(+∞k )2,0(k)(0,2k ),(k2-∞),(∞+0)(0,2k⊆)2,0(k 12≥k20≤<k ),(∞+0所以函数()f x 的单调递减区间为(0,)3,单调递增区间为(,)3π…………………8分(Ⅲ)因为21()cos 2g x x m x =+,所以'()sin g x x m x =- 令'()()sin h x g x x m x ==-,则'()1cos h x m x =- ……………9分 因为1m >, 所以1(0,1)m∈ 所以'()1cos 0,h x m x =-=即1cos x m =在()0,π内有唯一解0x当()00,x x ∈时,'()0h x <,当()0,x x π∈时,'()0h x >,所以()h x 在()00,x 上单调递减,在()0,πx 上单调递增. ……………11分 所以0()(0)0h x h <=,又因为()0h ππ=>所以()sin h x x m x =-在0(,)(0,)x ππ⊆内有唯一零点1x……………12分当()10,x x ∈时,()0h x < 即'()0g x <,当()1,x x π∈时,()0h x > 即'()0g x >, ……………13分所以()g x 在()10,x 上单调递减,在()1,πx 上单调递增. 所以函数()g x 在1x x =处取得最小值 即1m >时,函数()g x 在()0,π上存在最小值……………………………………14分。
2022年北京市东城区高考数学二模试卷一、单选题(本大题共10小题,共40.0分)1.已知集合U=R,A={x|x2−2x−3<0},则∁U A=()A. {x|−1<x<3}B. {x|−1≤x≤3}C. {x|x≤−1或x≥3}D. {x|x<−1或x>3}2.已知a=log123,b=lnπ,c=e−12,则a,b,c的大小关系为()A. b>c>aB. b>a>cC. c>b>aD. c>a>b3.在(1−2x)5的展开式中,第4项的系数为()A. −80B. 80C. −10D. 104.将函数y=cos(2x−π2)的图象向左平移π2个单位长度后,所得图象对应的函数为()A. y=sin2xB. y=−sin2xC. y=cos2xD. y=−cos2x5.《周牌算经》中对圆周率π有“径一而周三”的记载,已知两周率π小数点后20位数字分别为14159265358979323846.若从这20个数字的前10个数字和后10个数字中各随机抽取一个数字,则这两个数字均为奇数的概率为()A. 35B. 3395C. 21100D. 7206.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,P为C右支上一点.若C的一条渐近线方程为3x+4y=0,则|F1F2||PF2|−|PF1|=()A. −53B. 53C. −54D. 547.已知α,β∈R则“sin(α+β)=sin2α”是“β=α+2kπ(k∈Z)”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件8.已知点P(cosθ,sinθ)在直线ax−y+3=0上.则当θ变化时,实数a的范围为()A. [−2√2,2√2]B. (−∞,−2√2]∪[2√2,+∞)C. [−3,3]D. (−∞,−3]∪[3,+∞)9.已知等差数列{a n}与等比数列{b n}的首项均为−3,且a3=1,a4=8b4,则数列{a n b n}()A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项10.如图,已知正方体ABCD−A1B1C1D1的棱长为1,则线段AD1上的动点P到直线A1C1的距离的最小值为()A. 1B. √22C. √64D. √33二、填空题(本大题共5小题,共25.0分)11.已知复数z满足(1−i)z=3+i,则z=______,|z|=______.12.已知向量a⃗,b⃗ ,c⃗满足a⃗+b⃗ +c⃗=0⃗,且|a⃗|=1,a⃗⋅b⃗ =0,则a⃗⋅c⃗=______.13.已知抛物线C:y2=2px(p>0),P为C上一点,PQ⊥x轴,垂足为Q,F为C的焦点,O为原点.若∠POQ=45°,则cos∠PFQ=______.>0,则f(x)的单调递减区间为______;满14.已知奇函数f(x)的定义域为R,且f′(x)x2−1足以上条件的一个函数是______.15.某公司通过统计分析发现,工人工作效率E与工作年限r(r>0),劳累程度T(0<T<1),劳动动机b(1<b<5)相关,并建立了数学模型E=10−10T⋅b−0.14r.已知甲、乙为该公司的员工,给出下列四个结论:①甲与乙劳动动机相同,且甲比乙工作年限长,劳累程度弱,则甲比乙工作效率高;@甲与乙劳累程度相同,且甲比乙工作年限长,劳动动机高,则甲比乙工作效率高;③甲与乙工作年限相同,且甲比乙工作效率高,劳动动机低,则甲比乙劳累程度强:④甲与乙劳动动机相同,且甲比乙工作效率高,工作年限短.则甲比乙劳累程度弱.其中所有正确结论的序号是______.三、解答题(本大题共6小题,共85.0分)16.在△ABC中,acosB+bcosA=√2ccosC.(Ⅰ)求∠C;(Ⅱ)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得△ABC存在且唯一确定,求c和sinA的值.条件①:a=2√2,AC边上中线的长√5;条件②:b=6,△ABC的面积为6;,AC边上的高BD的长为2.条件③:cosB=−√101017.某部门为了解青少年视力发展状况,从全市体检数据中,随机抽取了100名男生和100名女生的视力数据.分别计算出男生和女生从小学一年级(2010年)到高中三年级(2021年)每年的视力平均值,如图所示.(1)从2011年到2021年中随机选取1年,求该年男生的视力平均值高于上一年男生的视力平均值的概率;(2)从2010年到2021年这12年中随机选取2年,设其中恰有X年女生的视力平均值不低于当年男生的视力平均值,求X的分布列和数学期望,(3)由图判断,这200名学生的视力平均值从哪年开始连续三年的方差最小?(结论不要求证明)18.如图,平面PAC⊥平面ABC,AB⊥BC,AB=BC,D,O分别为PA,AC的中点,AC=8,PA=PC=5.(Ⅰ)设平面PBC∩平面BOD=l,判断直线l与PC的位置关系,并证明;(Ⅱ)求直线PB与平面BOD所成角的正弦值.19.已知函数f(x)=x+2a2+alnx(a∈R).x(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当x∈[e,+∞)时,曲线y=f(x)在x轴的上方,求实数a的取值范围.20.已知椭圆E:x2a2+y2b2=1(a>b>0)的右顶点为A(2,0),离心率为12.过点P(6,0)与x轴不重合的直线l交椭圆E于不同的两点B,C,直线AB,AC分别交直线x=6于点M,N.(1)求椭圆E的方程;(2)设O为原点.求证:∠PAN+∠POM=90°.对于数列A:a1,a2,…,a n(n≥3),定义变换T,T将数列A变换成数列T(A):a2,a3,…,a n,a1,记T1(A)=T(A),T m(A)=T(T m−1(A)),m≥2.对于数列A:a1,a2,…,a n与B:b1,b2,…,b n,定义A⋅B=a1b1+a2b2+⋯+a n b n.若数列A:a1,a2,…,a n(n≥3)满足a i∈{−1,1}(i=1,2,…,n),则称数列A为ℜn数列.(1)若A:−1,−1,1,−1,1,1,写出T(A),并求A⋅T2(A);(2)对于任意给定的正整数n(n≥3),是否存在ℜn数列A,使得A⋅T(A)=n−3?若存在,写出一个数列A,若不存在,说明理由;(3)若ℜn数列A满足T k(A)⋅T k+1(A)=n−4(k=1,2,…,n−2),求数列A的个数.答案和解析1.【答案】C【解析】解:∵集合U=R,A={x|x2−2x−3<0}={x|−1<x<3},∴∁U A={x|x≤−1或x≥3}.故选:C.求出集合A,利用补集定义能求出∁U A.本题考查集合的运算,考查补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】A【解析】解:a=log123<log121=0,b=lnπ>lne=1,0<c=e−12<e0=1,所以a<c<b.故选:A.根据对数函数的单调性及指数函数的单调性可得结论.本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力等数学核心素养,是基础题.3.【答案】A【解析】解:展开式的第4项为T4=C53(−2x)3=−80x3,所以第4项的系数为−80,故选:A.求展开式的第4项即可求解.本题考查了二项式定理的应用,考查了学生的运算能力,属于基础题4.【答案】B【解析】解:y=cos(2x−π2)的图象向左平移π2个单位长度后,所得图象对应的函数为y=cos[2(x+π2)−π2]=cos(2x+π2)=−sin2x,故选:B.根据三角函数的图象变换关系进行求解即可.本题主要考查三角函数的图象和性质,利用三角函数的图象变换关系进行求解是解决本题的关键,是基础题.5.【答案】D【解析】解:设这两个数字均为奇数为事件A,∵基本事件总数为C101⋅C101=100,事件A包含的基本事件数为C71⋅C51=35,∴P(A)=35100=720,故选:D.利用古典概型的概率计算公式即可求解.本题主要考查古典概型的概率计算公式即可,属于基础题.6.【答案】C【解析】解:∵P为C右支上一点.∴|PF1|−|PF2|=2a,|F1F2|=2c,∴|F1F2||PF2|−|PF1|=−2c2a=−ca,又双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线方程为3x+4y=0,∴ba =34,∴ca=√1+(ba)2=54,∴|F1F2||PF2|−|PF1|=−54,故选:C.由双曲线的几何意知|F1F2||PF2|−|PF1|=−ca,结合渐近线求解可得.本题考查双曲线的几何性质,属基础题.7.【答案】B【解析】解:由sin(α+β)=sin2α,可得α+β=2α+2kπ,k∈Z,或α+β=π−2α+2kπ,k∈Z,即β=α+2kπ(k∈Z)或β=2kπ+π−3α(k∈Z),所以由“sin(α+β)=sin2α“推不出“β=α+2kπ(k∈Z)”,由“β=α+2kπ(k∈Z)“可推出“sin(α+β)=sin2α”,所以“sin(α+β)=sin2α”是“β=α+2kπ(k∈Z)”的必要不充分条件.故选:B.利用正弦函数性质得出α,β的关系,然后根据充分必要条件的定义判断.本题主要考查充分条件和必要条件的判断,属于基础题.8.【答案】B【解析】解:已知点P(cosθ,sinθ)在直线ax−y+3=0上.则sinθ−acosθ−3=0,整理得√1+a2sin(θ+α)=3,故√1+a2≤1,解得a∈(−∞,−2√2]∪[2√2,+∞).故选:B.直接利用三角函数关系式的变换和三角函数的值的应用求出a的取值范围.本题考查的知识要点:点和直线的关系,三角函数关系式的变换,三角函数的值,主要考查学生的运算能力和数学思维能力,属于中档题.9.【答案】A【解析】解:设等差数列{a n}的公差为d与等比数列{b n}的公比为q,由首项均为−3,且a3=1,a4=8b4,可得−3+2d=1,1+d=−24q3,解得d=2,q=−12,则a n=−3+2(n−1)=2n−5,b n=−3⋅(−12)n−1,a nb n=−3(2n−5)⋅(−12)n−1,a1b1=9,a2b2=−32,a3b3=−34,a4b4=98,a5b5=−1516,当n≥4,且n为奇数时,{a n b n}递增,且a n b n<0,有最小值−1516;当n≥4,且n为偶数时,{a n b n}递减,且a n b n>0,有最大值98无最小值;综上可得,{a n b n}的最大值为9,最小值为−32.故选:A.设等差数列{a n}的公差为d与等比数列{b n}的公比为q,由等差数列和等比数列的通项公式解方程可得公差和公比,求得a n b n,计算前四项,讨论n≥4时,数列{a n b n}的单调性可得结论.本题考查等差数列和等比数列的通项公式和运用,考查方程思想和运算能力、推理能力,属于中档题.10.【答案】D【解析】解:线段AD1上的动点P到直线A1C1的距离的最小值等价于异面直线AD1、A1C1间的距离d,因为A1C1与平面AD1C平行,故d等于A1到平面AD1C的距离,由V A1−AD1C =V C−A1AD1可得,1 3×√34×(√2)2⋅d=13×12×1×1×1,解得d=√33.故选:D.线段AD1上的动点P到直线A1C1的距离的最小值等价于异面直线AD1、A1C1间的距离d,利用A1C1与平面AD1C平行,可得d等于A1到平面AD1C的距离,由V A1−AD1C =V C−A1AD1可得答案.本题考查了空间线线、线面距离,考查了转化思想,属于中档题.11.【答案】1+2i√5【解析】解:∵(1−i)z=3+i,∴z=3+i1−i =(3+i)(1+i)(1−i)(1+i)=1+2i,∴|z|=√12+22=√5.故答案为:1+2i;√5.根据已知条件,运用复数的运算法则,以及复数模的公式,即可求解.本题考查了复数代数形式的乘除法运算,以及复数模的公式,需要学生熟练掌握公式,属于基础题.12.【答案】−1【解析】解:向量a ⃗ ,b ⃗ ,c ⃗ 满足a ⃗ +b ⃗ +c ⃗ =0⃗ ,且|a ⃗ |=1,a ⃗ ⋅b ⃗ =0,则a ⃗ ⋅c ⃗ = a ⃗⃗⃗ ⋅(−a ⃗ −b ⃗ )=−a ⃗ 2−a ⃗ ⋅ b⃗⃗⃗ =−1−0=−1. 故答案为:−1.通过向量的数量积,化简求解即可.本题考查向量的数量积的运算法则的应用,是基础题.13.【答案】35【解析】解:不妨设P 在x 轴上方,由∠POQ =45°,可设直线OP :y =x , 由{y =xy 2=2px ,可得x =y =2p , ∴P(2p,2p),Q(2p,0),又F(P2,0), cos∠PFQ =|FQ||PF|=|2p−p 2|√(2p−p2)+(2p)=35.故答案为:35.由题可设直线OP :y =x ,进而可得P(2p,2p),Q(2p,0),可求cos∠PFQ 的值. 本题考查抛物线的几何性质,属基础题.14.【答案】(−1,1) f(x)=13x 3−x(答案不唯一)【解析】解:由f′(x)x 2−1>0,可得f′(x)(x 2−1)>0, 所以{f′(x)>0x 2−1>0或{f′(x)<0x 2−1<0,所以当x <−1或x >1时,f′(x)>0,当−1<x <1时,f′(x)<0, 所以f(x)的单调递减区间为(−1,1),所以满足条件的一个函数可以为f(x)=13x 3−x(答案不唯一) 故答案为:(−1,1);f(x)=13x 3−x(答案不唯一).由f′(x)x 2−1>0,可得f′(x)(x 2−1)>0,从而可得{f′(x)>0x 2−1>0或{f′(x)<0x 2−1<0,进而可求出f(x)的单调递减区间,由导函数的单调区间可求得满足条件的一个函数. 本题考查了利用导数研究函数的单调性,考查了转化思想,属基础题.15.【答案】①②④【解析】解:设甲与乙的工人工作效率E 1,E 2 ,工作年限r 1,r 2,劳累程度T 1,T 2,劳动动机b 1,b 2,对于①,b 1=b 2,r 1>r 2,T 1<T 2,1<b <5,0<b 2−0.14<1,∴b 2−0.14r 2>b 1−0.14r 1,0<T 1<T 2,则E 1−E 2=10−10T 1⋅b 1−0.14r 1−(10−10T 2⋅b 2−0.14r 2)=10(T 2⋅b 2−0.14r 2−T 1⋅b 1−0.14r 1)>0,∴E 1>E 2,即甲比乙工作效率高,故①正确; 对于②,b 1>b 2,r 1>r 2,T 1=T 2,∴1>b 2−0.14>b 1−0.14>0,b 2−0.14r 2>b 1−0.14r 2>b 1−0.14r 1, 则E 1−E 2=10−10T 1⋅b 1−0.14r 1−(10−10T 2⋅b 2−0.14r 2)=10T 1(b 2−0.14r 2−b 1−0.14r 1)>0,∴E 1>E 2,即甲比乙工作效率高,故②正确;对于③,r 1=r 2,E 1>E 2,b 1<b 2,0<b1b 2<1,∴E 1−E 2=10(T 2⋅b 2−0.14r 2−T 1⋅b 1−0.14r 1)>0,T 2⋅b 2−0.14r 2>T 1⋅b 1−0.14r 1, T 2T 1>b 1−0.14r 1b 2−0.14r 2=(b1b 2)−0.14r 1>1,所以T 1<T 2,即甲比乙劳累程度弱,故③错误; 对于④,b 1=b 2,E 1>E 2,r 1<r 2, ∴E 1−E 2=10(T 2⋅b 2−0.14r 2−T 1⋅b 1−0.14r 1)>0,T 2⋅b 2−0.14r 2>T 1⋅b 1−0.14r 1, ∴T 2T 1>b 1−0.14r 1b 2−0.14r 2=(b 1)−0.14(r 1−r 2)>1,所以T 1<T 2,即甲比乙劳累程度弱,故④正确. 故答案为:①②④.利用指数函数的性质,幂函数的性质逐项分析即得.本题考查了指数的运算、幂函数的性质、指数函数的运算,也考查了学生的计算能力,属于中档题.16.【答案】解:(Ⅰ)由正弦定理得,sinAcosB+sinBcosA=√2sinCcosC,即sin(A+B)=√2sinCcosC,即sinC=√2sinCcosC,即cosC=√22,故∠C=π4;(Ⅱ)若选条件①,由余弦定理得,BD2=a2+CD2−2×a×CD×cosC,即5=8+CD2−4CD,解得CD=1或CD=3;故△ABC存在但不唯一,不满足条件;若选条件②,∵S△ABC=12×b×a×sinA=6,即12×6×a×√22=6,∴a=2√2,故c=√62+(2√2)2−2×6×2√2×√22=2√5,∵asinA =csinC,∴sinA=asinCc =2√2×√222√5=√55;若选条件③,由题意知,△BCD为等腰直角三角形,∴CD=BD=2,a=BC=2√2,∵cosB=−√1010,∴sinB=3√1010,∴sin∠ABD=sin(∠ABC−π4)=sin∠ABCcosπ4−cos∠ABCsinπ4=3√1010×√22−(−√1010)×√22=2√55,故sinA=cos∠ABD=√55;c=AB=2sinA=2√5.【解析】(Ⅰ)利用正弦定理化简acosB+bcosA=√2ccosC,结合三角恒等变换求角C即可;(Ⅱ)若选条件①,作图,利用余弦定理可求得CD的长度有2个值,故不满足唯一性;若选条件②,由三角形面积公式可求a,结合余弦定理求c,再利用正弦定理求sinA即可;若选条件③,作图,可判断△BCD为等腰直角三角形,利用直角三角形求解即可.本题考查了解三角形与三角恒等变换的综合应用,属于中档题.17.【答案】解:(1)由折线图可知:从2011年到2021年中,该年男生的视力平均值高于上一年男生的视力平均值的共有3个,∴所求概率P=311;(2)从2010年到2021年这12年中,女生的视力平均值不低于当年男生的视力平均值的年份有4个,∴X所有可能的取值为0,1,2,∴P(X=0)=C82C122=1433;P(X=1)=C81C41C122=1633;P(X=2)=C42C122=111;则X的分布列为:∴X的数学期望E(X)=0×1433+1×1633+2×111=23;(3)由折线图知:自2010年开始的连续三年男女生视力平均值接近且连续三年数据相差不大,∴自2010年开始的连续三年,200名学生的视力平均值波动幅度最小,则自2010年开始的连续三年,200名学生的视力平均值方差最小.【解析】(1)根据折线图可确定该年男生的视力平均值高于上一年男生的视力平均值的共有3个,由此可计算得到概率;(2)由折线图知女生的视力平均值不低于当年男生的视力平均值的年份有4个,根据超几何分布概率公式可确定X每个取值对应的概率,由此可得分布列;根据数学期望计算公式可求得期望值;(3)根据折线图可确定自2010年开始的连续三年,学生视力波动程度最小,由此可得结论.本题考查了离散型随机变量的分布列与期望,属于中档题.18.【答案】解:(Ⅰ)PC//l.证明如下:∵D,O分别为PA,AC的中点,∴在△APC中,DO//PC,∵DO⊂平面BOD,PC⊄平面BOD,∴PC//平面BOD,∵PC⊂平面PBC,平面PBC∩平面BOD=l,∴由线面平行的性质定理得PC//l.(Ⅱ)∵AB=BC,O是AC中点,∴BO⊥AC,∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO⊂平面ABC,∴BO⊥平面APC,同理,∵AP=PC,∴PO⊥AC,PO⊥平面ABC,∴OB,OC,OP三线两两垂直,∴以O为坐标原点建立空间直角坐标系,如图,由题可知AC =8,AB =BC =4√2,OA =OC =OB =4,OP =3,则A(0,−4,0),B(4,0,0),P(0,0,3),D(0,−2,32),则BP ⃗⃗⃗⃗⃗ =(−4,0,3),OB ⃗⃗⃗⃗⃗⃗ =(4,0,0),OD ⃗⃗⃗⃗⃗⃗ =(0,−2,32),设平面BOD 的法向量为m⃗⃗⃗ =(x,y,z), 则{m ⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =4x =0m ⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =−2y +32z =0,取z =4,则m ⃗⃗⃗ =(0,3,4), cos <m ⃗⃗⃗ ,BP ⃗⃗⃗⃗⃗ >=m⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ ||BP⃗⃗⃗⃗⃗⃗ |=125×5=1225, ∴直线PB 与平面BOD 所成角的正弦值为1225.【解析】(Ⅰ)根据线面平行的判断定理和性质定理能判断直线l 与PC 的位置关系,并证明;(Ⅱ)建立空间直角坐标系,利用向量法能求出直线PB 与平面BOD 所成角的正弦值. 本题考查两直线的位置关系的判断与证明,考查直线与平面所成角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】解:(Ⅰ)当a =1时,f(x)=x +2x +lnx ,x >0,所以f′(x)=1−2x 2+1x , 所以f(1)=3,f′(1)=0,所以曲线y =f(x)在点(1,f(1))处的切线方程为y =3; (Ⅱ)因为函数f(x)=x +2a 2x+alnx(a ∈R),当a ≥0时,由x ∈[e,+∞)有f(x)>0,故曲线y =f(x)在x 轴的上方, 当a <0时,f′(x)=1−2a 2x 2+a x =(x−a)(x+2a)x 2,由f′(x)=0可得x =−2a 或x =a (舍去),所以当x ∈(0,−2a)时,f′(x)<0,f(x)单调递减,当x ∈(−2a,+∞)时,f′(x)>0,f(x)单调递增,当−2a≤e,即−e2≤a<0时,所以f(x)在[e,+∞)上单调递增,则f(x)≥f(e)=e+2a2e +a=2e(a+e4)2+78e>0,即曲线y=f(x)在x轴的上方,当−2a>e,即a<−e2时,f(x)在[e,−2a)上单调递减,在(−2a,+∞)上单调递增,则f(x)≥f(−2a)=−3a+aln(−2a),由x∈[e,+∞)时,曲线y=f(x)在x轴的上方,所以−3a+aln(−2a)>0,解得a>−e32,所以−e32<a<−e2;综上,实数a的取值范围为(−e32,+∞).【解析】(Ⅰ)利用导数的几何意义即得;(Ⅱ)由题可知f(x)min>0,当a≥0时适合题意,当a<0时,分类讨论,利用导数求函数的最值即得.本题主要考查导数的几何意义,考查分类讨论思想与运算求解能力,属于中档题.20.【答案】解:(1)由题得a=2,ca =12,∴a=2,c=1,b=√3,所以椭圆E的方程为x24+y23=1;(2)证明:要证∠PAN+∠POM=90°,只需证:∠PAN=∠POM=90°−∠POM,只需证明tan∠PAN=1tan∠POM,只需证明tan∠PAN⋅tan∠POM=1,只需证明k AN⋅k OM=1,设M(6,m)N(6,n),只需证明n6−2⋅m6=1,只需证明mn=24.设直线l的方程为y=k(x−6),k≠0,联立椭圆方程x24+y23=1,得(3+4k2)x2−48k2x+144k2−12=0,设B(x1,y1),C(x2,y2),所以Δ>0,x1+x2=48k23+4k2,x1x2=144k2−123+4k2,又A ,B ,M 三点共线, 所以m4=y 1x 1−2,∴m =4y 1x1−2, 同理n =4y 2x2−2,所以mn =4y 1x1−2×=4y 2x 2−2=16k 2(x 1−6)(x 2−6)(x 1−2)(x 2−2)=16k 2[x 1x 2−6(x 1+x 2)+36]x 1x 2−2(x 1+x 2)+4=16k 2×9664k 2=24.所以:∠PAN +∠POM =90°.【解析】(1)由题得到关于a ,c 的方程组,解方程组即得解;(2)设M(6,m)N(6,n),只需证明mn =24.设直线l 的方程为y =k(x −6),k ≠0,联立椭圆方程x 24+y 23=1得韦达定理,根据三点共线得到m =4y 1x 1−2,n =4y2x 2−2,求出mn =24即得证.要题考查了椭圆的方程、直线与椭圆的综合问题及用分析法证明命题,属于中档题.21.【答案】解:(1)由A :−1,−1,1,−1,1,1,可得T(A):−1,1,−1,1,1,−1;T 2(A):1,−1,1,1,−1,−1;所以A ⋅T 2(A)=−1+1+1−1−1−1=−2; (2)因为A ⋅T(A)=a 1a 2+a 2a 3+⋯+a n a 1,由数列A 为ℜn 数列,所以a i ∈{−1,1}(i =1,2,…,n),对于数列A :a 1,a 2,…,a n 中相邻的两项a i ,a i+1(i =1,2,…,n), 令a n+1=a 1,若a i =a i+1,则a i a i+1=1,若a i ≠a i+1,则a i a i+1=−1, 记a i a i+1(i =1,2,…,n)中有t 个−1,有n −t 个1, 则A ⋅T(A)=n −2t ,因为n −2t 与n 的奇偶性相同,而n −3与n 的奇偶性不同, 故不存在适合题意的数列A ;(3)首先证明A ⋅T(A)=T k (A)⋅T k+1(A)(k =1,2,…,n −2), 对于数列A :a 1,a 2,…,a n ,有T(A):a 2,a 3,…,a n ,a 1, T k (A):a k+1,a k+2,…,a n−1,a n ,a 1,a 2,…,a k−1,a k , T k+1(A):a k+2,a k+3,…,a n−1,a n ,a 1,a 2,…,a k ,a k+1,所以T k (A)⋅T k+1(A)=a k+1a k+2+a k+2a k+3+⋯+a n a 1+a 1a 2+a 2a 3+⋯+a k a k+1, 故A ⋅T(A)=T k (A)⋅T k+1(A)(k =1,2,…,n −2),故A⋅T(A)=n−4.其次,由数列A为ℜn数数列可知,A⋅T(A)=n−2t=n−4,解得t=2,这说明数列A中任意相邻两项不同的情况有2次,若数列A中−1的个数为个,此时数列A有n个,所以数列A的个数为n(n−1)个.【解析】(1)利用变换T的定义即可得出所求的结果;(2)利用ℜn数列的定义,记a i a i+1(i=1,2,…,n)中有t个−1,有n−t个1,则A⋅T(A)= n−2t,进而即得;(3)由题可得A⋅T(A)=T k(A)⋅T k+1(A)(k=1,2,…,n−2),进而可得n−2t=n−4,然后结合条件即得.本题考查数列的新定义,考查学生的逻辑思维能力和运算能力,属中档题.。
北京市西城区 2018年高三二模试卷数学(理科)第Ⅰ卷(选择题共 40分)一、选择题:本大题共8 小题,每题 5 分,共40 分.在每题列出的四个选项中,选出符合题目要求的一项.1 .已知会合 A { x | x2 0} , B { x | x a} ,若A B A ,则实数 a 的取值范围是()(A)(, 2](B)[2,)(C)(,2](D)[2,) 2.在复平面内,复数z=(1 2i) 2对应的点位于()( A )第一象限(B )第二象限( C)第三象限(D )第四象限3 .直线y2x 为双曲线 C:x2y21(a 0, b 0)的一条渐近线,则双曲线 C 的离心率a2b2是()(A)5( B )5(C)3( D)3 221/154.某四棱锥的三视图以下图,记 A 为此棱锥全部棱的长度的会合,则()(A)2? A,且4? A(B)2? A,且4? A(C)2? A,且25? A44(D)2? A,且17? A1111正 (主 )视图侧 (左 )视图俯视图5.设平面向量 a ,b, c 均为非零向量,则“ a (b c)0 ”是“b c ”的()( A )充足而不用要条件(B)必需而不充足条件( C)充足必需条件(D)既不充足也不用要条件6.如图,暗影地区是由函数y cos x的一段图象与xy轴围成的关闭图形,那么这个暗影地区的面积是()Oπ3π x22( A )1(B)2(C)π(D)π2x≥0,7. 在平面直角坐标系≥所表示的平面地区是,不等式组xOy 中,不等式组y 0,x y8≤0≤ ≤0 x 4,所表示的平面地区是. 从地区中随机取一点P(x, y) ,则P为地区内的点的0≤ y≤10概率是()(A)1(B)3(C)3(D)1 45452/158. 设为平面直角坐标系xOy 中的点集,从中的随意一点P作x轴、y轴的垂线,垂足分别为 M , N ,记点 M 的横坐标的最大值与最小值之差为x( ) ,点N的纵坐标的最大值与最小值之差为y() .若是边长为 1 的正方形,给出以下三个结论:○x() 的最大值为 2 ;1○x()y()的取值范围是 [2, 22] ;2○x()y() 恒等于0.3此中全部正确结论的序号是()○○○○○○ ○○(A) 1(B)2 3(C)1 2(D)1 2 3第Ⅱ卷(非选择题共 110 分)二、填空题:本大题共 6 小题,每题 5 分,共 30 分.9.( x1) 6的二项睁开式中,常数项为______.x110. 在△ ABC 中,若a 4 , b 3 ,cos A_____;B_____.,则 sin A311 .如图, AB 和 CD是圆 O 的两条弦,AB 与 CD 订交于点E,且CE DE 4 ,AE: BEAC______.开始4:1 ,则 AE ______;BDa =3,i=1A是i>10否. O1a输出 aaaC D1结束EB i=i+112.履行以下图的程序框图,输出的 a 值为 ______.13. 设抛物线C:y24x 的焦点为F,M为抛物线C上一点,3/15N (2,2) ,则 | MF | | MN |的取值范围是.14. 已知 f 是有序数对会合M = {( x, y) | x 挝N* , y N*}上的一个映照,正整数数对( x, y) 在映射 f 下的象为实数 z,记作 f ( x, y) = z .对于随意的正整数m, n (m > n),映照f由下表给出:( x, y)(n, n)(m, n)(n, m)f ( x, y)n m - n m+ n则 f (3,5) = __________,使不等式 f (2 x, x) ≤ 4 建立的x的会合是_____________.三、解答题:本大题共 6 小题,共 80 分.解答应写出必需的文字说明、证明过程或演算步骤.15.(本小题满分13 分)在平面直角坐标系xOy 中,点 A(cos , 2 sin) , B(sin,0) ,此中R .2πAB 的坐标;(Ⅰ)当时,求向量3(Ⅱ)当[0,π]时,求 | AB |的最大值. 216.(本小题满分13 分)为认识某校学生的视力状况,现采纳随机抽样的方式从该校的 A ,B 两班中各抽 5 名学生进行视力检测.检测的数据以下:A 班 5 名学生的视力检测结果:,,,, 4.9.B 班 5 名学生的视力检测结果:,,,, 4.5.(Ⅰ)分别计算两组数据的均匀数,从计算结果看,哪个班的学生视力较好?(Ⅱ)由数据判断哪个班的 5 名学生视力方差较大?(结论不要求证明)(Ⅲ)现从A班的上述5 名学生中随机选用 3 名学生,用X 表示此中视力大于 4.6 的人4/15数,求 X 的散布列和数学希望.17.(本小题满分14 分)如图,在三棱锥P ABC中,PA底面ABC,AC BC ,H为PC的中点,M 为AH 的中点,PA AC 2 , BC 1.(Ⅰ)求证:AH平面PBC;(Ⅱ)求 PM 与平面AHB成角的正弦值;(Ⅲ)设点N 在线段PB上,且PN,MN //平面ABC,务实数的值. PBPHMACB18.(本小题满分13 分)已知函数f ( x)e x 1,此中a R. ax24x 4(Ⅰ)若 a0,求函数 f (x) 的极值;(Ⅱ)当 a1时,试确立函数 f ( x) 的单一区间. 19.(本小题满分14 分)设 A, B 是椭圆 W : x2y 21上不对于坐标轴对称的两个点,直线AB 交x轴于点 M 43(与点 A, B 不重合),O为坐标原点.(Ⅰ)假如点M 是椭圆W的右焦点,线段MB 的中点在y轴上,求直线AB 的方程;5/15(Ⅱ)设 N 为x轴上一点,且OM ON 4 ,直线AN与椭圆W的此外一个交点为C,证明:点 B 与点 C 对于x轴对称.20.(本小题满分 13分)在无量数列 { a n }中, a1 1 ,对于随意 n N*,都有 a n N*, a n a n 1.设 m N*,记使得 a n≤ m 建立的n 的最大值为 b m.(Ⅰ)设数列 {a n } 为1,,,,,写出 b1, 2 , 3 的值;357b b(Ⅱ)若 { b n } 为等差数列,求出全部可能的数列{ a n } ;(Ⅲ)设 a p q , a1a2a p A ,求 b1b2b q的值.(用 p, q, A 表示)北京市西城区2018 年高三二模试卷参照答案及评分标准6/15高三数学 (理科)8540.1 D2 B3 A4 D5 B6 B7 C8 D6530.9 202 2π 103 411 82121313 [3,+ )14 8{1,2}10 11 142 3 .680 . .1513AB(sincos , 2 sin )22πcossin2π 2π 1 34sin3cos33 22 sin2π62 sin32AB (13 , 6) .62 2AB(sincos , 2 sin )| AB |2 (sincos ) 2 (2 sin )27 1 sin 22sin 28 1 sin 2 1 cos2922 sin(2 π10) .47/150 ≤≤π2 π π 5π114 ≤ 2≤.442π 5π 222 (2) 3 124|AB||AB| 242π3 .132 |AB |1613A 5x A =25B 5 x B =35=4.5 .A .4 B 5.7A52.X012.8P(XC 33190)3C 510P( XC 32C 123 101)C 535P( XC 13 C 223 112).C 5310XX0 1 2P1 3 3 1051012E(X) 01 1 32 36 . 1310 510 517148/15PA ABC BC ABCPA BC1 AC BC PA AC ABC PAC2 AH PACBC AH.3PA AC,PCHAH PCPC BC CAH PBC .5ABC A AD // BC,BC PACAD PACPA ABCPA AC ADAADAC AP xyzA(0,0,0)P(0,0,2)B(1,2,0) C (0,2,0)H (0,1,1)11) .M (0,,226AHB n( x, y , z)zAH(0,1,1) AB(1,2,0)P n AH0,y z0,x 2 y0,H n AB0,z 1n (2,1,1) .8MA NPMAHB C yD(0,1,3)x BPM229/1520( 1)13)PM n 1(sin cos PM , n22PM n562sin215 .1015PB(1,2,2)PN PBPN(,2 , 2 )PM(0, 1,3)221,32 ).MN PN PM( ,21222MN //ABCABCAP(0,0, 2)MN AP 3 40314.418.13e x1{ x | x R x1} .1 f ( x)44xf (x)e x 1(4 x 4) 4e x 14xe x 1(4 x4)2(4 x4)2 .3f( x)0x0x f (x) f( x)x( ,1)( 1,0) f (x)f ( x)0(0,)510/15故 f (x) 的单一减区间为(, 1),(1,0) ;单一增区间为(0,) .因此当 x0 时,函数 f (x)有极小值 f (0)e6 分.4(Ⅱ)解:由于 a 1 ,因此 ax24x 4 ( x 2) 2(a 1)x20 ,因此函数 f (x) 的定义域为R,7 分求导,得 fe x 1 (ax24x4)e x 1 (2ax4)e x 1 x(ax42a)8 分( x)(ax24x4)2(ax24x4) 2,令 f (x)0,得 x10 , x2249 分,a当 1a2时, x2x1,当 x 变化时, f (x)和 f( x) 的变化状况以下:x(, 24)24( 24,0)0(0,)a a af ( x)00f ( x)↗↘↗故函数 f ( x) 的单一减区间为( 24,0) ,单一增区间为 (, 24) ,(0,) .a a11 分当 a2时, x2 x1 0 ,由于 f(x)2e x 1x2≥ 0 ,(当且仅当x0时, f(x)0 )(2 x24x4) 2因此函数 f ( x) 在R单一递加.12 分当 a 2 时,x2x1,当 x 变化时, f (x) 和 f ( x) 的变化状况以下:x( ,0)0(0, 24)24(24,)a a a11/15f ( x)00f ( x)↗↘↗故函数 f ( x) 的单一减区间为 ( 0,24) ,单一增区间为( ,0),(24) .,a a综上,当 1 a 2 时, f ( x)的单一减区间为( 24,0) ,单一增区间为(, 24) ,a a(0,) ;当 a 2 时,函数 f ( x) 在R单一递加;当a 2 时,函数 f ( x)的单一减区间为( 0,24) ;单一增区间为(,0) ,(24,).13 分a a19.(本小题满分14 分)(Ⅰ)解:椭圆 W 的右焦点为M (1,0) , 1 分由于线段 MB 的中点在y轴上,因此点 B 的横坐标为1,由于点 B 在椭圆W上,将 x 1 代入椭圆W的方程,得点 B 的坐标为( 1,3) . 3 分2因此直线 AB (即 MB )的方程为3x 4 y 3 0 或 3x 4 y 3 0 . 5 分(Ⅱ)证明:设点 B 对于 x 轴的对称点为B1(在椭圆W上),要证点 B 与点 C 对于x轴对称,只需证点 B1与点C重合,.又由于直线AN 与椭圆W的交点为C(与点 A 不重合),因此只需证明点A, N ,B1三点共线.7分以下给出证明:由题意,设直线AB 的方程为y kx m(k 0) , A( x1 , y1) , B(x2, y2 ) ,则 B1 ( x2 ,y2 ) .12/153x2 4 y212,y kx m,(34k 2 ) x28kmx4m2 12 09(8 km) 24(34k 2 )(4 m212)0x1x28kmx1x24m 2 1210 34k 234k2.y kx my0M(m,0)4k,0)kOM ON4N(11mNA NB1k NA k NB1y1y2x2 y1y14kx1 y2y24kk NA kNB m m 4k4k4k 14kx1x2(x1)( x2)m m m4k4kmx2 y1 y1x1 y2y2m m4k m) 4kx2 (kx1m)(kx1m)x1( kx2 m)(kx2m m2kx1x2(m4k 2)( x1x2 ) 8km122k( 4m212 )( m4k2)(8km) 8k34k2m34k 28m2k24k8m2k32k 324k32k 334k 2013k NA kNB10A N B1B C x.1413/152013b1 1 b2 1 b3 2 .31 a1a2a3a na n N*a n≥n.4a n≤m nb m a n≤m 1n b m 1b1 1 b m≤ b m 1 (m N*).5 a2 kk≥2 .k2a2k >2n≥2a n 2≥≥k 1 . n3a nb2 1 b k 2 .{ b n }d b2b10b n1n N*.b k2( k 2)a2 2 .6a1a2a3a nb22{b n }b n nn N*.7 a n≤ mnb ma n≤na n≥n a n n .814/15a2 k ( k1)a1a2a3a nb1b2bk 11b k2{ b n }1k1a2a19 a3l ( l k)b k bk 1bl 12b l3{ b n }2l k a3a210{ b n}p1a p a p 1.11b1b2b q(a2a1 ) 2( a3a2 )( p 1)(a p a p 1 ) pa1a2ap 1( p 1)a p ppa p p (a1a2a p 1a p ) p(q1) A .b1b2b q p( q 1) A .1315/15。
2020年北京市海淀区高考数学二模试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.已知全集U=R,M={x|x≤1},P={x|x≥2},则∁U(M∪P)=()A.{x|1<x<2}B.{x|x≥1} C.{x|x≤2} D.{x|x≤1或x≥2}2.数列{a n}的首项a1=2,且(n+1)a n=na n+1,则a3的值为()A.5 B.6 C.7 D.83.若点P(2,4)在直线l:(t为参数)上,则a的值为()A.3 B.2 C.1 D.﹣14.在△ABC中,cosA=,cosB=,则sin(A﹣B)=()A.﹣B.C.﹣D.5.在(x+a)5(其中a≠0)的展开式中,x2的系数与x3的系数相同,则a的值为()A.﹣2 B.﹣1 C.1 D.26.函数f(x)=lnx﹣x+1的零点个数是()A.1 B.2 C.3 D.47.如图,在等腰梯形ABCD中,AB=8,BC=4,CD=4,点P在线段AD上运动,则|+|的取值范围是()A.[6,4+4]B.[4,8]C.[4,8]D.[6,12]8.直线l:ax+y﹣1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点为C,D,给出下面三个结论:①∀a≥1,S△AOB=;②∃a≥1,|AB|<|CD|;③∃a≥1,S△COD<.其中,所有正确结论的序号是()A.①②B.②③C.①③D.①②③二、填空题(共6小题,每小题5分,满分30分)9.已知=1﹣i,其中i为虚数单位,a∈R,则a=.10.某校为了解全校高中学生五一小长假参加实践活动的情况,抽查了100名学生,统计他们假期参加实践活动的实践,绘成的频率分布直方图如图所示,这100名学生中参加实践活动时间在6﹣10小时内的人数为.11.如图,A,B,C是⊙O上的三点,点D是劣弧的中点,过点B的切线交弦CD的延长线于点E.若∠BAC=80°,则∠BED=.12.若点P(a,b)在不等式组所表示的平面区域内,则原点O到直线ax+by﹣1=0的距离的取值范围是.13.已知点A(,),B(,1),C(,0),若这三个点中有且仅有两个点在函数f(x)=sinωx的图象上,则正数ω的最小值为.14.正方体ABCD﹣A1B1C1D1的棱长为1,点P,Q,R分别是棱A1A,A1B1,A1D1的中点,以△PQR为底面作正三棱柱.若此三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个正三棱柱的高h=.三、解答题(共6小题,满分80分)15.已知函数f(x)=﹣2sinx﹣cos2x.(1)比较f(),f()的大小;(2)求函数f(x)的最大值.16.某空调专卖店试销A、B、C三种新型空调,销售情况如表所示:第一周第二周第三周第四周第五周A型数量(台)11 10 15 A4A5B型数量(台)10 12 13 B4B5C型数量(台)15 8 12 C4C5(1)求A型空调前三周的平均周销售量;(2)根据C型空调前三周的销售情况,预估C型空调五周的平均周销售量为10台,当C 型空调周销售量的方差最小时,求C4,C5的值;(注:方差s2= [x1﹣)2+(x)2+…+(x n﹣)2],其中为x1,x2,…,x n的平均数)(3)为跟踪调查空调的使用情况,根据销售记录,从第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列及数学期望.17.如图,等腰梯形ABCD中,AB∥CD,DE⊥AB于E,CF⊥AB于F,且AE=BF=EF=2,DE=CF=2.将△AED和△BFC分别沿DE,CF折起,使A,B两点重合,记为点M,得到一个四棱锥M﹣CDEF,点G,N,H分别是MC,MD,EF的中点.(1)求证:GH∥平面DEM;(2)求证:EM⊥CN;(3)求直线GH与平面NFC所成角的大小.18.已知函数f(x)=e x(x2+ax+a).(1)当a=1时,求函数f(x)的单调区间;(2)若关于x的不等式f(x)≤e a在[a,+∞)上有解,求实数a的取值范围;(3)若曲线y=f(x)存在两条互相垂直的切线,求实数a的取值范围.(只需直接写出结果)19.已知点A(x1,y1),D(x2,y2)(其中x1<x2)是曲线y2=4x(y≥0)上的两点,A,D两点在x轴上的射影分别为点B,C,且|BC|=2.(Ⅰ)当点B的坐标为(1,0)时,求直线AD的斜率;(Ⅱ)记△OAD的面积为S1,梯形ABCD的面积为S2,求证:<.20.已知集合Ωn={X|X=(x1,x2,…,x i,…,x n),x i∈{0,1},i=1,2,…,n},其中n ≥3.∀X={x1,x2,…,x i,…,x n}∈Ωn,称x i为X的第i个坐标分量.若S⊆Ωn,且满足如下两条性质:①S中元素个数不少于4个;②∀X,Y,Z∈S,存在m∈{1,2,…,n},使得X,Y,Z的第m个坐标分量是1;则称S为Ωn的一个好子集.(1)S={X,Y,Z,W}为Ω3的一个好子集,且X=(1,1,0),Y=(1,0,1),写出Z,W;(2)若S为Ωn的一个好子集,求证:S中元素个数不超过2n﹣1;(3)若S为Ωn的一个好子集,且S中恰有2n﹣1个元素,求证:一定存在唯一一个k∈{1,2,…,n},使得S中所有元素的第k个坐标分量都是1.2020年北京市海淀区高考数学二模试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.已知全集U=R,M={x|x≤1},P={x|x≥2},则∁U(M∪P)=()A.{x|1<x<2}B.{x|x≥1} C.{x|x≤2} D.{x|x≤1或x≥2}【考点】交、并、补集的混合运算.【分析】求出M∪P,从而求出其补集即可.【解答】解:M={x|x≤1},P={x|x≥2},∴M∪P={x|x≤1或x≥2},∁U(M∪P)={x|1<x<2},故选:A.2.数列{a n}的首项a1=2,且(n+1)a n=na n+1,则a3的值为()A.5 B.6 C.7 D.8【考点】数列递推式.【分析】由题意可得a n+1=a n,分别代值计算即可.【解答】解:数列{a n}的首项a1=2,且(n+1)a n=na n+1,∴a n+1=a n,∴a2=a1=2×2=4,∴a3=×a2=×4=6,故选:B.3.若点P(2,4)在直线l:(t为参数)上,则a的值为()A.3 B.2 C.1 D.﹣1【考点】参数方程化成普通方程.【分析】由题意可得:,解得a即可得出.【解答】解:∵,解得a=﹣1.故选:D.4.在△ABC中,cosA=,cosB=,则sin(A﹣B)=()A.﹣B.C.﹣D.【考点】两角和与差的正弦函数.【分析】根据同角三角函数得到sinA,sinB的值;然后将其代入两角和与差的正弦函数中求值即可.【解答】解:∵0<A<π,0<B<π,cosA=,cosB=,∴sinA=,sinB=,∴sin(A﹣B)=sinAcosB﹣cosAsinB=×﹣×=.故选:B.5.在(x+a)5(其中a≠0)的展开式中,x2的系数与x3的系数相同,则a的值为()A.﹣2 B.﹣1 C.1 D.2【考点】二项式系数的性质.【分析】通过二项式定理,写出(x+a)5(其中a≠0)的展开式中通项T k+1=x5﹣k a k,利用x2的系数与x3的系数相同可得到关于a的方程,进而计算可得结论.【解答】解:在(x+a)5(其中a≠0)的展开式中,通项T k+1=x5﹣k a k,∵x2的系数与x3的系数相同,∴a3=a2,又∵a≠0,∴a=1,故选:C.6.函数f(x)=lnx﹣x+1的零点个数是()A.1 B.2 C.3 D.4【考点】函数零点的判定定理.【分析】利用导数求出函数的最大值,即可判断出零点的个数.【解答】解:f′(x)=﹣1=,∴当x=1时,函数f(x)取得最大值,f(1)=0﹣1+1=0,因此函数f(x)有且仅有一个零点1.故选:A.7.如图,在等腰梯形ABCD中,AB=8,BC=4,CD=4,点P在线段AD上运动,则|+|的取值范围是()A.[6,4+4]B.[4,8]C.[4,8]D.[6,12]【考点】平面向量数量积的运算.【分析】可过D作AB的垂线,且垂足为E,这样可分别以EB,ED为x轴,y轴,建立平面直角坐标系,根据条件即可求出A,B,D的坐标,从而可以得出直线AD的方程为,从而可设,且﹣2≤x≤0,从而可以求出向量的坐标,从而得出,而配方即可求出函数y=16(x2+2x+4)在[﹣2,0]上的值域,即得出的取值范围,从而得出的取值范围.【解答】解:如图,过D作AB的垂线,垂足为E,分别以EB,ED为x,y轴,建立平面直角坐标系;根据条件可得,AE=2,EB=6,DE=;∴;∴直线AD方程为:;∴设,(﹣2≤x≤0);∴,;∴;∴=16(x2+2x+4)=16(x+1)2+48;∵﹣2≤x≤0;∴48≤16(x+1)2+48≤64;即;∴;∴的范围为.故选:C.8.直线l:ax+y﹣1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点为C,D,给出下面三个结论:①∀a≥1,S△AOB=;②∃a≥1,|AB|<|CD|;③∃a≥1,S△COD<.其中,所有正确结论的序号是()A.①②B.②③C.①③D.①②③【考点】直线与圆的位置关系.【分析】①当a≥1时,分别可得直线的截距,由三角形的面积公式易得结论①正确;②当a≥1时,反证法可得结论②错误;③由三角形的面积公式可得S△COD=sin∠AOC≤,可得结论③正确.【解答】解:①当a≥1时,把x=0代入直线方程可得y=a,把y=0代入直线方程可得x=,∴S△AOB=×a×=,故结论①正确;②当a≥1时,|AB|=,故|AB|2=a2+,直线l可化为a2x+y﹣a=0,圆心O到l的距离d===,故|CD|2=4(1﹣d2)=4[1﹣(a2+)],假设|AB|<|CD|,则|AB|2<|CD|2,即a2+<4(1﹣),整理可得(a2+)2﹣4(a2+)+4<0,即(a2+﹣2)2<0,显然矛盾,故结论②错误;S△COD=|OA||OC|sin∠AOC=sin∠AOC≤,故∃a≥1,使得S△COD<,结论③正确.故选:C.二、填空题(共6小题,每小题5分,满分30分)9.已知=1﹣i,其中i为虚数单位,a∈R,则a=1.【考点】复数代数形式的乘除运算.【分析】根据复数的代数运算性质,求出a的值即可.【解答】解:∵=1﹣i,∴a+i=∴a=﹣i=﹣i=1.故答案为:1.10.某校为了解全校高中学生五一小长假参加实践活动的情况,抽查了100名学生,统计他们假期参加实践活动的实践,绘成的频率分布直方图如图所示,这100名学生中参加实践活动时间在6﹣10小时内的人数为58.【考点】频率分布直方图.【分析】利用频率分布直方图中,频率等于纵坐标乘以组距,求出在6﹣10小时外的频率;利用频率和为1,求出在6﹣10小时内的频率;利用频数等于频率乘以样本容量,求出这100名同学中学习时间在6﹣10小时内的同学的人数.【解答】解:由频率分布直方图知:(0.04+0.12+a+b+0.05)×2=1,∴a+b=0.29,∴参加实践活动时间在6﹣10小时内的频率为0.29×2=0.58,∴这100名学生中参加实践活动时间在6﹣10小时内的人数为100×0.58=58.故答案为:5811.如图,A,B,C是⊙O上的三点,点D是劣弧的中点,过点B的切线交弦CD的延长线于点E.若∠BAC=80°,则∠BED=60°.【考点】与圆有关的比例线段.【分析】由弦切角定理可得∠EBC=∠A,再由圆的圆周角定理,可得∠BCE=∠A,在△BCE中,运用三角形的内角和定理,计算即可得到所求值.【解答】解:由BE为圆的切线,由弦切角定理可得∠EBC=∠A=80°,由D是劣弧的中点,可得∠BCE=∠A=40°,在△BCE中,∠BEC=180°﹣∠EBC﹣∠BCE=180°﹣80°﹣40°=60°.故答案为:60°.12.若点P(a,b)在不等式组所表示的平面区域内,则原点O到直线ax+by﹣1=0的距离的取值范围是[,1].【考点】简单线性规划.【分析】由约束条件作出可行域,由点到直线的距离公式求出原点O到直线ax+by﹣1=0的距离为,结合的几何意义得答案.【解答】解:由约束条件作出可行域如图,原点O到直线ax+by﹣1=0的距离为,由图可知的最小值为|OA|=1,最大值为|OB|=2,∴原点O到直线ax+by﹣1=0的距离的取值范围是[,1].故答案为:[,1].13.已知点A(,),B(,1),C(,0),若这三个点中有且仅有两个点在函数f(x)=sinωx的图象上,则正数ω的最小值为4.【考点】正弦函数的图象.【分析】由条件利用正弦函数的图象特征,分类讨论,求得每种情况下正数ω的最小值,从而得出结论.【解答】解:①若只有A、B两点在函数f(x)=sinωx的图象上,则有sin(ω•)=,sin(ω•)=1,sinω•≠0,则,即,求得ω无解.②若只有点A(,),C(,0)在函数f(x)=sin(ωx)的图象上,则有sin(ω•)=,sin(ω•)=0,sin(ω•)≠1,故有,即,求得ω的最小值为4.③若只有点B(,1)、C(,0)在函数f(x)=sinωx的图象上,则有sinω•≠,sinω=1,sinω=0,故有,即,求得ω的最小正值为10,综上可得,ω的最小正值为4,故答案为:4.14.正方体ABCD﹣A1B1C1D1的棱长为1,点P,Q,R分别是棱A1A,A1B1,A1D1的中点,以△PQR为底面作正三棱柱.若此三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个正三棱柱的高h=.【考点】棱柱、棱锥、棱台的体积.【分析】分别取过C点的三条面对角线的中点,则此三点为棱柱的另一个底面的三个顶点,利用中位线定理证明.于是三棱柱的高为正方体体对角线的一半.【解答】解:连结A1C,AC,B1C,D1C,分别取AC,B1C,D1C的中点E,F,G,连结EF,EG,FG.由中位线定理可得PE A1C,QF A1C,RG A1C.又A1C⊥平面PQR,∴三棱柱PQR﹣EFG是正三棱柱.∴三棱柱的高h=PE=A1C=.故答案为.三、解答题(共6小题,满分80分)15.已知函数f(x)=﹣2sinx﹣cos2x.(1)比较f(),f()的大小;(2)求函数f(x)的最大值.【考点】三角函数中的恒等变换应用.【分析】(1)将f(),f()求出大小后比较即可.(2)将f(x)化简,由此得到最大值.【解答】解:(1)f()=﹣,f()=﹣,∵﹣>﹣,∴f()>f(),(2)∵f(x)=﹣2sinx﹣cos2x.=﹣2sinx﹣1+2sin2x,=2(sinx﹣)2﹣,∴函数f(x)的最大值为3.16.某空调专卖店试销A、B、C三种新型空调,销售情况如表所示:第一周第二周第三周第四周第五周A型数量(台)11 10 15 A4A5B型数量(台)10 12 13 B4B5C型数量(台)15 8 12 C4C5(1)求A型空调前三周的平均周销售量;(2)根据C型空调前三周的销售情况,预估C型空调五周的平均周销售量为10台,当C 型空调周销售量的方差最小时,求C4,C5的值;(注:方差s2= [x1﹣)2+(x)2+…+(x n﹣)2],其中为x1,x2,…,x n的平均数)(3)为跟踪调查空调的使用情况,根据销售记录,从第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列及数学期望.【考点】极差、方差与标准差.【分析】(1)根据平均数公式计算即可,(2)根据方差的定义可得S2= [2(c4﹣)+],根据二次函数性质求出c4=7或c4=8时,S2取得最小值,(3)依题意,随机变量的可能取值为0,1,2,求出P,列出分布表,求出数学期望.【解答】解:(1)A型空调前三周的平均周销售量=(11+10+15)=12台,(2)因为C型空调平均周销量为10台,所以c4+c5=10×15﹣15﹣8﹣12=15,又S2= [(15﹣10)2+(8﹣10)2+(12﹣10)2+(c4﹣10)2+(c5﹣10)2],化简得到S2= [2(c4﹣)+],因为c4∈N,所以c4=7或c4=8时,S2取得最小值,此时C5=8或C5=7,(3)依题意,随机变量的可能取值为0,1,2,P(X=0)=×=,P(X=1)=×+×=,P(X=2)=×=,随机变量的X的分布列,X 0 1 2P随机变量的期望E(X)=0×+1×+2×=.17.如图,等腰梯形ABCD中,AB∥CD,DE⊥AB于E,CF⊥AB于F,且AE=BF=EF=2,DE=CF=2.将△AED和△BFC分别沿DE,CF折起,使A,B两点重合,记为点M,得到一个四棱锥M﹣CDEF,点G,N,H分别是MC,MD,EF的中点.(1)求证:GH∥平面DEM;(2)求证:EM⊥CN;(3)求直线GH与平面NFC所成角的大小.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(1)连结NG,EN,则可证四边形ENGH是平行四边形,于是GH∥EN,于是GH ∥平面DEM;(2)取CD的中点P,连结PH,则可证明PH⊥平面MEF,以H为原点建立坐标系,求出和的坐标,通过计算=0得出EM⊥CN;(3)求出和平面NFC的法向量,则直线GH与平面NFC所成角的正弦值为|cos<>|,从而得出所求线面角的大小.【解答】证明:(1)连结NG,EN,∵N,G分别是MD,MC的中点,∴NG∥CD,NG=CD.∵H是EF的中点,EF∥CD,EF=CD,∴EH∥CD,EH=CD,∴NG∥EH,NG=EH,∴四边形ENGH是平行四边形,∴GH∥EN,又GH⊄平面DEM,EN⊂平面DEM,∴GH∥平面DEM.(2)∵ME=EF=MF,∴△MEF是等边三角形,∴MH⊥EF,取CD的中点P,连结PH,则PH∥DE,∵DE⊥ME,DE⊥EF,ME∩EF=E,∴DE⊥平面MEF,∴PH⊥平面MEF.以H为原点,以HM,HF,HP为坐标轴建立空间直角坐标系,如图所示:则E(0,﹣1,0),M(,0,0),C(0,1,2),N(,﹣,1).∴=(,1,0),=(﹣,,1).∴=+1×+0×1=0.∴.∴EM⊥NC.(3)F(0,1,0),H(0,0,0),G(,,1),∴=(,,1),=(0,0,2),=(﹣,,1),设平面NFC的法向量为=(x,y,z),则,即.令y=1得=(,1,0),∴cos<>==.∴直线GH与平面NFC所成角的正弦值为,∴直线GH与平面NFC所成角为.18.已知函数f(x)=e x(x2+ax+a).(1)当a=1时,求函数f(x)的单调区间;(2)若关于x的不等式f(x)≤e a在[a,+∞)上有解,求实数a的取值范围;(3)若曲线y=f(x)存在两条互相垂直的切线,求实数a的取值范围.(只需直接写出结果)【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)当a=1时,f(x)=e x(x2+x+1),求出其导数,利用导数即可解出单调区间;(2)若关于x的不等式f(x)≤e a在[a,+∞)上有解,即x2+ax+a≤e a﹣x,在[a,+∞)上有解,构造两个函数r(x)=x2+ax+a,t(x)=e a﹣x,研究两个函数的在[a,+∞)上的单调性,即可转化出关于a的不等式,从而求得a的范围;(3)由f(x)的导数f′(x)=e x(x+2)(x+a),当a≠﹣2时,函数y=f′(x)的图象与x 轴有两个交点,故f(x)图象上存在两条互相垂直的切线.【解答】解:(1)当a=1时,f(x)=e x(x2+x+1),则f′(x)=e x(x2+3x+2),令f′(x)>0得x>﹣1或x<﹣2;令f′(x)<0得﹣2<x<﹣1.∴函数f(x)的单调增区间(﹣∞,﹣2)与(﹣1,+∞),单调递减区间是(﹣2,﹣1);(2)f(x)≤e a,即e x(x2+ax+a)≤e a,可变为x2+ax+a≤e a﹣x,令r(x)=x2+ax+a,t(x)=e a﹣x,当a>0时,在[a,+∞)上,由于r(x)的对称轴为负,故r(x)在[a,+∞)上增,t(x)在[a,+∞)上减,欲使x2+ax+a≤e a﹣x有解,则只须r(a)≤t(a),即2a2+a≤1,解得﹣1≤a≤,故0<a≤;当a≤0时,在[a,+∞)上,由于r(x)的对称轴为正,故r(x)在[a,+∞)上先减后增,t(x)在[a,+∞)上减,欲使x2+ax+a≤e a﹣x有解,只须r(﹣)≤t(﹣),即﹣+a≤e,当a≤0时,﹣+a≤e显然成立.综上知,a≤即为符合条件的实数a的取值范围;(3)a的取值范围是{a|a≠2,a∈R}.19.已知点A(x1,y1),D(x2,y2)(其中x1<x2)是曲线y2=4x(y≥0)上的两点,A,D两点在x轴上的射影分别为点B,C,且|BC|=2.(Ⅰ)当点B的坐标为(1,0)时,求直线AD的斜率;(Ⅱ)记△OAD的面积为S1,梯形ABCD的面积为S2,求证:<.【考点】抛物线的简单性质.【分析】(Ⅰ)由B的坐标,可得A的坐标,又|BC|=2,可得D的坐标(3,2),运用直线的斜率公式,即可得到所求值;(Ⅱ)法一:设直线AD的方程为y=kx+m.M(0,m),运用三角形的面积公式可得S1=|m|,将直线方程和抛物线的方程联立,运用判别式大于0和韦达定理,以及梯形的面积公式可得S2,进而得到所求范围;法二:设直线AD的方程为y=kx+m,代入抛物线的方程,运用韦达定理和弦长公式,点到直线的距离公式可得三角形的面积S1=|m|,梯形的面积公式可得S2,进而得到所求范围.【解答】解:(Ⅰ)由B(1,0),可得A(1,y1),代入y2=4x,得到y1=2,又|BC|=2,则x2﹣x1=2,可得x2=3,代入y2=4x,得到y2=2,则;(Ⅱ)证法一:设直线AD的方程为y=kx+m.M(0,m),则.由,得k2x2+(2km﹣4)x+m2=0,所以,又,又注意到,所以k>0,m>0,所以==,因为△=16﹣16km>0,所以0<km<1,所以.证法二:设直线AD的方程为y=kx+m.由,得k2x2+(2km﹣4)x+m2=0,所以,,点O到直线AD的距离为,所以,又,又注意到,所以k>0,m>0,所以,因为△=16﹣16km>0,所以0<km<1,所以.20.已知集合Ωn={X|X=(x1,x2,…,x i,…,x n),x i∈{0,1},i=1,2,…,n},其中n ≥3.∀X={x1,x2,…,x i,…,x n}∈Ωn,称x i为X的第i个坐标分量.若S⊆Ωn,且满足如下两条性质:①S中元素个数不少于4个;②∀X,Y,Z∈S,存在m∈{1,2,…,n},使得X,Y,Z的第m个坐标分量是1;则称S为Ωn的一个好子集.(1)S={X,Y,Z,W}为Ω3的一个好子集,且X=(1,1,0),Y=(1,0,1),写出Z,W;(2)若S为Ωn的一个好子集,求证:S中元素个数不超过2n﹣1;(3)若S为Ωn的一个好子集,且S中恰有2n﹣1个元素,求证:一定存在唯一一个k∈{1,2,…,n},使得S中所有元素的第k个坐标分量都是1.【考点】命题的真假判断与应用.【分析】(1)根据好子集的定义直接写出Z,W,(2)若S为Ωn的一个好子集,考虑元素X′=(1﹣x1,1﹣x2,…,1﹣x i,…,1﹣x n),进行判断证明即可.(3)根据好子集的定义,证明存在性和唯一性即可得到结论.【解答】解:(Ⅰ)Z=(1,0,0),W=(1,1,1),…2分(Ⅱ)对于X⊆Ω,考虑元素X′=(1﹣x1,1﹣x2,…,1﹣x i,…,1﹣x n),显然X′∈Ωn,∀X,Y,X′,对于任意的i∈{1,2,…,n},x i,y i,1﹣x i不可能都为1,可得X,X′不可能都在好子集S中…4分又因为取定X,则X′一定存在且唯一,而且X≠X′,且由X的定义知道,∀X,Y∈Ω,X′=Y′⇔X=Y…6分这样,集合S中元素的个数一定小于或等于集合Ωn中元素个数的一半,而集合Ωn中元素个数为2n,所以S中元素个数不超过2n﹣1;…8分(Ⅲ)∀X={x1,x2,…,x i,…,x n},.∀Y={y1,y2,…,y i,…,y n}∈Ωn,定义元素X,Y的乘积为:XY={x1y1,x2y2,…,x i y i,…,x n y n},显然XY∈Ωn,.我们证明:“对任意的X={x1,x2,…,x i,…,x n}∈S,都有XY∈S.”假设存在X,Y∈S,使得XY∉S,则由(Ⅱ)知,(XY)′={1﹣x1y1,1﹣x2y2,…,1﹣x i y i,…1﹣x n﹣1y n﹣1,1﹣x n y n}∈S,此时,对于任意的k∈{1,2,…n},x k,y k,1﹣x k y k不可能同时为1,矛盾,所以XS∈S.因为S中只有2n﹣1个元素,我们记Z={z1,z2,…,z i,…,z n}为S中所有元素的乘积,根据上面的结论,我们知道={z1,z2,…,z i,…,z n}∈S,显然这个元素的坐标分量不能都为0,不妨设z k=1,根据Z的定义,可以知道S中所有元素的k坐标分量都为1 …11分下面再证明k的唯一性:若还有z t=1,即S中所有元素的t坐标分量都为1,所以此时集合S中元素个数至多为2n﹣2个,矛盾.所以结论成立…13分2020年9月3日。
高考数学最新资料北京各区二模理科数学分类汇编导数(西城二模)18.(本小题满分13 分)已知函数则211)(ax x x f +-=,其中a ∈ R .⑴ 当41-=a 时,求 f (x )的单调区间; ⑵ 当a > 0时,证明:存在实数m > 0,使得对于任意的实数x ,都有| f (x )|≤m 成立. 18.(本小题满分13分) (Ⅰ)解:当14a=-时,函数21()114xf x x -=-, 其定义域为{|2}x x ∈≠±R . ……………… 1分求导,得22222224(1)3()0114(1)4(1)44x x x f x x x -+----'==<--, ……………… 4分 所以函数()f x 在区间(,2)-∞-,(2,2)-,(2,)+∞上单调递减. ……………… 5分(Ⅱ)证明:当0a >时,21()1x f x ax -=+的定义域为R .求导,得22221()(1)ax ax f x ax --'=+, ……………… 6分令()0f x '=,解得110x =,211x =+>, ……………… 7分当x 变化时,()f x '与()f x 的变化情况如下表:……………… 10分 所以函数()f x 在1(,)x -∞,2(,)x +∞上单调递增,在12(,)x x 上单调递减.又因为(1)0f =,当1x <时,21()01x f x ax -=>+;当1x >时,21()01x f x ax -=<+,所以当1x ≤时,10()()f x f x ≤≤;当1x >时,2()()0f x f x <≤. ……………… 12分记12max{()|,()|}||M f x f x =,其中12max{()|,()|}||f x f x 为两数1()||f x ,2()||f x 中最大的数,综上,当0a >时,存在实数[,)m M ∈+∞,使得对任意的实数x ,不等式|()|f x m ≤恒 成立. ……………… 13分(海淀二模)(18)(共13分) 解:(Ⅰ)令()0f x =,得e x =.故()f x 的零点为e . ………………1分22231()(1ln )22ln 3'()()x x xx x f x x x -⋅--⋅-==(0x >). ………………3分令'()0f x =,解得 32ex =.当x 变化时,'()f x ,()f x 的变化情况如下表:()f x32(0,e )32e32(e ,)+∞'()f x -+()f x↘↗所以()f x 的单调递减区间为32(0,e ),单调递增区间为32(e ,)+∞. ………………6分(Ⅱ)令ln ()x g x x =.则2211ln 1ln '()()x xx x g x f x x x ⋅-⋅-===. ………………7分 因为 11()44ln 244622f =+>+⨯=,(e)0f =,且由(Ⅰ)得,()f x 在(0,e)内是减函数,所以 存在唯一的01(,e)2x ∈,使得00'()()6g x f x ==.当[e,)x ∈+∞时,()0f x ≤.所以 曲线ln xy x=存在以00(,())x g x 为切点,斜率为6的切线. ………………10分 由0021ln '()6x g x x -==得:200ln 16x x =-. 所以20000000ln 161()6x x g x x x x x -===-.因为012x >, 所以12x <,063x -<-. 所以00()1y g x =<-. ………………13分(东城二模)(18)(本小题共13分)已知函数()e x f x x a -=+⋅.(Ⅰ)当2e a=时,求()f x 在区间[1,3]上的最小值;(Ⅱ)求证:存在实数0[3,3]x ∈-,有0()f x a >.(18)(共13分) 解:(Ⅰ)当2e a=时,2()e x f x x -=+,]3,1[∈x .因为2'()1e x f x -=-,由0)(='x f ,2=x .则x ,)(x f ',)(x f 关系如下:所以当2=x 时,)(x f 有最小值为3. ………5分(Ⅱ)“存在实数0[3,3]x ∈-,有a x f >)(”等价于()f x 的最大值大于a .因为'()1e x f x a -=-,所以当0≤a 时,]3,3[-∈x ,0)('>x f ,)(x f 在)3,3(-上单调递增,所以()f x 的最大值为(3)(0)f f a >=.所以当0≤a 时命题成立.当0>a时,由0)(='x f 得a x ln =.则x ∈R 时,x ,)(x f ',)(x f 关系如下:(1)当3e a ≥时 ,3ln ≥a ,)(x f 在)3,3(-上单调递减,所以()f x 的最大值(3)(0)f f a ->=.所以当3e a≥时命题成立.(2)当33e e a -<<时,3ln 3<<-a ,所以)(x f 在)ln ,3(a -上单调递减,在)3,(ln a 上单调递增.所以()f x 的最大值为(3)f -或(3)f .且a f f =>-)0()3(与a f f =>)0()3(必有一成立,所以当33e e a -<<时命题成立.(3) 当30e a -<≤时 ,3ln -≤a ,所以)(x f 在)3,3(-上单调递增,所以()f x 的最大值为(3)(0)f f a >=.所以当30e a -<≤时命题成立.综上:对任意实数a 都存在]3,3[-∈x 使a x f >)(成立. ……13分(丰台二模) 20.(本小题共13分) 已知函数ln 1()ax f x x+=(0a >). (Ⅰ)求函数()f x 的最大值;(Ⅱ)如果关于x 的方程ln 1x bx +=有两解,写出b 的取值范围(只需写出结论); (Ⅲ)证明:当*N k ∈且2k ≥时,1111lnln 2234k k k<+++⋅⋅⋅+<. 20.(本小题共13分) 解:(Ⅰ)函数的定义域为{0}xx >.因为ln 1()ax f x x+=, 所以2ln ()axf x x-'=. 因为0a >,所以当()0f x '=时,1x a=.当1(0,)x a∈时,()0f x '>,()f x 在1(0,)a 上单调递增;当1(,)x a∈+∞时,()0f x '<,()f x 在1(,)a +∞上单调递减.所以当1xa=时,1()()f x f a a ==最大值. ……………………6分(Ⅱ)当01b <<时,方程ln 1x bx +=有两解. ……………………8分 (Ⅲ)由(Ⅰ)得ln 11x x +≤,变形得11ln x x-≤,当1x =等号成立.所以 11ln 22-<,231ln 32-<,……11ln 1k kk k --<-, 所以得到 当*N k ∈且2k≥时,1111ln 234k k+++⋅⋅⋅⋅⋅⋅+<. ……………………10分由(Ⅰ)得ln 11x x+≤,变形得 ln 1x x ≤-,当1x =等号成立.所以 33ln122<-, 44ln133<-, 55ln144<-, ……11ln1k k k k++<-, 所以得到 当*N k ∈且2k ≥时,11111ln2234k k+<+++⋅⋅⋅⋅⋅⋅+.又因为1lnln 22k k +<, 所以当*N k ∈且2k ≥时,1111lnln 2234k k k<+++⋅⋅⋅⋅⋅⋅+<. ……………………13分(昌平二模) 18.(本小题满分13分)已知函数2()ln ,.f x x ax x a =-+∈R(I )若函数()f x 在(1,(1))f 处的切线垂直于y 轴,求实数a 的值;(II) 在(I )的条件下,求函数()f x 的单调区间;(III) 若1,()0x f x >>时恒成立,求实数a 的取值范围. 18.(本小题满分13分) 解:(I )2()ln ,.f x x ax x a =-+∈R 定义域为(0,)+∞'1()2,.f x x a a x=-+∈R依题意,'(1)0f =.所以'(1)30f a =-=,解得3a = ……………4分(II )3a=时,2()ln 3f x x x x =+-,定义域为(0,)+∞,21123()23x xf x x x x+-'=+-=当102x <<或1x >时,()0f x '>, 当112x <<时,()0f x '<, 故()f x 的单调递增区间为1(0,),(1,)2+∞,单调递减区间为1(,1)2.----8分(III )解法一:由()0f x >,得2ln x x a x+<在1x >时恒成立,令2ln ()x x g x x+=,则221ln ()x xg x x +-'=令2()1ln h x x x =+-,则2121()20x h x x x x -'=-=> ()h x 所以在(1,)+∞为增函数,()(1)20h x h >=> .故()0g x '>,故()g x 在(1,)+∞为增函数. ()(1)1g x g >=,所以1a ≤,即实数a 的取值范围为(,1]-∞. ……………13分解法二:2112()2x axf x x a x x+-'=+-=令2()21g x xax =-+,则28a ∆=-,(i )当0∆<,即a -<<时,()0f x '>恒成立,1,()x f x >因为所以在(1,)+∞上单调递增,()(1)10f x f a >=-≥,即1a ≤,所以(a ∈-;(ii)当0∆=,即a=±()0f x '≥恒成立,1,()x f x >因为所以在(1,)+∞上单调递增,()(1)10f x f a >=-≥,即1a ≤,所以a =-(iii)当0∆>,即a<-a >方程()0g x =有两个实数根12x x ==若a<-120x x <<,当1x >时,()0f x '>,()f x 所以在(1,)+∞上单调递增,则()(1)10f x f a >=-≥,即1a ≤,所以a <-;若a>()0g x =的两个根120x x <<,()10f x a =-<因为,且()f x 在(1,)+∞是连续不断的函数所以总存在01x >,使得0()0f x <,不满足题意.综上,实数a 的取值范围为(,1]-∞. ……………13分(朝阳二模)19.(本题14分)已知函数R a e a x x f x∈-=,)()(2。
【西城二模】19.(本小题满分13分)已知函数ln ()xf x ax x=-,曲线()y f x =在1x =处的切线经过点(2,1)-. (Ⅰ)求实数a 的值;(Ⅱ)设1b >,求()f x 在区间1[,]b b 上的最大值和最小值.19.(本小题满分13分)解:(Ⅰ)()f x 的导函数为221ln ()x ax f x x --'=, ……………… 2分所以(1)1f a '=-. 依题意,有 (1)(1)112f a --=--,即1112a a -+=--, ……………… 4分 解得 1a =. ……………… 5分(Ⅱ)由(Ⅰ)得221ln ()x xf x x --'=.当0<<1x 时,210x ->,ln 0x ->,所以()0f x '>,故()f x 单调递增; 当>1x 时,210x -<,ln 0x -<,所以()0f x '<,故()f x 单调递减.所以 ()f x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减. ………… 8分因为 101b b<<<, 所以 ()f x 最大值为(1)1f =-. ……………… 9分 设 111()()()()ln h b f b f b b b b b b =-=+-+,其中1b >. ………………10分则 21()(1)ln 0h b b b'=->,故 ()h b 在区间(1,)+∞上单调递增. ………………11分所以 ()(1)0h b h >=, 即 1()()f b f b>, ………………12分故 ()f x 最小值为11()ln f b b b b=--. ………………13分【海淀二模】(19)(本小题13分)已知函数()3(0)ax f x e ax a =--≠ (Ⅰ)求()f x 的极值; (Ⅱ)当0a时,设211()=32ax g x e ax x a --,求证:曲线()y g x =存在两条斜率为1-且不重合的切线.19. (本小题共13分)解:(Ⅰ)'()(1)ax ax f x a a a =⋅-=⋅-e e (0,)a x ≠∈R ,令'()0f x =,得0x =. ①当0a >时,'()f x 与1ax -e 符号相同,当x 变化时,'()f x ,()f x 的变化情况如下表:②当时,与1-e 符号相反,当x 变化时,'()f x ,()f x 的变化情况如下表:综上,()f x 在0x =处取得极小值(0)2f =-. ·································· 7分(Ⅱ)'()3()ax g x ax f x =--=e (0,)a x >∈R ,故'()1g x =-⇔()1f x =-. 注意到(0)21f =-<-,22()51f a =->-e ,22()11f a--=->-e ,所以,12(,0)x a ∃∈-,22(0,)x a∈,使得12()()1f x f x ==-.因此,曲线()y g x =在点111(,())P x f x ,222(,())Px f x 处的切线斜率均为1-. 下面,只需证明曲线()y g x =在点111(,())P x f x ,222(,())P x f x 处的切线不重合. 曲线()y g x =在点(,())i i i P x f x (1,2i =)处的切线方程为()()i i y g x x x -=--,即()i i y x g x x =-++.假设曲线()y g x =在点(,())i i i P x f x (1,2i =)处的切线重合,则2211()()g x x g x x +=+.令()()G x g x x =+,则12()()G x G x =,且'()'()1()1G x g x f x =+=+. 由(Ⅰ)知,当12(,)x x x ∈时,()1f x <-,故'()0G x <.所以,()G x 在区间12[,]x x 上单调递减,于是有12()()G x G x >,矛盾! 因此,曲线()y g x =在点(,())i i i P x f x (1,2i =)处的切线不重合. ········· 13分【东城二模】 (19)(本小题14分)已知函数21()sin cos 2f x x x x ax =++,[,]x ∈-ππ. (I )当0a =时,求()f x 的单调区间; (II )当0a >时,讨论()f x 的零点个数. (19)(共14分)解:(I )当0a =时,()sin cos f x x x x =+,[,]x ππ∈-.'()sin cos sin cos f x x x x x x x =+-=.当x 在区间[,]ππ-上变化时,'()f x ,()f x 的变化如下表所以()f x 的单调增区间为(,)2π--,(0,)2;()f x 的单调减区间为(,0)2-, (,)2ππ.……………………………………………………………………………5分(II )任取[,]x ππ∈-.2211()()sin()cos()()sin cos ()22f x x x x a x x x x ax f x -=--+-+-=++=,所以()f x 是偶函数.'()cos (cos )f x ax x x x a x =+=+.当1a ≥时,cos 0a x +≥在[0,)π上恒成立,所以[0,)x π∈时,'()0f x ≥. 所以()f x 在[0,]π上单调递增.又因为(0)1f =,所以()f x 在[0,]π上有0个零点. 又因为()f x 是偶函数,所以()f x 在[,]ππ-上有0个零点.当01a <<时,令'()0f x =,得cos x a =-. 由10a -<-<可知存在唯一0(,)2x ππ∈使得0cos x a =-.所以当0[0,)x x ∈时,'()0f x ≥,()f x 单调递增; 当0(,)x x π∈时,'()0f x <,()f x 单调递减. 因为(0)1f =,0()1f x >,21()12f a ππ=-. ①当21102a π->,即221a π<<时,()f x 在[0,]π上有0个零点. 由()f x 是偶函数知()f x 在[,]ππ-上有0个零点. ②当21102a π-≤,即220a π<≤时,()f x 在[0,]π上有1个零点. 由()f x 是偶函数知()f x 在[,]ππ-上有2个零点. 综上,当220a π<≤时,()f x 有2个零点;当22a π>时,()f x 有0个零点.………………………………………………………………………………………14分【朝阳二模】18.(本小题满分13分)已知函数2()2()x f x xe ax ax a =++∈R . (Ⅰ)若曲线()y f x =在点(0,(0))f 处的切线方程为30x y +=,求a 的值;(Ⅱ)当102a -≤<时,讨论函数()f x 的零点个数.【解析】()(1)(2)x f x x e a '=++ (Ⅰ)因为曲线()y f x =在点(0,(0))f 处的切线方程为30x y +=.所以(0)0f =,(0)3f '=-.由023e a +=-得2a =-.(Ⅱ)当102a -≤<时,令()(1)(2)0x f x x e a '=++=得1x =-或ln(2)x a =-. ① 当ln(2)1a -<-即1(,0)2a e∈-时, 当x 变化时,(),()f x f x '的变化情况如下表:所以函数()f x 在(ln(2),1)a --上单调递减,在(,ln(2))a -∞-和(1,)-+∞上单调递增.又因为2(ln(2))ln (2)0,(0)0f a a a f -=-<=, 所以函数()f x 有一个零点. ② 当ln(2)1a -=-,即12a e=-时, 当x 变化时,(),()f x f x '的变化情况如下表:所以函数()f x 在(,)-∞+∞上单调递增. 又因为(0)0f =,所以函数()f x 有一个零点.③ 当1ln(2)0a -<-<,即11(,)22a e∈--时,当x 变化时,(),()f x f x '的变化情况如下表:所以函数()f x 在(1,ln(2))a --上单调递减,在(,1)-∞-和(ln(2),)a -+∞上单调递增.又因为221(2)24420,(1)f e a a e f a e-=-+-=-<-=--,2(ln(2))ln (2)0,(0)0f a a a f -=-<=.所以当11(,)2a e e ∈--时,此时1(1)0f a e -=--<,函数()f x 有一个零点;当1a e=-时,此时(1)0f -=,函数()f x 有两个零点;当11(,)2a e ∈--时,此时1(1)0f a e-=--<,函数()f x 有三个零点.④ 当ln(2)0a -=即12a =-时,显然函数()f x 有两个零点.综上所述,(1)1(,0)a e∈-时,函数()f x 有一个零点;(2)11{,}2a e ∈--时,函数()f x 有两个零点;(3)11(,)2a e∈--时,函数()f x 有三个零点.【丰台二模】 (18)(本小题共13分)已知函数()cos f x x x ax a =-+,π[0,]2x ∈,(0)a ≠. (Ⅰ)当1a ≥时,求()f x 的单调区间; (Ⅱ)求证:()f x 有且仅有一个零点.(Ⅰ)解:依题意 ()cos sin f x x x x a '=--. …………………2分令 ()cos sin g x x x x a =--,π[0,]2x ∈, 则 ()2sin cos 0g x x x x '=--≤.所以()g x 在区间π[0,]2上单调递减.因为 (0)10g a =-≤,所以 ()0g x ≤,即 ()0f x '≤, (4)分所以()f x 的单调递减区间是π[0,]2,没有单调递增区间. …………………5分(Ⅱ)证明:由(Ⅰ)知,()g x 在区间π[0,]2上单调递减,且(0)1g a =-,ππ()22g a =--. 当 1a ≥时,()f x 在π[0,]2上单调递减. 因为 (0)0f a =>,ππ()(1)022f a =-<,所以()f x 有且仅有一个零点. …………………7分 当 π02a --≥,即π2a ≤-时,()0g x ≥,即 ()0f x '≥,()f x 在π[0,]2上单调递增.因为 (0)0f a =<,ππ()(1)022f a =->,所以()f x 有且仅有一个零点. …………………9分当 π12a -<<时,(0)10g a =->,ππ()022g a =--<, 所以存在0π(0,)2x ∈,使得0()0g x =. ………………10分x ,()f x ',()f x 的变化情况如下表:所以 ()f x 在0(0,)x 上单调递增,在0(,)2x 上单调递减.…………………11分 因为 (0)f a =,ππ()(1)22f a =-,且0a ≠, 所以 2ππ(0)()(1)022f f a =-<,所以()f x 有且仅有一个零点.………12分 综上所述,()f x 有且仅有一个零点. …………………13分【昌平二模】 19.(本小题13分)已知函数2()e x f x ax ax x =+-,1a >.(I )若曲线()f x 在点(0,(0))f 处的切线方程为y x =,求a 的值; (II) 证明:当0x <时,函数()f x 存在唯一的极小值点为0x ,且0102x -<<. 19.(共13分)解:(I )因为2()e x f x ax ax x =+-,得()2e e x x f x ax a x '=+--,所以(0)1f a '=-. 因为曲线在点(0,(0))f 处的切线方程为y x =,所以(0)11f a '=-=,即2a =. --------------------5分(II) 设()2e e x x h x ax a x =+--,则()22e e 2(2)e x x x h x a x a x '=--=-+. 因为0x <,所以22x +<,e 1x<. 又因为1,a >所以 ()0h x '>,故()(21)e (1)x h x a x x =+-+在(,0)-∞上为增函数.又因(0)10h a =->,1211()e 022h --=-<,由零点存在性定理,存在唯一的01(,0)2x ∈-,有0()0h x =.当0(,)x x ∈-∞时,()()0h x f x ='<,即()f x 在0(,)x -∞上为减函数, 当0(,0)x x ∈时,()()0h x f x ='>,即()f x 在0(,)x -∞上为增函数, 所以0x 为函数()f x 的极小值点. --------------------13分【顺义二模】18.(本小题满分13分)已知函数mx e x f x +=2)(,其中0≤m .(Ⅰ)当1-=m 时,求曲线()x f y =在点()()0,0f 处的切线方程; (Ⅱ)若不等式0)(>x f 在定义域内恒成立,求实数m 的取值范围. 18. 解:(Ⅰ)当1-=m 时,()x e x f x -=2∴()122-='x e x f --------------------------------------------2分 则()10='f ,又()10=f ----------------------------------------4分∴曲线()x f y =在点()()0,0f 处的切线方程为:1+=x y -----5分 (Ⅱ)函数()x f 定义域为()+∞∞-,,且()m e x f x +='22()0≤m -------6分 下面对实数m 进行讨论:①当0=m 时,()02≥=x e x f 恒成立,满足条件------------------------------7分 ②当0<m 时,由()0>'x f 解得⎪⎭⎫⎝⎛->2ln 21m x ,从而知 函数()x f 在⎪⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-,2ln 21m 内递增;同理函数()x f 在⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-∞-2ln 21,m 内递减, -------------------9分 因此()x f 在⎪⎭⎫⎝⎛-=2ln 21m x 处取得最小值⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-12ln 2m m ------------10分 ∴012ln 2>⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-m m , 解得02<<-m e --------------------------------12分综上:当(]0,2e m -∈时,不等式()0>x f 在定义域()+∞∞-,内恒成立.---13分【房山二模】 (18)(本小题13分)设函数()()ln f x x k x =-,(k 为常数),()()x f xx x g 11-=.曲线()x f y =在点()()1,1f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()g x 的单调区间和最小值; (Ⅲ)若ax g a g 1)()(<-对任意0>x 恒成立,求实数a 的取值范围. (19)解:(Ⅰ)()()ln f x x k x =-'()ln 1f x k x =--,因为曲线()x f y =在点()()1,1f 处的切线与x 轴平行 所以'()0f x =,所以1k = …………5分 (Ⅱ)()()1111ln g x f x x x x x =-=-+,定义域为{}0x x > ()()2211111'x g x f x x x x x x-=-=-+=令()'0g x =得1x =,当x 变化时,()'g x 和()g x 的变化如下表由上表可知()g x 的单调递减区间为()0,1,单调递增区间为()1,+∞, 最小值为()10g =。