选修2-1必修2高二数学理科试题
- 格式:doc
- 大小:192.50 KB
- 文档页数:4
高二年级理科数学选修2-1综合测试卷一、选择题1设a R ∈则1a >是11a<的 ( ) (A )充分但不必要条件 (B )必要但不充分条件 (C )充要条件(D )既不充分也不必要条件2. 已知命题tan 1p x R x ∃∈=:,使,其中正确的是 ( ) (A) tan 1p x R x ⌝∃∈≠:,使(B) tan 1p x R x ⌝∃∉≠:,使 (C) tan 1p x R x ⌝∀∈≠:,使 (D) tan 1p x R x ⌝∀∉≠:,使 3. 抛物线24(0)y ax a =<的焦点坐标是 ( ) (A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a ) 4.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线;②,,,O A B C 为空间四点,且向量,,不构成空间的一个基底,则点,,,O A B C 一定共面;③已知向量c b a ,,是空间的一个基底,则向量c b a b a ,,-+也是空间的一个基底。
其中正确的命题是 ( ) (A )①② (B )①③ (C )②③ (D )①②③ 5. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
若=,=,=1则下列向量中与BM 相等的向量是( )(A ) ++-2121 (B )++2121(C )c b a +--2121 (D )c b a +-21216. 已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是 ( )(A )1203622=+y x (x ≠0) (B )1362022=+y x (x ≠0)(C )120622=+y x (x ≠0) (D )162022=+y x (x ≠0)7. 过抛物线 y 2 = 4x 的焦点作直线交抛物线于A (x 1, y 1)B (x 2, y 2)两点,如果21x x +=6,那么AB =(A )6 (B )8 (C )9 (D )108. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) (A )(315,315-)(B )(315,0) (C )(0,315-) (D )(1,315--) 9.试在抛物线x y 42-=上求一点P ,使其到焦点F 的距离与到()1,2-A 的距离之和最小,则该点坐标为 ( ) (A )⎪⎭⎫ ⎝⎛-1,41 (B )⎪⎭⎫ ⎝⎛1,41(C )()22,2-- (D )()22,2- 10.已知点F 1、F 2分别是椭圆22221x y a b+=的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为( )(A )12 (B )(C )13(D一、选择题:二、填空题11.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则x y =___________。
1.命题“对∀x ∈R ,都有x 2≥0”的否定为( ) A .∃x 0∈R ,使得x 02<0 B .对∀x 0∈R ,使得x 2<0C .∃x 0∈R ,使得x 02≥0D .不∃x 0∈R ,使得x 2<0 2.已知直线l 1的方程是y =ax +b ,l 2的方程是y =bx −a (ab ≠0,a ≠b ),则下图中,正确的是( ) 3.若命题p :0是偶数,命题q :2是3的约数,则下列命题中为真的是( ) A .p ∧q B .p ∨q C .¬p D .以上都不对 4.已知双曲线x 2a 2−y 25=1的右焦点为(3,0),则该双曲线的离心率等于( ) A .3√1414 B .3√24 C .32 D .43 5.过点(1,0)的直线与圆(x +1)2+(y −1)2=4相交,截得的弦的中点M 的轨迹是( )A.圆弧B.圆C.线段D.直线 6.已知点A (−3,−4),B (6,3)到直线:ax +y +1=0的距离相等,则实数a 的值为( ) A.79 B.−13 C.−79或−13 D.79或137.已知椭圆x 210−m +y 2m−2=1,长轴在y 轴上.若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 8.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.过双曲线C :x 2a 2−y 2b 2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过A,O 两点(O 为坐标原点),则双曲线C 的方程为( )A .x 24−y 212=1B .x 27−y 29=1C .x 28−y 28=1D .x 212−y 24=1 10.将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )A .n =0B .n =1C .n =2D .n≥311.知a =(λ+1,0,2λ),b =(6,2μ−1,2),若a ∥b ,则λ与μ的值分别为( )A. 15,12 B .5,2 C .−15,−12 D .−5,−212如图所示,在正方体ABCD −A 1B 1C 1D 1中,以D 为原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量中能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)13.p:|x −1|>1−x ,q:x >a ,若p 是q 的充分不必要条件,则a 的取值范围是________.14过直线l :y =2x 上一点P 作圆C :(x −8)2+(y −1)2=2的切线l 1,l 2,若l 1,l 2关于直线l 对称,则点P 到圆心C 的距离为 . 15.椭圆C 1:x 24+y 23=1的左准线是l ,左、右焦点分别是F 1,F 2,抛物线C 2的准线也是l ,一个焦点为F 2,C 1与C 2的一个交点为P ,则|PF 2|的值等于________.16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB |=10,|AF |=6,COS ∠ABF =45,则C 的离心率ⅇ=________.17.设f (x )=a sin 2x +b cos 2x ,其中a,b ∈R,ab ≠0,若f (x )≤|f (π6)|对一切x ∈R 恒成立,则①f (1112π)=0 ②|f (7π10)|<|f (π5)| ③f (x )既不是奇函数也不是偶函数 ④f (x )的单调递增区间是[kπ+π6,kπ+2π3](k ∈Z ) ⑤存在经过点(a,b )的直线与函数的图像f (x )不相交 以上结论正确的是________(写出正确结论的编号). 18.如图,空间四边形OABC ,点M ,N 分别为OA ,BC 的中点,且OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗⃗ =c ,用a ,b ,c 表示MN ⃗⃗⃗⃗⃗⃗⃗ ,则MN ⃗⃗⃗⃗⃗⃗⃗ =__ ______. 19.如图所示,在棱长为4的正方体ABCD −A 1B 1C 1D 1中,点E 是棱CC 1的中点,则异面直线D 1E 与AC 所成的角的余弦值是________. 20.已知P ={x |a −4<x <a +4},Q ={x |x 2−4x +3<0},且x ∈P 是x ∈Q 的必要条件,求实数a的取值范围.21.△ABC 的两条高所在直线的方程为2x -3y +1=0和x +y =0,且A(1,2)是其一个顶点.求BC 边所在直线的方程.22.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |.(2)若直线l 的斜率为1,求b 的值.23.如图所示,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =2,AB =1,BM ⊥PD 于点M.(1)求证:AM ⊥PD ;(2)求直线CD 与平面ACM 所成角的余弦值.。
高二下学期数学期末考试试卷(理)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的. 1.在某项测量中,测量结果X 服从正态分布)0)(,1(2>σσN ,若X 在)2,0(内取值的概率为8.0,则X 在),0[+∞内取值的概率为A .9.0B .8.0C .3.0D .1.0 2.曲线x y sin =与x 轴在区间]2,0[π上所围成阴影部分的面积为 A . 4- B .2- C .2 D .4 3. 若复数z 满足 (1)i z i +⋅=,则z 的虚部为 A . 2i -B .12C .2iD . 12- 4.用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的反设为A .自然数c b a ,,都是奇数B .自然数c b a ,,都是偶数C .自然数c b a ,, 中至少有两个偶数D .自然数 c b a ,,中至少有两个偶数或都是奇数 5.已知在一次试验中,()0.7P A =,那么在4次独立重复试验中,事件A 恰好在前两次发生的概率是A .0441.0B .2646.0C .1323.0D .0882.06.某单位为了制定节能减排的目标,先调查了用电量y (单位:度)与气温x (单位:c ︒)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:x (单位:c ︒) 17 14 10 1- y (单位:度)24 343864由表中数据得线性回归方程:a x y +-=2.当气温为c ︒20时,预测用电量约为 A.20 B. 16 C.10 D.57.从6,5,4,3,2,1这六个数字中,任取三个组成无重复数字的三位数,但当三个数字中有2 和3时,2必须排在3前面(不一定相邻),这样的三位数有 A.108个 B.102个 C.98个 D.96个 8.在吸烟与患肺病这两个事件的统计计算中,下列说法正确的是A.若2χ的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误; D.以上三种说法都不正确.9.有6个座位连成一排,安排3个人就座,恰有两个空位相邻的不同坐法有A.36种B.60种C.72种D.80种10.一个袋子里装有编号为12,,3,2,1K 的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回到袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是A .163B . 41C .167D .4311.若函数x cx x x f +-=232)(有极值点,则实数c 的范围为A .),23[+∞ B .),23(+∞ C .),23[]23,(+∞--∞Y D .),23()23,(+∞--∞Y 12.下列给出的命题中:①如果三个向量,,不共面,那么对空间任一向量,存在一个唯一的有序数组z y x ,,使c z b y a x p ++=.②已知)1,1,1(),0,1,0(),0,0,1(),0,0,0(C B A O .则与向量和都垂直的单位向量只有)36,66,66(-=n . ③已知向量,,可以构成空间向量的一个基底,则向量可以与向量+和向量-构成不共面的三个向量.④已知正四面体OABC ,N M ,分别是棱BC OA ,的中点,则MN 与OB 所成的角为4π. 是真命题的序号为A .①②④B .②③④C .①②③D .①④二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中相应题的横线上. 13.函数52)(24--=x x x f 在]2,1[-上的最小值为_____________________.14.等差数列}{n a 的前n 项和为n S ,已知0,01514><S S ,则=n _____时此数列的前n 项和取得最小值.15.已知长方体1111D C B A ABCD -中,E AD AA AB ,2,11===为侧面1AB 的中心,F 为11D A 的中点,则=⋅1FC EF .16.在数列}{n a 中,2,121==a a 且)()1(12*+∈-+=-N n a a n n n ,则=50S .三、解答题:本大题共6小题,共70分. 把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知n x x )2(32+的展开式中,第5项的二项式系数与第3项的二项式系数之比是2:7. (Ⅰ)求展开式中含211x 项的系数; (Ⅱ)求展开式中系数最大的项.18.(本小题满分12分)为培养高中生综合实践能力和团队合作意识,某市教育部门主办了全市高中生综合实践知识与技能竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的团队按照抽签方式决定出场顺序.通过预赛,共选拔出甲、乙等六个优秀团队参加决赛. (Ⅰ)求决赛出场的顺序中,甲不在第一位、乙不在第六位的概率;(Ⅱ)若决赛中甲队和乙队之间间隔的团队数记为X ,求X 的分布列和数学期望.19.(本小题满分12分)观察下列等式11= 第一个式子 9432=++ 第二个式子 2576543=++++ 第三个式子 4910987654=++++++ 第四个式子照此规律下去(Ⅰ)写出第6个等式;(Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想.20. 已知点B (2,0),)22,0(=,O 为坐标原点,动点P 满足34=++.(Ⅰ)求点P 的轨迹C 的方程;(Ⅱ)当m 为何值时,直线l :m x y +=3与轨迹C 相交于不同的两点M 、N ,且满足BN BM =?(Ⅲ)是否存在直线l :)0(≠+=k m kx y 与轨迹C 相交于不同的两点M 、N ,且满足BN BM =?若存在,求出m 的取值范围;若不存在,请说明理由.21.(本小题满分12分)如图,直四棱柱1111ABCD A B C D - 的底面ABCD 是平行四边形,45DAB ∠=o,12AA AB ==,AD =,点E 是 11C D 的中点,点F 在11B C 上且112B F FC =.(Ⅰ)证明:1AC ⊥平面EFC ;(Ⅱ)求锐二面角E FC A --平面角的余弦值.22.(本小题满分14分)已知函数)1()(2+-+=a ax x e x f x,其中a 是常数.(Ⅰ) 当1=a 时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若)(x f 在定义域内是单调递增函数,求a 的取值范围;(Ⅲ)若关于x 的方程k e x f x+=)(在[0,)+∞上有两个不相等的实数根,求k 的取值范围.高二下学期数学期末考试试卷(理)参考答案ABCC 1ED 1A 1DFB 1一.选择题: 每小题5分共60分 DD AACCA ADBDA ,, 二.填空题:13. 6- 14. 7 15.2116. 675 三:17解:(Ⅰ)解由题意知4272n n C C = ,整理得42(2)(3)n n =--,解得9n =… 2分∴ 通项公式为6279912r rr r xC T +-+⋅= 4分 令211627=+r ,解得6=r . ∴展开式中含211x 项的系数为67226969=⋅-C . ……………6分 (Ⅱ)设第1+r 项的系数最大,则有⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅-+----r r r r r r r r C C C C 819991019992222 ……………8分⎪⎪⎩⎪⎪⎨⎧≥≤∴37310r r ,390=∴≤≤∈r r N r 且Θ. ……………10分∴展开式中系数最大的项为55639453762x x C T =⋅=. ……………12分18(本小题满分12分)解:(Ⅰ)设“甲不在第一位、乙不在第六位”为事件A , 1分则1072)(66445566=+-=A A A A A P …………3分 所以甲不在第一位、乙不在第六位的概率为107. …………4分(Ⅱ)随机变量X 的可能取值为4,3,2,1,0 …………………5分 31)0(665522===A A A X P , 154)1(66442214===A A A C X P 51)2(6633222224===A A A A C X P ,152)3(6633222234===A A A A C X P 151)4(664422===A A A X P , (每个式子1分)…………………………10分随机变量X 的分布列为:因为 31541535215130=⨯+⨯+⨯+⨯+⨯=EX ,所以随机变量X 的数学期望为34. ……………………12分 19.解:(Ⅰ)第6个等式21116876=++++K …………2分(Ⅱ)猜测第n 个等式为2)12()23()2()1(-=-+++++n n n n n K …………4分 证明:(1)当1=n 时显然成立; (2)假设),1(+∈≥=N k k k n 时也成立,即有2)12()23()2()1(-=-+++++k k k k k K …………6分 那么当1+=k n 时左边)13()3()13()23()2()1(+++-+-++++=k k k k k k K2222]1)1(2[)12(8144)13()3()12()12(133)12()23()2()1(-+=+=++-=+++-+-=+++-+-++++++=k k k k k k k k k k k k k k k k K而右边2]1)1(2[-+=k这就是说1+=k n 时等式也成立. …………10分 根据(1)(2)知,等式对任何+∈N n 都成立. …………12分20解:(Ⅰ)设点),(y x P ,则)22,(+=+y x ,)22,(-=-y x . 由题设得34)22()22(2222=-++++y x y x .………(3分)即点P 到两定点(0,22)、(0,-22)的距离之和为定值34,故轨迹C 是以(0,22±)为焦点,长轴长为34的椭圆,其方程为112422=+y x .……(6分) (Ⅱ)设点M ),(11y x 、N ),(22y x ,线段MN 的中点为),(000y x M ,由BN BM =得0BM 垂直平分MN . 联立⎪⎩⎪⎨⎧=++=.123,322y x m x y 消去y 得01232622=-++m mx x .由0)12(24)32(22>--=∆m m 得6262<<-m .………(10分)∴322210m x x x -=+=,2)32(30m m m y =+-=.即)2,32(0mm M -. 由0BM ⊥MN 得1323220-=⋅--=⋅m m k k MN BM .故32=m 为所求.(14分) (Ⅲ)若存在直线l 与椭圆C 相交于不同的两点M ),(11y x 、N ),(22y x ,且满足BN BM =,令线段MN 的中点为),(000y x M ,则0BM 垂直平分MN .联立⎪⎩⎪⎨⎧=+=+.123,12322222121y x y x 两式相减得))(())((321212121y y y y x x x x -+-=-+.∴k y x y y x x x x y y k MN=-=++-=--=0021*******)(3. 又由0BM ⊥MN 得k x y k BM 12000-=-=.∴10-=x ,k y 30=.即)3,1(0kM -.又点0M 在椭圆C 的内部,故1232020<+y x .即12)3()1(322<+-⋅k.解得1>k .又点)3,1(0kM -在直线l 上,∴m k k +-=3.∴3233≥+=+=k k k k m (当且仅当3=k 时取等号).故存在直线l 满足题设条件,此时m 的取值范围为),∞+⋃--∞32[]32,(.21(本小题满分12分)解:(Ⅰ)以A 为坐标原点,射线AB 为x 轴的正半轴,建立如图所示空间直角坐标系A xyz -.则依题意,可得以下各点的坐标分别为1(0,0,0),(4,20)(4,2,2),(32,2),A C C E ,,,10(,2)3F 4,3. ………………3分∴ 112(42,2)(,0),(1,0,2),33AC EF EC ==-=-u u u u r u u u r u u u r ,,,∴ 112(42,2)(,0)0.33AC EF ⋅==⋅-=u u u u r u u u r ,, 1(42,2)(1,0,2)0AC EC ⋅==⋅-=u u u u r u u u r ,∴1AC EF ⊥,1AC EC ⊥.又EFC EC EF 平面⊆, ∴ 1AC ⊥平面EFC . ………………6分(Ⅱ)设向量),,(z y x n =是平面AFC 的法向量,则 AF n AC n ⊥⊥,,而)2,34,310(),0,2,4(==∴ 0234310,024=++=+z y x y x , 令1=x 得)31,2,1(--=. ………………9分又∵1AC u u u u r是平面EFC 的法向量,∴ 13869441691413244,cos 111-=++⋅++--=>=<AC n .… 11分1A所以锐二面角E FC A --平面角的余弦值为13869.………………12分 22.(本小题满分14分)解:(Ⅰ)由)1()(2+-+=a ax x e x f x 可得 ]1)2([)(2+++='x a x e x f x.…2分 当1a =时,e f e f 5)1(,2)1(='=所以 曲线()y f x =在点(1,(1))f 处的切线方程为)1(52-=-x e e y 即035=--e y ex ……………………………4分 (Ⅱ) 由(Ⅰ)知]1)2([)(2+++='x a x e x f x,若)(x f 是单调递增函数,则0)(≥'x f 恒成立, ……………………5分即01)2(2≥+++x a x 恒成立,∴04)2(2≤-+=∆a ,04≤≤-a ,所以a 的取值范围为]0,4[-. ………………………7分(Ⅲ)令)()()(2a ax x e e x f x g x x -+=-=,则关于x 的方程k x g =)(在[0,)+∞上有两个不相等的实数根.令0))2(()(2=++='x a x e x g x,解得(2)x a =-+或0x =.……………9分 当(2)0a -+≤,即2a ≥-时,在区间[0,)+∞上,0)(≥'x g ,所以)(x g 是[0,)+∞上的增函数.所以 方程k x g =)(在[0,)+∞上不可能有两个不相等的实数根.…………10分当(2)0a -+>,即2a <-时,)(),(x g x g '随x 的变化情况如下表由上表可知函数)(x g 在[0,)+∞上的最小值为2))2((+=+-a ea g . …………12分 因为 函数)(x g 是(0,(2))a -+上的减函数,是((2),)a -++∞上的增函数, 且当+∞→x 时,+∞→)(x g所以要使方程k x g =)(即k e x f x+=)(在[0,)+∞上有两个不相等的实数根,k 的取值范围必须是],4(2a ea a -++.…………14分。
高二理科数学(考试时间:120分钟 试卷满分:150分)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.对于命题:p x ∃∈R ,使得210x x ++<,则p ⌝是 A .:p x ⌝∀∈R ,210x x ++> B .:p x ⌝∃∈R ,210x x ++≠ C .:p x ⌝∀∈R ,210x x ++≥D .:p x ⌝∃∈R ,210x x ++<2.已知点(1,2,1)A -,点C 与点A 关于平面xOy 对称,点B 与点A 关于x 轴对称,则||BC =A .B .C .D .43.过点(2,0)且与直线230x y -+=垂直的直线方程是 A .220x y --= B .220x y +-= C .240x y +-= D .220x y +-=4.已知双曲线22116y x m-=的离心率为2,则双曲线的渐近线方程为A .y x =B .y x =C .y =D .y =5.若,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是A .若,m αββ⊥⊥,则//m αB .若//,m n m α⊥,则n α⊥C .若//,//,,m n m n ααββ⊂⊂,则//αβD .若m ∥β,m ⊂α,α⋂β=n ,则//m n 6.设x ∈R ,若“2)og (l 11x -<”是“221x m >-”的充分不必要条件,则实数m 的取值范围是A .[B .(1,1)-C .(D .[1,1]-7.若圆C 的半径为2,圆心在x 轴的正半轴上,直线3440x y ++=与圆C 相切,则圆C 的方程为 A .22230x y x +--= B .2240x y x ++= C .2240x y x +-=D .22230x y x ++-=8.已知F 是椭圆C :22195x y +=的左焦点,P 为C 上一点,4(1,)3A ,则||||PA PF +的最小值为 A .10B .11C .4 D .139.某几何体的三视图如图所示,其中,正视图中的曲线为圆弧,则该几何体的体积为A .4π643-B .64-4πC .64-6πD .64-8π10.已知直线3y kx =+与圆22(2)(3)4x y -+-=相交于M N 、两点,若||MN ≥k 的取值范围是A .3[,0]4-B .3(,][0,)4-∞-+∞C .[D .2[,0]3-11.如图,在直三棱柱111ABC A B C -中,∠BAC =90°,AB =AC =2,AA 1,则AA 1与平面AB 1C 1所成的角为A .π6B .π4C .π3D .π212.已知抛物线22(0)y px p =>的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|||AK AF =,则AFK △的面积为A .4B .8C .16D .32第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.命题“若实数a 、b 满足5a b +≤,则2a ≤或3b ≤”是________命题(填“真”或“假”).14.若1a >,则双曲线22213x y a -=的离心率的取值范围是___________. 15.已知四棱锥-P ABCD 的顶点都在球O 的球面上,底面ABCD 是边长为2的正方形,且PA ⊥平面ABCD ,四棱锥-P ABCD 的体积为163,则该球的体积为___________. 16.若直线:10l ax by ++=始终平分圆22:4210M x y x y ++++=的周长,则22(2)(2)a b -+-的最小值为___________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知命题p :二次函数2()76f x x x =-+在区间[,)m +∞上是增函数;命题q :双曲线22141x y m m -=--的离心率的取值范围是)+∞.(1)分别求命题p ,命题q 均为真命题时,m 的取值范围;(2)若“p 且q ” 是假命题,“p 或q ”是真命题,求实数m 的取值范围.18.(本小题满分12分)已知圆C 经过原点O (0,0)且与直线y =2x ﹣8相切于点P (4,0). (1)求圆C 的方程;(2)已知直线l 经过点(4, 5),且与圆C 相交于M ,N 两点,若|MN|=2,求出直线l 的方程. 19.(本小题满分12分)已知直线:2l y x b =+与抛物线21:2C y x =. (1)若直线与抛物线相切,求实数b 的值.(2)若直线与抛物线相交于A 、B 两点,且|AB |=10,求实数b 的值.20.(本小题满分12分)在平面直角坐标系xOy 中,∆ABC 顶点的坐标分别为A (−1,2)、B (1,4)、C(3,2).(1)求∆ABC 外接圆E 的方程;(2)若直线l 经过点(0,4),且与圆E 相交所得的弦长为l 的方程;(3)在圆E 上是否存在点P ,满足22||2||PB PA =12,若存在,求出点P 的坐标;若不存在,请说明理由.21.(本小题满分12分)如图,已知四棱锥S -ABCD ,底面梯形ABCD 中,BC ∥AD ,平面SAB ⊥平面ABCD ,SAB △是等边三角形,已知AC =2AB =4,BC =2AD =2DC =(1)求证:平面SAB ⊥平面SAC ; (2)求二面角B-SC-A 的余弦值.22.(本小题满分12分)设椭圆C :x 2a 2+y 2b 2=1(a >b >0),右顶点是A(2,0),离心率为12. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于两点,M N (,M N 不同于点A ),且AM ⃑⃑⃑⃑⃑⃑ ∙AN ⃑⃑⃑⃑⃑⃑ =0,求证:直线l 过定点,并求出定点坐标.。
梅州中学2010-2011学年高二第一学期期末试题理科数学(本试卷满分150分;考试时间120分钟)一、选择题(本大题共8个小题,每小题5分,共40分) 1.不等式01032>++-x x 的解集为()),5()2,( .+∞--∞Y A ),2()5,( .∞--∞Y B )2,5( .-C )5,2( .-D2、在ABC ∆中,33,3,120a b A ===︒,则角B 的值为()A.30︒B.45︒C.60︒D.90︒3、在同一坐标系中,方程2222210(0)x y ax by a b a b+=+=>>与的曲线大致是()4、抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是() A .1716B .1516C .78D .05、设双曲线焦点在y 轴上,两条渐近线为12y x =±,则该双曲线离心率e =()A .5B .2C .546、木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的() A .60倍 B .6030倍 C .120倍 D .12030倍7.正四面体P-ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面结论不成立...的是()A .平面PDF ⊥平面ABCB .DF ⊥平面PAEC .BC//平面PDFD .平面PAE ⊥平面ABC8.若椭圆或双曲线上存在点P ,使得点P 到两个焦点的距离之比为2:1,则称此椭圆或双曲线存在“F 点”,下列曲线中存在“F 点”的是()A .1151622=+y x B .1242522=+y x C .11522=-y x D .122=-y x二.填空题(本大题共6小题,每小题5分,满分30分)9.已知向量(2,4,),(2,,2)a x b y ==r r ,若||6a =r,且a b ⊥r r ,则x y += .10.设n S 为等比数列{}n a 的前n 项和,若246,30,S S ==,则6S = 。
2012-2013学年第一学期高二年级周考(六)数 学时间:100分钟 满分:100分 命卷教师:第Ⅰ卷 (选择题 共40分)一、选择题(每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及 体积为( ).A . 224cm π,212cm πB . 215cm π,212cm πC . 224cm π,236cm πD . 以上都不正确 2.已知两个平面垂直,现有下列命题:①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. 其中正确的个数是( ).A .3B .2C .1D .0 3.正方体的内切球和外接球的半径之比为( ).A. B2 C.2: D34.正方体ABCD- A 'B 'C 'D '中,面对角线B'C和A'B所成的角是( )A . 450B .600C .900D .3005.圆x 2+y 2+4x –4y+4=0关于直线l: x –y+2=0对称的圆的方程是( ) A .x 2+y 2=4 B .x 2+y 2–4x+4y=0 C .x 2+y 2=2 D .x 2+y 2–4x+4y –4=06 .已知双曲线C :22x a-22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为( )A .220x-25y=1 B .25x-220y=1 C .280x-220y=1 D .220x-280y=17.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =;则A O B ∆的面积为 ( )A.2B.C.2D.8 .已知双曲线22214xyb-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A.B.C .3D .59 .已知椭圆2222:1(0)x y C a b ab+=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B(C(D )210. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
高二年级理科数学选修1201502-1 期末试卷(测试时间: 分钟 满分 分)注意事项: 答题前,考生务必将自己的班级、姓名、考试号写在答题纸的密封线内.答题时,答案写在答题纸上对应题目的空格内,答案写在试卷上无效.本卷考试结束后,上交答题纸. 一、选择题(每小题 5 分,共 12 小题,满分 60 分)1. 已知命题 p : xR ,使 tan x 1,其中正确的是( )(A) p : xR ,使 tan x 1(B) p : x R ,使 tan x 1(C)p : x R ,使 tan x 1(D)p : x R ,使 tan x 12. 抛物线y 2 4ax( a0)的焦点坐标是()(A )( a, 0)( B ) ( - a, 0)( C )( 0,a) ( D )( 0, - a)13. 设 a1R ,则 a 1 是 a的()(A )充分但不必要条件 ( B )必要但不充分条件(C )充要条件( D )既不充分也不必要条件4. 已知△ ABC 的三个顶点为 A (3, 3, 2), B ( 4,- 3, 7), C ( 0, 5, 1),则 BC 边上的中线长为()(A ) 2( B )3(C ) 4(D ) 55. 有以下命题:①如果向量 a, b与任何向量不能构成空间向量的一组基底,那么a,b的关系是不共线;②O, A, B,C为空间四点,且向量OA, OB,OC不构成空间的一个基底,则点 O, A, B,C 一定共面;③已知向量 a, b, c是空间的一个基底,则向量 a b, a b, c也是空间的一个基底 .其中正确的命题是()( A )①②(B )①③( C )②③( D )①②③6. 如图:在平行六面体ABCDA 1B 1C 1D 1 中, M 为 A 1C 1 与B 1D1 的交点 . 若ABa , ADb ,AA 1c则下列向量中与BM 相等的向量是( )D1MC11 a1b c1 a1b cA1B1( A )22(B )22DC1 a 1 b1 a1 bccAB( C )2 2(D )227. 已知△ ABC 的周长为 20,且顶点 B (0 ,- 4) , C (0 , 4) ,则顶点 A 的轨迹方程是()x 2 y 2 1x 2 y 2 1(A ) 36 20(B )2036( x ≠ 0)( x ≠ 0) x 2 y 2 1x 2y 2 1(C ) 6 20(D ) 20 6( x ≠ 0)( x ≠ 0)2x 1x 21 / 8那么AB=( )(A ) 6( B )8(C ) 9(D ) 109. 若直线y kx2 与双曲线 x2y 26的右支交于不同的两点,那么k 的取值范围是 ()15 , 15 0, 1515 ,015, 1 (A )(3 3 )( B )( 3 )( C )(3 )( D )(3 )10. 试在抛物线 y24x上求一点 P ,使其到焦点 F 的距离与到A2,1 的距离之和最小,则该点坐标为()1,11,12, 2 22,2 2(A )4(B )4( C )( D )11.在长方体 ABCD-A BCD 中,如果 AB=BC=1, AA =2,那么 A 到直线A C 的距离为()11 11112 63 62 36(A ) 3( B ) 2(C )3( D )3x 2y 2 112. 已知点 1、a 2b 2x2 分别是椭圆的左、右焦点,过1且垂直于 轴的直线与椭圆交于、 两F FFA B点,若△ ABF 2 为正三角形,则该椭圆的离心率e 为( )1213(A ) 2( B ) 2(C ) 3(D )3二、填空题(每小题 4 分,共 4 小题,满分 16 分)13. 已知 A ( 1,- 2, 11)、 B ( 4, 2,3)、 C ( x , y , 15)三点共线,则 x y =___________.14. 已知当抛物线型拱桥的顶点距水面2 米时,量得水面宽 8 米 . 当水面升高 1 米后,水面宽度是 ________米 .x 2 y 215. 如果椭圆 3619的弦被点 (4 , 2) 平分,则这条弦所在的直线方程是___________.16. ①一个命题的逆命题为真,它的否命题也一定为真;②在ABC 中,“B 60 ”是“A, B, C三个角成等差数列”的充要条件.x 1x y 3③ y 2 是 xy2 22的充要条件;④“ am <bm ”是“ a <b ”的充分必要条件 .以上说法中,判断 错误 的有 ___________.三、解答题(共 6 小题,满分 74 分)17. (本题满分 12 分)设 p:方程 x 2mx 1 0 有两个不等的负根, q:方程4x 24(m 2) x 1 0无实根,若 p 或 q 为真, p 且 q 为假,求m的取值范围.18. (本题满分 12 分)F -2 2,0 、F22,0已知椭圆C 的两焦点分别为1 2,长轴长为6,⑵已知过点( 0, 2)且斜率为 1 的直线交椭圆 C 于 A 、 B 两点 , 求线段 AB 的长度 ..19. (本题满分 12 分)如图,已知三棱锥 O ABC 的侧棱 OA ,OB , OC 两两垂直,且OA 1,OBOC 2, E 是OC 的中点 .( 1)求异面直线 BE 与 AC 所成角的余弦值;( 2)求直线 BE 和平面 ABC 的所成角的正弦值 .20. (本题满分 12 分)在平面直角坐标系 x O y中,直线 l 与抛物线y 2= 2 x相交于 、 两点 .A B( 1)求证:命题“如果直线 l 过点 T ( 3, 0),那么OA OB= 3”是真命题; ( 2)写出( 1)中命题的逆命题,判断它是真命题还是假命题,并说明理由 .P21. (本题满分 14 分)ADC B如图,棱锥 P — ABCD 的底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA=AD=2 , BD=22.( 1)求证: BD ⊥平面 PAC ;( 2)求二面角 P —CD — B 余弦值的大小;( 3)求点 C 到平面 PBD 的距离 .22. (本题满分 12 分)x 2 y 20)2b 2 1(a bA 、B 为两个顶点,如图所示, F 1、F 2 分别为椭圆 C :a的左、右两个焦点, 3 )(1,已知椭圆 C 上的点2 到 F 1、 F 2 两点的距离之和为 4. ( 1)求椭圆 C 的方程和焦点坐标;(2)过椭圆 C 的焦点 F 2 作 AB 的平行线交椭圆于 P 、Q 两点,求△ F 1PQ 的面积 .高二年级理科数学选修2-1 期末试卷参考答案一、选择题:题号 12 3 45 6 7 8 9 10 11 12 答案CAABCABBDACD二、填空题: 13、 214、4 215、 x 2 y 8 016 、③④三、解答题:m 2 4 017 、解: 若方程 x 2mx 1 0 有两个不等的 根,x 1 x 2m0 ,⋯⋯⋯⋯ 2 分所以 m2 ,即p : m2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分若方程 4x24( m 2) x 1无 根,16(m 2) 2 16 0 ,⋯⋯⋯⋯ 5 分即 1m 3 ,所以 p :1 m 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分因pq真,p, q至少一个 真,又 p q假, p, q至少一个 假.所以 p, q 一真一假,即“ p 真 q 假”或“ p 假 q 真”. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分m 2m 2所以 m 或1 m 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分1 m 3 或 所以m3 或 1 m 2 .故 数m的取 范 (1,2] U [3,) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分18、解: ⑴由 F 1-22,0 、 F 22 2,0, 6得:c2 2, a3所以 b 1x 2 y 2 1∴ 方程91⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分x 2 y 2⑵ A(x 1, y 1), B( x 2 , y 2 ) , 由⑴可知 方程91①,1∵直 AB 的方程yx 2 ②⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分把②代入①得化 并整理得10 x 236x 27 0x 1x 218, x 1 x 227⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分∴ 510AB2182 4 27 6 3(1 1)( 5 2 ) 5⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分又1019、解: ( 1)以 O 原点 , OB、 OC 、 OA 分 x 、 y、 z 建立空 直角坐 系 .有 A(0,0,1) 、 B(2,0,0)、 C(0,2,0) 、 E(0,1,0). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分uuur(0,1,0) (2, uuur(0,2, 1)EB (2,0,0)1,0), ACuuur uuur2 2 ,COS<EB, AC>555⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分2 所以异面直BE与 AC 所成角的余弦5ur( 2) 平面ABC 的法向量 n 1 ( x, y, z),uur uuurur uuurn 1知 : n 1 AB2x z 0;ABuruuuruuruuuruurn 1AC 知: n 1 AC 2 y z 0.取 n 1(1,1,2),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分⋯⋯⋯ 8 分cos EB, n 12 1 0305 630,⋯⋯⋯⋯⋯⋯⋯10 分30 故和平面ABC的所成角的正弦30⋯⋯⋯⋯ 12 分BE20、 明: ( 1)解法一: 点T(3,0)的直 l 交抛物 y 2 =2x 于点 A( x , y ) 、 B( x , y ).1122当直 l的 率下存在 , 直 l 的方程 x =3, 此 , 直 l与抛物 相交于A(3, 6) 、B(3, - 6 ),∴ OA OB 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分当直 l 的 率存在 , 直 l 的方程 y =k ( x - 3),其中 k ≠0.y 2 2x1 1yk (x 3)得 ky -2y - 6k =0, y 1y 2=- 6.1 ,又∵ x 1= 2 yx 2= 2 y 2 ,2221( y 1 y 2 )2y 1 y 2=3.7 分 ∴ OA OB =x 1x 2+y 1y 2= 4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯上所述 , 命 “ ...... ”是真命 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分解法二: 直 l的方程 my =x - 3 与 y2=2x 立得到 y 2-2my-6=0OA OB =x 1x 2+y 1y 2=(my 1+3) (my 2+3)+ y 1y 2=(m 2+1) y 1y 2+3m(y 1+y 2)+9=(m 2+1) × (-6)+3m × 2m+9= 3⋯⋯⋯8分 ( 2)逆命 是:“ 直l交抛物 y 2=2x 于 A 、 B 两点 , 如果 OA OB3 , 那么 直 点T(3,0). ” ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分1命 是假命 .例如:取抛物 上的点 A(2,2),B(2 ,1), 此 OA OB3 =3,2直 AB 的方程 y=3( x +1), 而 T(3,0) 不在直 AB 上 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分211 2 2OAOB 31 2或 y 1 2=2,如果点 :由抛物 y =2x 上的点A(x, y) 、 B( x , y ) 足, 可得 y y =- 6.y1 2=- 6,可 得直AB 点 (3,0);如果1y 2=2, 可 得直 AB 点 ( - 1,0), 而不 点 (3,0).y yy21、解:方法一: :⑴在R t △ BAD 中, AD =2,BD =2 2, ∴ AB=2, ABCD 正方形,因此BD ⊥ AC.∵ PA ⊥平面 ABCD , BD 平面 ABCD ,∴ BD ⊥PA .又∵ PA ∩ AC=A ∴ BD ⊥平面 PAC.解:( 2)由 PA ⊥面 ABCD ,知 AD PD 在平面 ABCD 的射影,又 CD ⊥ AD , ∴CD ⊥ PD ,知∠ PDA 二面角 P — CD — B 的平面角 . 又∵ PA =AD ,∴∠ PDA= 450 .( 3)∵ PA=AB=AD=2,∴ PB=PD=BD= 2 2, C 到面 PBD 的距离 d , z11 ? S PBD ?dP由 V P? SBCD? PABCDV C PBD ,有 33,1 ? 1 22 2 1 ? 1 ( 2 2 )2 ? sin 600 ? d d 23即 3 23 2 ,得3方法二: :( 1)建立如 所示的直角坐 系,AA ( 0, 0,0)、 D ( 0,2, 0)、 P ( 0, 0,2) .⋯⋯⋯⋯⋯⋯ 2 分D y在 R t △ BAD 中, AD =2,BD = 2 2 ,∴ AB=2.∴B ( 2, 0, 0)、 C ( 2,2, 0),BCx∴ AP(0,0,2), AC ( 2,2,0), BD ( 2,2,0)∵ BD?AP0,BD?AC,即 BD ⊥ AP , BD ⊥AC ,又 AP ∩ AC=A ,∴ BD ⊥平面 PAC . ⋯⋯⋯⋯ 4 分解:( 2)由( 1)得PD(0,2, 2), CD ( 2,0,0) .平面 PCD 的法向量n1( x, y, z) , n 1 ? PD 0,n 1 ?CD 0 ,0 2 y2z 0 x 0 即2x0 0,∴y z故平面PCD 的法向量可取n1(0,1,1)∵ PA ⊥平面 ABCD ,∴AP ( 0,01)平面 ABCD 的法向量 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分cosn 1 ? AP 2n 1 ? AP2二面角 P —CD — B 的大小,依 意可得. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9 分( 3)由(Ⅰ)得PB (2,0,2), PD(0,2, 2) , 平面 PBD 的法向量 n2(x, y, z) ,2x0 2z 0n 2 ? PB 0,n 2 ? PD 0 ,即 02y 2 z,∴ x=y=z ,故可取n2(1,1,1). ⋯⋯⋯⋯⋯ 11 分dn 2 ? PC 2 3n 23∵PC (2,2, 2),∴ C 到面 PBD 的距离⋯⋯⋯⋯⋯⋯⋯ 14 分3)1 (23 )21(1,b 222、解:( 1)由 知: 2a = 4 ,即 a = 2, 将点2代入 方程得 22,解得 b 2 = 3x 2y 21∴ c 2 = a 2- b 2= 4- 3 = 1 ,故 方程435 分,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 焦点 F 1、 F 2 的坐 分 ( -1, 0)和( 1, 0)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分k PQ33( x 1) ( 2)由(Ⅰ)知A( 2,0), B(0, 3)k ABy, 2, ∴ PQ 所在直 方程2,y 3 1)( x2x 2 y 2 18 y24 3 y 9 0由43得y 1y 23, y 1 y 29P (x 1, y 1), Q (x 2, y 2),28 , ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分y 1 y 2 ( y 1 y 2 )2 4 y 1 y 23 4 9 21482SF 1PQ1 y 1 y 21 221 21F 1F 222 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分22。
高中数学学习材料金戈铁骑整理制作五河二中高二数学测试卷(理科)一、选择题:1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 c z b y a x p ++=.其中正确命题的个数为 ( )A .0B .1C .2D .32.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( )A .627B .637C .647D .6573.直三棱柱ABC —A 1B 1C 1中,若c CC b CB a CA ===1,,, 则1A B =( )A .a +b -cB .a -b +cC .-a +b +cD .-a +b -c4.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><b a ,为A .30°B .45°C .60°D .以上都不对5. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .56.已知的数量积等于与则b a k j i b k j i a 35,2,23+-=-+=( )A .-15B .-5C .-3D .-17.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°8.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( )图AA 1DCBB 1C 1A .1715 B .21C .178D .239.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A .1030 B .21 C .1530 D .101510.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离( )A .515 B .55 C .552 D .105 11.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( )A .a 42B .a 82C .a 423 D .a 2212.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离( )A .63 B .33C .332 D .23 选择题答题框题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:13.在空间直角坐标系O xyz -中,点P(2,3,4)在平面xOy 内的射影的坐标为 ;14.设|m |=1,|n |=2,2m +n 与m -3n 垂直,a =4m -n ,b =7m +2n , 则<a ,b >= .15.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面D B EF 的距离 .16.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线A E 与平面AB C 1D 1所成角的正弦值 .三、解答题:17.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)求:⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a|=3,求向量a 的坐标。
高中数学学习材料唐玲出品高二数学(理科)试卷第Ⅰ卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1、下列命题中是真命题的是( ) A .00,2x x R ∃∈≤0B .2(2,),2x x x ∀∈+∞>C .若1x >,则2x x >D .若x y <,则22x y <2、命题“存在∈0x R ,02x ≤0”的否定是( )A .不存在∈0x R, 02x>0 B .存在∈0x R, 02x ≥0 C .对任意的∈x R, 2x ≤0 D .对任意的∈x R, 2x>03、(x+1)(x+2)>0是(x+1)(2x +2)>0的( )条件A 必要不充分B 充要C 充分不必要D 既不充分也不必要4、已知命题p :函数()2x af x -=在区间(4,)+∞上单调递增;命题q :log 21a <.如果“p ⌝”是真命题,“p q 或”也是真命题,则实数a 的取值范围是( ) A .4a > B .014a a 或<<> C .2a > D .01a << 5、已知()()()2,5,1,2,2,4,1,4,1A B C ---,则向量AB 与AC 的夹角为 A 30° B 45° C 60° D 90°6、O 、A 、B 、C 为空间四个点,又OA 、OB 、OC 为空间的一个基底,则A O 、A 、B 、C 四点共线 B O 、A 、B 、C 四点共面 C O 、A 、B 、C 四点中任三点不共线D O 、A 、B 、C 四点不共面7、将直线03=+y x 绕原点按顺时针方向旋转︒30,所得直线与圆3)2(22=+-y x 的位置关系是A 直线与圆相切B 直线与圆相交但不过圆心C 直线与圆相离D 直线过圆心8、椭圆13610022=+y x 上一点P 到其右准线的距离为10, 则P 到其左焦点的距离是A 8B 10C 12D 149、与双曲线116922=-y x 有共同的渐近线,且经过点()32,3-的双曲线的一个焦点到一条渐近线的距离是A 1B 2C 4D 8 10、已知坐标满足方程F (x ,y )=0的点都在曲线C 上,那么A 曲线C 上的点的坐标都适合方程F (x ,y )=0;B 凡坐标不适合F (x ,y )=0的点都不在C 上; C 不在C 上的点的坐标不必适合F (x ,y )=0;D 不在C 上的点的坐标有些适合F (x ,y )=0,有些不适合F (x ,y )=0。
高二数学理科周测试题 (2013年12月18日)
班别: 姓名: 学号:
一.选择题(每小题5分,共60分)
1. . 顶点在原点,且过点(4,4)-的抛物线的标准方程是
A.24y x =-
B.2
4x y =
C.24y x =-或24x y =
D. 24y x =或24x y =- 2. 双曲线:142
2
=-y x 的渐近线方程和离心率分别是( ) A.3
;2=±=e x y B. 5;21=±=e x y C.3;21=±=e x y D.5;2=
±=e x y 3、命题“若a b <,则a c b c +<+”的逆否命题是
A. 若a c b c +<+,则a b >
B. 若a c b c +>+,则a b >
C. 若a c b c +≥+,则a b ≥
D. 若a c b c +<+,则a b ≥
4、“5,12k k Z αππ=+∈”是“1sin 22
α=”的 A.充分不必要条件 B. 必要不充分条件 C.充要条件 D. 既不充分又不必要条件
5、圆心为(11),且与直线4x y +=相切的圆的方程是( )
A .22(1)(1)2x y -+-=
B .22(1)(1)4x y -+-=
C .22(1)(1)2x y +++=
D .22(1)(1)4x y +++=
6、若直线2=-y x 被圆
4)(22=+-y a x 所截得的弦长为22,则实数a 的值为( ) A .1-或3 B .1或3 C .2-或6 D .0或4
7、椭圆134222=+n y x 和双曲线1162
22=-y n
x 有相同的焦点,则实数n 的值是 ( ) A 5± B 3± C 5 D 9
8、y 2=mx 的焦点到准线的距离为4,点P 在抛物线上,且P 到准线的距离为10,则P 点的纵坐标为:
A 、±12
B 、±8
C 、±10
D 、±4
9、(上海文,15)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( )
A. 1或3
B.1或5
C.3或5
D.1或2
10、由直线1y x =+上的一点向圆22
(3)1x y -+=引切线,则切线长的最小值为( )
A .1
B .
C
D .3 二.填空题(每小题5分,共20分)
11. 点()2,1M 直线0l y --=的距离是
12. 圆1O :2220x y x +-=和圆2O :22
40x y y +-=的位置关系是:
13、命题“至少有一个偶数是素数”的否定为 .
14、AB 是过C:x y 42=焦点的弦,且10=AB ,则AB 中点的横坐标是_____. 三.解答题
15. 若双曲线的焦点在y 轴,实轴长为6,渐近线方程为x y 2
3±
=,求双曲线的标准方程。
16、已知21,F F 是椭圆120
452
2=+y x 的两个焦点,M 是椭圆上的点,且21MF MF ⊥. (1)求21F MF ∆的周长;
(2)求21F MF ∆的面积.
17、如图5,P A 垂直⊙O 所在平面ABC ,AB 为⊙O 的
直径,P A =AB ,14
BF BP =,C 是弧AB 的中点. (1)证明:BC ⊥平面P AC ;
(2)证明:CF ⊥BP ;
(3)求二面角F —OC —B 的平面角的正弦值.
18已知椭圆C:)2(,14
2
22>=+a y a x 上一点P 到它的两个焦点1F (左),2F (右)的距离的和是6,
(1)求椭圆C 的离心率.
(2)若x PF ⊥2轴,且p 在y 轴上的射影为点Q ,求点Q 的坐标.
19. 在平面直角坐标系xOy 中,以(1,2)C -为圆心的圆与直线10x y +++=相
切.(1)求圆C 的方程;(2)求过点(3,4)且截圆C 所得的弦长为。