浙江省嘉兴市2016-2017学年八年级(上)期末数学试卷(解析版)
- 格式:doc
- 大小:251.50 KB
- 文档页数:21
浙教版八年级(上)期末数学试卷一、选择题:本大题有10个小题,每小题3分,共30分在每小题给出的四个选项中,只有项是符合题目要求的1.(3分)下列函数中是一次函数的是()A.t=B.s=t(50﹣t)C.y=x2+2x D.y=6﹣2x2.(3分)若x>y,则下列变形正确的是()A.2x<2y B.﹣3x<﹣3y C.D.x+2<y+23.(3分)下列说法中,正确的是()A.所有的命题都有逆命题B.所有的定理都有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题4.(3分)把点A(﹣2,1)向下平移2个单位后得到点B,则点B的坐标是()A.(﹣2,3)B.(﹣2,﹣1)C.(0,1)D.(﹣4,1)5.(3分)在△ABC中,∠A,∠C与∠B的外角度数如图所示,则x的值是()A.60B.65C.70D.806.(3分)如图,函数y1=mx和y2=x+3的图象相交于点A(﹣1,2),则关于x的不等式mx>x+3的解集是()A.x<﹣1B.x>﹣1C.x<﹣2D.x>﹣27.(3分)以下列各组数为边长,能构成直角三角形的是()A.B.、、C.、、D.、、8.(3分)已知a,b为实数,则解是﹣1<x<1的不等式组可以是()A.B.C.D.9.(3分)在一次函数y=(2k+3)x+k+1的研究过程中,甲、乙同学得到如下结论:甲认为当k<﹣时,y随x的增大而减小;乙认为无论k取何值,函数必定经过定点(﹣,﹣).则下列判断正确的是()A.甲正确,乙错误B.甲错误,乙正确C.甲乙都正确D.甲乙都错误10.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,将边AB沿AE翻折,使点B落在BC上的点D 处,再将边AC沿AF翻折,使点C落在AD延长线上的点C′处,两条折痕与斜边BC分别交于点E,F,则线段C′F的长为()A.B.C.D.二、填空题:本大题有6个小题,每小题4分,共24分11.(4分)将语句“比x的3倍小1的数小于x的2倍”用不等式表示为.12.(4分)写出命题“对顶角相等”的逆命题.13.(4分)已知函数y=﹣3x+b,当x=﹣1时,y=﹣,则b=.14.(4分)若等腰三角形的一个内角为50°,则它的底角的度数为.15.(4分)已知一个直角三角形的斜边与直角边相差8cm,有一条直角边长为12cm,斜边上的中线长为.16.(4分)如图,已知点C(0,1),直线y=x+5与两坐标轴分别交于A,B两点.点D,E分别是OB,AB上的动点,则△CDE周长的最小值是.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤17.(6分)如图,已知△ABC,请按下列要求作出图形:(1)用刻度尺画BC边上的高线.(2)用直尺和圆规画∠B的平分线.1.18.(8分)解下列不等式(组):(1)3x﹣5>2(2+3x)(2)19.(8分)已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.20.(10分)如图,已知BD⊥AC,CF⊥AB.(1)若BE=AC,求证:△BFE≌△CF A.(2)取BC中点为G,连结FG,DG,求证:FG=DG.21.(10分)现计划把一批货物用一列火车运往某地.已知这列火车可挂A,B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y元,这列火车挂A型车厢x节,写出y关于x的函数表达式,并求出自变量x的取值范围;(2)已知A型车厢数不少于B型车厢数,运输总费用不低于276000元,问有哪些不同运送方案?22.(12分)设一次函数y=kx+b(k,b为常数,k≠0)的图象过A(1,3),B(﹣5,﹣3)两点.(1)求该函数表达式;(2)若点C(a+2,2a﹣1)在该函数图象上,求a的值;(3)设点P在x轴上,若S△ABP=12,求点P的坐标.23.(12分)背景:在数学课堂上,李老师给每个同学发了一张边长为6cm的正方形纸片,请同学们纸片上剪下一个有一边长为8cm的等腰三角形,要求等腰三角形的三个顶点都落在正方形的边上,且其中一个顶点与正方形的顶点重合,最终,通过合作讨论,同学们一共提供了5种不同的剪法(若剪下的三角形全等则视为同一种).注:正方形的每条边都相等,每个角都等于90°.(1)如图1是小明同学率先给出的剪法,其中AE=AF,EF=8cm,△AEF即为满足要求的等腰三角形,则小明同学剪下的三角形纸片的面积为cm2.(2)如图2是小王同学提出的另一种剪法,其中AE=8cm,且AF=EF,请帮助小王同学求出所得等腰△AEF 的腰长;(3)请在下列三个正方形中画出其余的三种剪法,并直接写出每种剪法所得的三角形纸片的面积.(注:每种情况的图和对应的面积都正确才得分)面积=面积=面积=参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分在每小题给出的四个选项中,只有项是符合题目要求的1.【解答】解:A、是反比例函数,故此选项错误;B、是二次函数,故此选项错误;C、是二次函数,故此选项错误;D、是一次函数,故此选项正确;故选:D.2.【解答】解:A、两边都乘以2,不等号的方向不变故A错误;B、两边都乘以13,不等号的方向改变,故B正确;C、两边都除以3,不等号的方向不变,故C错误;D、两边都加2,不等号的方向不变,故D错误;故选:B.3.【解答】解:A、每个命题都有逆命题,所以A选项正确;B、每个定理不一定有逆定理,所以B选项错误;C、真命题的逆命题不一定是真命题,所以C选项错误;D、假命题的逆命题不一定是假命题,所以D选项错误.故选:A.4.【解答】解:把点A(﹣2,1)向下平移2个单位后得到点B,则点B的坐标是(﹣2,1﹣2),即(﹣2,﹣1),故选:B.5.【解答】解:∵与∠ABC相邻的外角=∠A+∠C,∴x+65=x﹣5+x,解得x=70.故选:C.6.【解答】解:∵函数y1=mx和y2=x+3的图象相交于点A(﹣1,2),∴不等式mx>x+3的解集为x<﹣1.故选:A.7.【解答】解:A、()2+()2≠()2,不能构成直角三角形;B、()2+()2≠()2,不能构成直角三角形;C、()2+()2=()2,能构成直角三角形,故本选项正确;D、()2+()2≠()2,不能构成直角三角形.故选:C.8.【解答】解:A、∵所给不等式组的解集为﹣1<x<1,那么a,b同号,设a>0,则b>0,解得x<,x>,解集都是正数;若同为负数可得到解集都是负数,故此选项错误;B、∵所给不等式组的解集为﹣1<x<1,那么a,b同号,设a>0,则b>0,解得x>,x<,解集都是正数;若同为负数可得到解集都是负数;故此选项错误;C、所给不等式组的解集为﹣1<x<1,那么a,b为一正一负,设a>0,则b<0,解得:x>,x<,∴原不等式组无解,同理得到把2个数的符号全部改变后也无解,故此选项错误;D、∵所给不等式组的解集为﹣1<x<1,那么a,b为一正一负,设a>0,则b<0,解得x<,x>,∴原不等式组有解,可能为﹣1<x<1,把2个数的符号全部改变后也如此,故此选项正确;故选:D.9.【解答】解:当k<﹣时,2k+3<0,即y随x的增大而减小,故甲的说法正确;在y=(2k+3)x+k+1中,当x=﹣时,y=﹣,即无论k取何值,函数必定经过定点(﹣,﹣),故乙的说法正确.故选:C.10.【解答】解:∵Rt△ABC中,∠BAC=90°,AB=6,AC=8,∴BC=10∵将边AB沿AE翻折,使点B落在BC上的点D处,∴∠AEC=∠AEB,∠BAE=∠DAE∵∠AED=180°∴∠CED=90°,即CE⊥AB∵S△ABC=AB×AC=AE×BC∴AE=4.8在Rt△ACE中,CE==6.4∵将边BC沿CF翻折,使点B落在CD的延长线上的点B′处∴CF=C'F,∠CAF=∠C'AF∵∠BAE+∠DAE+∠CAF+∠C'AF=∠ACB=90°∴∠EAF=45°,且CE⊥AE∴∠EAF=∠EF A=45°∴AE=EF=4.8∵CF=CE﹣EF=6.4﹣4.8=1.6∴C'F=1.6=故选:A.二、填空题:本大题有6个小题,每小题4分,共24分11.【解答】解:由题意得,该不等式为:3x﹣1<2x.故答案为3x﹣1<2x.12.【解答】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.13.【解答】解:把x=﹣1,y=﹣代入y=﹣3x+b,可得:﹣=﹣3×(﹣1)+b,解得:b=﹣3,故答案为:﹣314.【解答】解:∵等腰三角形的一个内角为50°,若这个角为顶角,则底角为:(180°﹣50°)÷2=65°,若这个角为底角,则另一个底角也为50°,∴其一个底角的度数是65°或50°.故答案为:65°或50°.15.【解答】解:①若直角三角形的斜边与12cm长的直角边相差8cm,则斜边长为20cm,∴斜边上的中线长为10cm;②若直角三角形的斜边与xcm长的直角边相差8cm,则斜边长为(x+8)cm,由勾股定理可得,122+x2=(x+8)2,解得x=5,∴斜边长为13cm,∴斜边上的中线长为6.5cm;故答案为:10cm或6.5cm.16.【解答】解:如图,作点C关于OB的对称点C'(0,﹣1),作点C关于AB的对称点C'',连接C'C'',交AB于点E,交OB于点D,∵直线y=x+5与两坐标轴分别交于A,B两点∴点A(0,5),点B(﹣5,0)∴AO=BO,且∠AOB=90°,∴∠BAO=45°,∵点C关于OB的对称点C'(0,﹣1),∴AC'=6∵点C关于AB的对称点C'',∴AC=AC''=4,∠BAO=∠C''AB=45°∴∠C''AO=90°∴点C''(﹣4,5)∵由轴对称的性质,可得CE=C''E,CD=DC',∴当点C'',点E,点D,点C'共线时,△CDE的周长=CD+CE+DE=C''E+DE+C'D=C'C'',此时△CDE的周长最小,在Rt△AC'C''中,C'C''==2∴△CDE的周长最小值为2故答案为:2三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤17.【解答】解:(1)如图,AD为所作.(2)如图,BE为所作.18.【解答】解:(1)去括号,得3x﹣5>4+6x,移项、合并同类项,得﹣3x>9,系数化为,1得x<﹣3;(2),解①得x;解②得x≤1,所以,不等式组的解集为<x≤1.19.【解答】解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P到两坐标轴的距离相等,∴|8﹣2m|=|m﹣1|,∴8﹣2m=m﹣1或8﹣2m=1﹣m,解得:m=3或m=7,∴P(2,2)或(﹣6,6).20.【解答】证明:(1)∵BD⊥AC,CF⊥AB,∴∠BFE=∠CF A=90°,∵∠BEF=∠CED,∴∠FBE=∠FCA,在△BFE和△CF A中,∴△BFE≌△CF A(AAS);(2)∵BD⊥AC,CF⊥AB,∴△BFC和△BDC都是直角三角形,∵点G是BC边的中点,∴BC=2FG,BC=2DG,∴FG=DG.21.【解答】解:(1)设用A型车厢x节,则用B型车厢(40﹣x)节,总运费为y元,依题意,得y=6000x+8000(40﹣x)=﹣2000x+320000;∵,∴x的取值范围是0≤x≤40且x为整数,∴函数关系式为y=﹣2000x+320000(0≤x≤40且x为整数)(2)由题意得:,解得:20≤x≤22,∵x为整数,∴运送方案有:A型车厢20节,B型车厢20节;A型车厢21节,B型车厢19节;A型车厢22节,B型车厢18节.22.【解答】解:(1)根据题意得:解得:∴函数表达式为y=x+2(2)∵点C(a+2,2a﹣1)在该函数图象上,∴2a﹣1=a+2+2∴a=5(3)设点P(m,0)∵直线y=x+2与x轴相交∴交点坐标为(﹣2,0)∵S△ABP=|m+2|×|3|+|m+2|×|﹣3|=12∴|m+2|=4∴m=2或﹣6∴点P坐标(2,0)或(﹣6,0)23.【解答】解:(1)∵四边形ABCD是正方形,∴∠A=90°,∵AE=AF,∴△AEF是等腰直角三角形,∴S△AEF=×8×8×=16,故答案为16;(2)根据题意得,∠B=90°,AB=6,AE=8,∴由勾股定理可得BE=2,设AF=EF=x,则BF=6﹣x,∵Rt△BFE中,BF2+BE2=EF2,∴(6﹣x)2+(2)2=x2,解得x=,∴等腰△AEF的腰长为cm;(3)如图所示,S△CEF=(24﹣16)cm2;如图所示,S△AEF=(32﹣)cm2;如图所示,S△AEF=4cm2;故答案为:(24﹣16)cm2;(32﹣)cm2;4cm2.。
八年级数学上册期末试卷(总分100分 答卷时间120分钟)温馨提示:亲爱的同学,你好!现在是展示你的才华的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力! 一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出 的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入 题前括号内.【 】1.计算23()a 的结果是A .a 5B .a 6C .a 8D .3 a 2【 】2.若正比例函数的图像经过点(-1,2),则这个图像必经过点A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)【 】3.下列图形是轴对称图形的是A .B .C .D .【 】4.如图,△ACB ≌△A ’C B’,∠BCB ’=30°,则∠ACA ’的度数为A .20°B .30°C .35°D .40°【 】5.一次函数y =2x -2的图象不经过...的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【 】6.从实数 2-,31-,0,π,4 中,挑选出的两个数都是无理数的为 A .31-,0 B .π,4 C .2-,4 D .2-,π 题号 一 二三总 分 结分人19~20 21~22 23~24 25~262728得分得分 评卷人CABB 'A '(第4题)【 】7.若0a >且2x a =,3y a =,则x ya-的值为A .-1B .1C .23D .32【 】8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t (单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为A .12分B .10分C .16分D .14分二、填空题:本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上.9.计算:32128x x ⎛⎫⨯-⎪⎝⎭= . 10.一次函数(24)5y k x =++中,y 随x 增大而减小,则k 的取值范是 . 11.分解因式:22m n mn -= .12.如图,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =16°,则∠C 的度数 为 .13.计算:(1-)2009-(π-3)0+4= . 14.当12s t =+时,代数式222s st t -+的值为 . 15.若225(16)0x y -++=,则x +y = . 16.如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x = 过点A ,则不等式20x kx b <+<的解集为 . 17.如图,小量角器的零度线在大量角器的零度线上, 且小量角器的中心在大量角器的外缘边上.如果 它们外缘边上的公共点P 在小量角器上对应的度数为66°,那么在大量角器上对应的度数为__________° (只需写出0°~90°的角度).18.已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.三、解答题:本大题共10小题,共60分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题6分,第20题5分,共11分)得分 评卷人得分 评卷人ADCEB(第12题)(第17题)(第16题)OB Ay (第8题)s /千米t /分3 2 1 O61019.(1)化简:)8(21)2)(2(b a b b a b a ---+. (2)分解因式:322x x x ---.20.如图,一块三角形模具的阴影部分已破损.(1)如果不带残留的模具片到店铺加工一块与原来的模具△ABC 的形状和大小完全相同的模具△A B C ''',需要从残留的模具片中度量出哪些边、角?请简要说明理由. (2)作出模具A B C '''△的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).(第21题5分,第22题5分,共10分)21.已知2514x x -=,求()()()212111x x x ---++的值.22.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P . (1)求b 的值;(2)不解关于y x ,的方程组10x y mx y n -+=⎧⎨-+=⎩ 请你直接写出它的解.x(第20题)(第23题5分,第24题6分,共11分)23.如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,. (1)在图中画出ABC △关于y 轴的对称图形111A B C △; (2)写出点111A B C ,,的坐标.24.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ; (2)BO =DO .1 23 4AB CDO (第24题)(第23题)(第25题6分,第26题6分,共12分)25.只利用一把有刻度...的直尺,用度量的方法,按下列要求画图: (1)在图1中用下面的方法画等腰三角形ABC 的对称轴.① 量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点D ; ② 画直线AD ,即画出等腰三角形ABC 的对称轴. (2)在图2中画∠AOB 的对称轴,并写出画图的方法.【画法】26.已知线段AC 与BD 相交于点O ,连结AB 、DC ,E 为OB 的中点,F 为OC 的中点,连结EF (如图所示).(1)添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC .(2)分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,若添加条件②、③,以①为结论构成另一个命题,则该命题是_________命题 (选择“真”或“假”填入空格,不必证明).ODCABEF(第26题)BC图1AOB 图2(第27题8分)27. 如图,在平面直角坐标系xOy 中,已知直线AC 的解析式为122y x =-+,直线AC 交x轴于点C ,交y 轴于点A .(1)若一个等腰直角三角形OBD 的顶点D 与点C 重合,直角顶点B 在第一象限内,请直接写出点B 的坐标; (2)过点B 作x 轴的垂线l ,在l 上是否存在一点P ,使得△AOP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)试在直线AC 上求出到两坐标轴距离相等的所有点的坐标.得分 评卷人(第27题)xA yC(D)BO28.元旦期间,甲、乙两个家庭到300 km外的风景区“自驾游”,乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5 h(从甲家庭出发时开始计时),甲家庭开始出发时以60 km/h的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y甲(km)、y乙(km)与时间x(h)之间的函数关系对应图象,请根据图象所提供的信息解决下列问题:(1)由于汽车发生故障,甲家庭在途中停留了h;(2)甲家庭到达风景区共花了多少时间;(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车的距离不超过15 km,请通过计算说明,按图所表示的走法是否符合约定.y八年级上册数学期末试卷(参考答案)一、选择题(本题共8小题;每小题2分,共16分)1.B 2.D 3.A 4.B 5.B 6.D 7.C 8.D二、填空题(本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.)9.514x -10.k <-2 11.m n (m -n ) 12.37° 13.0 14.1415.9 16.-2<x <-1 17.48° 18.7三、解答题(本大题共10小题,共60分.)19.解:(1))8(21)2)(2(b a b b a b a ---+2224214b ab b a +--=……………………………………………………4分ab a 212-=…………………………………………………………………6分 (2)322x x x ---=2(1)x x x -++ …………………………………………………………3分 =2(1)x x -+ …………………………………………………………5分20.(1)只要度量残留的三角形模具片的∠B ,∠C 的度数和边BC 的长,因为两角及其夹边对应相等的两个三角形全等.……………………………3分 (2)按尺规作图的要求,正确作出A B C '''∠的图形.……………………………5分 21.解:()()()212111x x x ---++=22221(21)1x x x x x --+-+++……………………………………………2分 =22221211x x x x x --+---+ ……………………………………………3分=251x x -+………………………………………………………………………4分 当2514x x -=时,原式=2(5)114115x x -+=+= ……………………………………………5分22.解:(1)∵),1(b 在直线1+=x y 上,∴当1=x 时,211=+=b .……………………………………………3分 (2)解是⎩⎨⎧==.2,1y x …………………………………………………………………5分23.(1)画图正确; ………………………………………………………………………2分(2)111(4,3)A B C (1,5),(1,0),………………………………………………5分 24.证明:(1)在△ABC 和△ADC 中1234AC AC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△ADC .………………………………………………………3分 (2)∵△ABC ≌△ADC∴AB =A D ……………………………………………………………………4分又∵∠1=∠2∴BO =DO …………………………………………………………………6分25.(1)画图正确……………… …………………………………………………………2分(2) ①利用有刻度的直尺,在∠AOB 的边OA 、OB 上分别截取OC 、OD ,使OC =OD ; ②连接CD ,量出CD 的长,画出线段CD 的中点E ;③画直线OE ,直线OE 即为∠AOB 的对称轴.………………………………6分 (作图正确2分,作法正确2分) 26.(1)∵∠OEF =∠OFE∴OE =OF …………………………………………………………………………1分 ∵E 为OB 的中点,F 为OC 的中点,∴OB =OC ……………………………………………………………………………2分 又∵∠A =∠D ,∠AOB =∠DOC ,△AOB ≌△DOC ………………………………………………………………4分 ∴AB=DC …………………………………………………………………………5分 (2)假 ………………………………………………………………………………6分 27.(1)B (2,2); ………………………………………………………………………2分 (2)∵等腰三角形OBD 是轴对称图形,对称轴是l ,∴点O 与点C 关于直线l 对称,∴直线AC 与直线l 的交点即为所求的点P . ……………………………………3分把x =2代入122y x =-+,得y =1,∴点P 的坐标为(2,1)……………………………………………………………4分 (3)设满足条件的点Q 的坐标为(m ,122m -+),由题意,得 122m m -+= 或 122m m -+=-……………………………………………6分解得43m = 或4m =-…………………………………………………………7分∴点Q 的坐标为(43,43)或(4-,4)……………………………………8分(漏解一个扣2分)28.(1)1;…………………………………………………………………………………1分 (2)易得y 乙=50x -25…………………………………………………………………2分当x =5时,y =225,即得点C (5,225).由题意可知点B (2,60),……………………………………………………3分 设BD 所在直线的解析式为y =kx +b ,∴5225,260.k b k b +=⎧⎨+=⎩解得55,50.k b =⎧⎨=-⎩∴BD 所在直线的解析式为y =55x -50.………………………………………5分当y =300时,x =7011.答:甲家庭到达风景区共花了7011 h .……………………………………………6分(3)符合约定. …………………………………………………………7分由图象可知:甲、乙两家庭第一次相遇后在B 和D 相距最远. 在点B 处有y 乙-y = -5x +25=-5×2+25=15≤15;在点D 有y —y 乙=5x -25=7511≤15.……………………………………………8分。
八年级上册数学期末考试试题(答案)一、填空题:(每小题3分,共30分)1.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为米.2.当x时,分式有意义.3.分解因式:4m2﹣16n2=.4.计算:﹣=.5.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE =.6.x+=3,则x2+=.7.当x时,分式的值为正.8.已知:如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.若BC =8,则四边形AFDE的面积是.9.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.10.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有个三角形.二、选择题:(每小题3分,共30分)11.下列运算正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+112.下列图形中,是轴对称图形的是()A.B.C.D.13.若关于x的方程无解,则m的值是()A.3 B.2 C.1 D.﹣114.在,,﹣3xy+y2,,,分式的个数为()A.2 B.3 C.4 D.515.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变16.下列二次根式中最简二次根式是()A.B.C.D.17.若x2+kx+9是完全平方式,则k的值是()A.6 B.﹣6 C.9 D.6或﹣618.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20C.﹣=D.﹣=19.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A.B.2 C.D.20.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个三、简答题:(共60分21.(8分)计算(1)4(x+y)(x﹣y)﹣(2x﹣y)2(2)(+)﹣(﹣)22.(5分)解方程:=+23.(5分)先化简,再求值:,其中x=.24.(7分)△ABC在平面直角坐标系中的位置如图.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)在y轴上找点D,使得AD+BD最小,作出点D并写出点D的坐标.25.(7分)已知=3,求的值.26.(8分)已知a,b,c都是实数,且满足(2﹣a)2+=0,且ax2+bx+c =0,求代数式3x2+6x+1的值.27.(10分)欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天.(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米.(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?28.(10分)已知△ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,ED=EC.(1)当点E在AB的上,点D在CB的延长线上时(如图1),求证:AE+AC=CD;(2)当点E在BA的延长线上,点D在BC上时(如图2),猜想AE、AC和CD的数量关系,并证明你的猜想;(3)当点E在BA的延长线上,点D在BC的延长线上时(如图3),请直接写出AE、AC 和CD的数量关系.参考答案一、填空题1.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为 1.04×10﹣4米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000104=1.04×10﹣4,故答案为:1.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.当x≠﹣时,分式有意义.【分析】根据,分式有意义,可得答案.解:由题意,得3x+5≠0,解得x≠﹣,故答案为:≠﹣.【点评】本题考查了分式有意义的条件,利用分母不能为零得出不等式是解题关键.3.分解因式:4m2﹣16n2=4(m+2n)(m﹣2n).【分析】原式提取4后,利用平方差公式分解即可.解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.计算:﹣=﹣.【分析】先化简,再进一步合并同类二次根式即可.解:原式=﹣=﹣【点评】此题考查二次根式的加减,注意先化简再合并.5.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE = 6 .【分析】因为AD⊥BC,BD=DC,点C在AE的垂直平分线上,由垂直平分线的性质得AB=AC=CE,即可得到结论.解:∵AD⊥BC,BD=DC,∴AB=AC;又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE=5;∵BD=CD=3,∴DE=CD+CE=2+4=6,故答案为6.【点评】本题主要考查线段的垂直平分线的性质等几何知识,利用线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.6.x+=3,则x2+=7 .【分析】直接利用完全平方公式将已知变形,进而求出答案.解:∵x+=3,∴(x+)2=9,∴x2++2=9,∴x2+=7.故答案为:7.【点评】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.7.当x>且x≠0 时,分式的值为正.【分析】同号为正,异号为负.分母≠0.解:分式的值为正,即>0,解得x>,因为分母不为0,所以x≠0.故当x>且x≠0时,分式的值为正.【点评】由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.8.已知:如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.若BC =8,则四边形AFDE的面积是8 .【分析】连接AD,求出△DAE≌△DBF,得到四边形AFDE的面积=S△ABD=S△ABC,于是得到结论解:连接AD,∵Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AB=AC,DB=CD,∴∠DAE=∠BAD=45°,∴∠BAD=∠B=45°,∴AD=BD,∠ADB=90°,在△DAE和△DBF中,,∴△DAE≌△DBF(SAS),∴四边形AFDE的面积=S△ABD=S△ABC,∵BC=8,∴AD=BC=4,∴四边形AFDE的面积=S△ABD=S△ABC=××8×4=8,故答案为:8.【点评】本题主要考查了全等三角形的判定和等腰三角形的判定.考查了学生综合运用数学知识的能力,连接AD,构造全等三角形是解决问题的关键.9.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.10.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有8073 个三角形.【分析】根据题目中的图形,可以发现三角形个数的变化规律,从而可以解答本题.解:由图可得,第1个图形有1个三角形,第2个图形中有1+4=5个三角形,第3个图形中有1+4+4=1+4×2=9个三角形,……,则第2019个图形中有:1+4×(2019﹣1)=8073个三角形,故答案为:8073.【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中的三角形个数的变化规律,利用数形结合的思想解答.二、选择题:(每小题3分,共30分)11.下列运算正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+1【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则、幂的乘方运算法则、完全平方公式分别计算得出答案.解:A、a2•a3=a5,故此选项错误;B、(2a)2=4a2,故此选项错误;C、(a2)3=a6,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及积的乘方运算、幂的乘方运算、完全平方公式等知识,正确掌握运算法则是解题关键.12.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.13.若关于x的方程无解,则m的值是()A.3 B.2 C.1 D.﹣1【分析】方程两边都乘以最简公分母(x﹣1)把分式方程化为整式方程,再根据方程无解,最简公分母等于0求出x的值吗,然后代入整式方程进行计算即可得解.解:方程两边都乘以(x﹣1)得,m﹣1﹣x=0,∵分式方程无解,∴x﹣1=0,解得x=1,∴m﹣1﹣1=0,解得m=2.故选:B.【点评】本题考查了分式方程的解,通常方法是:(1)把分式方程化为整式方程,(2)根据分式方程无解,最简公分母等于0求出x的值,(3)把求出的x的值代入整式方程求解得到所求字母的值.14.在,,﹣3xy+y2,,,分式的个数为()A.2 B.3 C.4 D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:分式有:,,共2个.故选:A.【点评】本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数.15.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变【分析】利用分式的基本性质求解即可判定.解:分式中的x和y都扩大2倍,得.故选:D.【点评】本题主要考查了分式的基本性质,解题的关键是熟记分式的基本性质.16.下列二次根式中最简二次根式是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.解:A、=2,故此选项错误;B、==,故此选项错误;C、,是最简二次根式,故此选项正确;D、=|mn|,故此选项错误;故选:C.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.17.若x2+kx+9是完全平方式,则k的值是()A.6 B.﹣6 C.9 D.6或﹣6【分析】本题是完全平方公式的应用,这里首末两项是x和9这两个数的平方,那么中间一项为加上或减去x和9乘积的2倍.解:∵x2+kx+9是一个完全平方式,∴这两个数是x和3,∴kx=±2×3x=±6x,解得k=±6.故选:D.【点评】本题考查的是完全平方公式,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积的2倍的符号,有正负两种情况,避免漏解.18.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20C.﹣=D.﹣=【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.解:由题意可得,﹣=,故选:C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.19.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A.B.2 C.D.【分析】根据等边三角形性质得出AC=AB,∠BAC=∠B=60°,证△ABE≌△CAD,推出∠BAE=∠ACD求出∠AFD=∠BAC=60°求出∠FAG=30°,即可求出答案.证明:∵△ABC 是等边三角形, ∴AC =AB ,∠BAC =∠B =60°, 在△ABE 和△CAD 中∴△ABE ≌△CAD (SAS ), ∴∠BAE =∠ACD ,∴∠AFD =∠CAE +∠ACD =∠CAE +∠BAE =∠BAC =60°, ∵AG ⊥CD , ∴∠AGF =90°, ∴∠FAG =30°,∴sin30°==,即=.【点评】本题考查了全等三角形的性质和判定等边三角形性质,特殊角的三角函数值,含30度角的直角三角形性质的应用,主要考查学生的推理能力.20.如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .2个B .3个C .4个D .无数个【分析】如图在OA 、OB 上截取OE =OF =OP ,作∠MPN =60°,只要证明△PEM ≌△PON 即可推出△PMN 是等边三角形,由此即可得结论解:如图在OA 、OB 上截取OE =OF =OP ,作∠MPN =60°.∵OP 平分∠AOB ,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.【点评】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线,构造全等三角形,属于中考常考题型.三、简答题:(共60分21.(8分)计算(1)4(x+y)(x﹣y)﹣(2x﹣y)2(2)(+)﹣(﹣)【分析】(1)根据平方差和完全平方公式计算即可;(2)根据二次根式的加减法的法则计算即可.解:(1)4(x+y)(x﹣y)﹣(2x﹣y)2=4(x2﹣y2)﹣(4x2﹣4xy+y2)=4x2﹣4y2﹣4x2+4xy ﹣y2=4xy﹣5y2;(2)(+)﹣(﹣)=2+﹣+=3+.【点评】本题考查了二次根式的加减法,完全平方公式,平方差公式,熟记法则和乘法公式是解题的关键,22.(5分)解方程: =+【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:去分母得:3x =2x ﹣4+6, 解得:x =2,经检验x =2是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(5分)先化简,再求值:,其中x =.【分析】根据分式的运算法则即可求出答案.解:由于x ==﹣2原式=×﹣=﹣== =【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 24.(7分)△ABC 在平面直角坐标系中的位置如图.A 、B 、C 三点在格点上. (1)作出△AB C 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标 (3,﹣2) ; (2)在y 轴上找点D ,使得AD +BD 最小,作出点D 并写出点D 的坐标 (0,2) .【分析】(1)根据网格结构找出点A 、B 、C 关于x 轴的对称的A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C1的坐标;(2)确定出点B关于y轴的对称点B′,根据轴对称确定最短路线问题连接AB′,与y轴的交点即为所求的点D,然后求出OD的长度,再写出坐标即可.解:(1)△A1B1C1如图所示,C1(3,﹣2);(2)点D如图所示,OD=2,所以,点D的坐标为(0,2).故答案为:(3,﹣2);(0,2).【点评】本题考查了利用轴对称变换作图,利用轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.25.(7分)已知=3,求的值.【分析】由题意可知:b﹣a=3ab,然后整体代入原式即可求出答案.解:由题意可知:b﹣a=3ab,∴a﹣b=﹣3ab∴原式===【点评】本题考查分式的值,解题的关键是由题意得出a﹣b=﹣3ab,本题属于基础题型.26.(8分)已知a,b,c都是实数,且满足(2﹣a)2+=0,且ax2+bx+c =0,求代数式3x2+6x+1的值.【分析】利用非负数的性质求出a,b,c的值,代入已知等式求出x2+2x的值,原式变形后代入计算即可求出值.解:∵(2﹣a)2++|c+8|=0,∴a=2,b=4,c=﹣8,代入ax2+bx+c=0得:2x2+4x﹣8=0,即x2+2x﹣4=0,∴x2+2x=4,则3x2+6x+1=3(x2+2x)+1=12+1=13.【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.27.(10分)欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天.(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米.(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?【分析】(1)设乙工程队每天能完成的绿化面积为x平方米,则甲工程队每天能完成的绿化面积为2x平方米,根据工作时间=工作总量÷工作效率结合甲队比乙队少用2天,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设应安排甲工程队工作y天,则乙工程队工作(48﹣2y)天,根据总费用=0.4×甲工程队工作天数+0.25×乙工程队工作天数结合总费用不超过10万元,即可得出关于y 的一元一次不等式,解之即可得出y的取值范围,取其内的最小值即可.解:(1)设乙园林队每天能完成绿化的面积为x平方米,则甲园林队每天能完成绿化的面积为2x平方米,根据题意得:﹣=2,解得:x=200,经检验,x=200是原分式方程的解,∴当x=200时,2x=400;答:甲、乙两园林队每天能完成绿化的面积分别是400平方米和200平方米;(2)设欧城物业应安排甲园林队工作y天,则乙园林队工作=(48﹣2y)天,根据题意得:0.4y+0.25(48﹣2y)≤10,解得:y≥20,∴y的最小值为20.答:甲工程队至少应工作20天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列出一元一次不等式.28.(10分)已知△ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,ED=EC.(1)当点E在AB的上,点D在CB的延长线上时(如图1),求证:AE+AC=CD;(2)当点E在BA的延长线上,点D在BC上时(如图2),猜想AE、AC和CD的数量关系,并证明你的猜想;(3)当点E在BA的延长线上,点D在BC的延长线上时(如图3),请直接写出AE、AC 和CD的数量关系.【分析】(1)在CD上截取CF=AE,连接EF.运用“AAS”证明△ECF≌△EDB得AE=BD,从而得证;(2)在BC的延长线上截取CF=AE,连接EF.同理可得AE、AC和CD的数量关系;(3)同(2)的探究过程可得AE、AC和CD的数量关系.(1)证明:在CD上截取CF=AE,连接EF.∵△ABC是等边三角形,∴∠ABC=60°,AB=BC.∴BF=BE,△BEF为等边三角形.∴∠EBD=∠EFC=120°.又∵ED=EC,∴∠D=∠ECF.∴△EDB≌△ECF(AAS)∴CF=BD.∴AE=BD.∵CD=BC+BD,BC=AC,∴AE+AC=C D;(2)解:在BC的延长线上截取CF=AE,连接EF.同(1)的证明过程可得AE=BD.∵CD=BC﹣BD,BC=AC,∴AC﹣AE=CD;(3)解:AE﹣AC=CD.(在BC的延长线上截取CF=AE,连接EF.证明过程类似(2)).【点评】此题考查全等三角形的判定与性质及等边三角形的性质,运用了类比的数学思想进行探究,有利于培养分散思维习惯和举一反三的能力.八年级上册数学期末考试试题及答案一、单选题(本题共12小题,每题只有一个正确选项,每小题3分,共36分)1.下面4个图案,其中不是轴对称图形的是()A. B. C. D.2.计算232a b -()的结果是( ) A . 636a b - B . 638a b - C . 638a b D .53 8a b - 3.在平面直角坐标系中,点P (3,﹣2)关于y 轴的对称点在( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 4.一个三角形的两边长为3和7,第三边长为偶数,则第三边为( ) A . 6 B . 6或8 C . 4 D . 4或6 5.下列从左到右的变形,属于分解因式的是( )A . 2(3)(3)9a a a +--=B . 25(1)5x x x x +-=--C . 2 (1)a a a a =++D . 32x y x x y =⋅⋅ 6.如图,点A 在DE 上,AC =CE ,∠1=∠2=∠3,则DE 的长等于( ) A . DC B . BC C . AB D . AE +AC7.若分式2424x x --的值为零,则x 等于( )A. 0B. 2C. 2或-2D. -28.如图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A . 2abB . 2()a b +C . 2()a b -D . 22 a b - 9.如图,AB =AC =AD ,若∠BAD =80°,则∠BCD =( )A . 80°B . 100°C . 140°D . 160°10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则∠A 与∠1 和∠2之间有一种数量关系始终保持不变,请试着找一找这个结论,你发现的结论是( ) A . 2∠A =∠1-∠2 B . 3∠A =2(∠1-∠2) C . 3∠A =2∠1-∠2 D . ∠A =∠1-∠2第8题图第9题图第10题图第6题图11.如图,在△ABC 中,∠A =20°,∠ABC 与∠ACB 的角平分线交于D 1, ∠ABD 1与∠ACD 1的角平分线交于点D 2,依此类推,∠ABD 4与∠ACD 4的角平分线交于点D 5,则∠BD 5C 的度数是( )A . 24°B . 25°C . 30°D . 36° 12.如图,点E 是BC 的中点,AB ⊥BC ,DC ⊥BC ,AE 平分∠BAD ,下列结论:①∠AED =90°②∠ADE =∠CDE ③DE =BE ④AD =AB +CD ,四个结论中成立的是( ) A . ①②④ B . ①②③ C . ②④ D . ①②③④二、填空题(本题共8小题,每小题3分,共24分) 13.(1)若要使分式34x+有意义,则x 的取值范围是________ (2)数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1=______(3)如图,在△ABC 中,D 是BC 边上的中点,∠BDE =∠CDF ,请你添加一个条件,使DE=DF 成立.你添加的条件是________.(不再添加辅助线和字母)(4)化简22244x xx x --+的结果是________(5)已知关于x 的分式方程112a x -=+无实数解,则a =________ (6)如图,AB=AC ,DB=DC ,若∠ABC 为60°,BE =3cm ,则AB =________cm .(7)如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB ,若EC =2,则S △OFE =________ (8)如图,已知点P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =45°, 当∠A =________时,△AOP 为等腰三角形.第12题图第11题图第13(7)题图 第13(6)题图 第13(3)题图第13(2)题图第13(8)题图三、解答题(共60分)14.(本题共3小题,每小题4分,共12分)(1)因式分解:244xyz xyz xy -+- (2)因式分解:229()()m n m n +--(3)解方程:2133x x x x-+=--15.(本小题6分)化简求值 已知113x y +=,求222x xy y x xy y-+-+的值16.(本小题9分)如图,(1)在网格中画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)写出△ABC 关于x 轴对称的△A 2B 2C 2的各顶点坐标;(3)在y 轴上确定一点P ,使△PAB 周长最短.(只需作图,保留作图痕迹)第16题图17.(本小题9分)已知等边三角形ABC ,延长BA 至E ,延长BC 至D ,使得AE =BD ,求证:EC =ED18.(本小题12分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?B第17题图19.(本小题12分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP 于点D,交直线BC于点Q.第19题图(1)如图1,当P在线段AC上时,求证:BP=AQ;(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?________(填“成立”或“不成立”)(3)在(2)的条件下,当∠DBA=________时,存在AQ=2BD,说明理由.2017—2018学年度上学期期末学业水平质量调研试题八年级数学参考答案2018.01说明:本答案仅供参考,阅卷时以小组统一答案为准13(1)x ≠﹣4 (2)60° (3)答案不唯一,如AB=AC 或∠B =∠C 或∠BED =∠CFD 或∠AED =∠AFD (4)2xx - (5) 1 (6) 6 (7) 4 (8) 45°或67.5°或90° 三、解答题14.(1)因式分解244xyz xyz xy -+-22(44)(2)xy z z xy z =--+=--……………4分(2)22()9m n m n +--() =223()m n m n +--⎡⎤⎣⎦() =33()()m n m n m n m n ⎡⎤⎡⎤⎣⎦+⎦+---⎣+()()=()422m n m n ++()……………4分(3)解:两边乘(3)x -得到(2)3x x x --=-, 23x x x -+=-,1x =-, 检验:当1x =-时,(3)0x -≠,故1x =-是分式方程的根……………4分 15.解:11222()653,3,3,52()232x y x xy y x y xy xy xy xy x y xy x y xy x xy y x y xy xy xy xy+-++--+==+=====-++-- ……………6分16.(1)解:如图所示:……………3分(2)解:A 2(﹣3,﹣2),B 2(﹣4,3),C 2(﹣1,1)……………6分(3)解:连结AB 1或BA 1交y 轴于点P ,则点P 即为所求……………9分17.证明:延长BD 到F ,使BF=BE ,连接EF .则BF-BC =BE-BA . 即CF=AE ;又AE=BD . 故CF=BD , DF=BC . ∵∠B =60°.∴△BEF 为等边三角形,BE=EF ;∠B =∠F =60°.∴△EBC ≌△EFD (SAS),EC=ED .……………9分 18.(1)解:设第一批购进书包的单价是x 元.则:2000630034x x ⨯=+ 解得:x =80.经检验:x =80是原方程的根.答:第一批购进书包的单价是80元 ……………7分 (2)解:20006300120801208437008084⨯+⨯=(﹣)(﹣)(元).答:商店共盈利3700元……………12分19.(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中∴△ACQ≌△BCP(ASA),∴BP=AQ ……………5分(2)成立……………7分(3)22.5°……………9分当∠DBA=22.5°时,存在AQ=2BD,理由:∵∠BAC=∠DBA+∠APB=45°,∴∠PBA=∠APB=22.5°,∴AP=AB,∵AD⊥BP,∴BP=2BD,在△PBC与△QAC中,,∴△PBC≌△ACQ,∴AQ=PB,∴AQ=2BD.故答案为:22.5°……………12分人教版八年级(上)期末模拟数学试卷【答案】一、选择题(本大题共16个小题,每小题3分,共48分)1.下列图形中,不是轴对称图形的是()2.下列根式中是最简二次根式的是()A. B. C. D.3.下列各数中,没有平方根的是()A. B. C. D.4.下列运算结果正确的是()A. B. C. D.5.若代数式在实数范围内有意义,则x的取值范围是()A. B. C. D.6.解分式方程,去分母得()A.B.C.D.7.已知等腰三角形的两边x,y满足,则等腰三角形的周长为()A.16 B.12 C.20 D.20或168.下列二次根式中,与可以合并的根式是()A. B. C. D.9.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°10.如图是一个以O为对称中心的中心对称图形,若∠A=30°,∠C=90°,OC=1,则AB的长为()A.2 B.4 C. D.11.如图,AB∥FC,E是DF的中点,若AB=20,CF=12,则BD等于()A.12 B.8 C.6 D.1012.已知,,则的值为()A.10 B.8 C.6 D.413.如图,在△ABC中,AB=AC,∠A=20°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠ADB=()A.100° B.160° C.80° D.20°14.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C’处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.1015.如图,△ABC的顶点A,B,C在连长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()A. B. C. D.16.如图,△ABC的面积为10,BP是∠ABC的平分线,AP⊥BP于P,则△PBC 的面积为()A.4 B.5 C.6 D.7二、填空(每小题3分,共12分)17.化简:的结果为 .18.已知的平方根是,则m= .19.若,则代数式的值是 .20.如图,Rt△ABC中,∠B=90°,AB=8cm,BC=6cm,D点从A出发以每秒1cm 的速度向B点运动,当D点运动到AC的中垂线上时,运动时间为秒.三、(共12分)21.(1)化简,再求值:,其中.(2)计算:.四、(本题8分)22.如图,在△ABC中,AB=AC=8cm.(1)作AB的垂直平分线,交AC于点M,交AB于点N;(尺规作图,保留作图痕迹)(2)在(1)的条件下,连接MB,若△MBC的周长是14cm,求BC的长.五、(本题8分)23.某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买的笔记本比打折前多10本.(1)请利用分工方程求出每本笔记本原来的标价;(2)恰逢文具店周年庆典,每本笔记本可以按原价打8折,这样该校最多可购入多少笔记本?六、(8分)24.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.七、(12分)25.先阅读,再解答由可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:,请完成下列问题:(1)的有理化因式是;(2)化去式子分母中的根号:, .(3)(填或)(4)利用你发现的规律计算下列式子的值:八、(12分)26.已知:如图,Rt△ABC中,∠C=90°,AC=6,AB=10.(1)求BC的长;(2)有一动点P从点C开始沿C→B→A方向以1cm/s的速度运动到点A后停止运动,设运动时间为t秒;求:①当t为几秒时,AP平分∠CAB;②当t为几秒时,△ACP是等腰三角形(直接写答案).。
最新浙教版八年级上册数学期末试检测卷(附解析)最新浙教版八年级上册数学期末试卷(附解析)一、选择题(共30分,每小题3分)1.(3分)点P(1,3)向下平移2个单位后的坐标是()A.(1,2)B.(1,1)C.(1,5)D.(1,0)2.(3分)不等式x-1>0的解在数轴上表示为()A.(1,∞) B.(-∞,1) C.(1,∞) D.(-∞,1)3.(3分)以a,b,c为边的三角形是直角三角形的是()A.a=2,b=3,c=4 B.a=4,b=5,c=6 C.a=2,b=2,c=2√2 D.a=3,b=4,c=54.(3分)对于命题“若a^2=b^2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=3 B.a=-3,b=-3 C.a=3,b=-3 D.a=-3,b=35.(3分)若x+aay,则()A.x0 B.x>y,ay,a>06.(3分)已知y=kx+k的图象与y=x的图象平行,则y=kx的大致图象为()A. B. C. D.7.(3分)如图,若△ABC的周长为20,则AB的长可能为()A.8 B.10 C.12 D.148.(3分)如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10 B.8 C.6 D.49.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,将△ABC绕点B顺时针旋转60°,得到△BDE,连结DC交AB于点F,则△ACF与△BDF的周长之和为()A.44 B.43 C.42 D.4110.(3分)关于函数y=(k-3)x+k,给出下列结论:①此函数是一次函数。
②无论k取什么值,函数图象必经过点(-1,3)。
③若图象经过二、三、四象限,则k的取值范围是k<3。
④若函数图象与x轴的交点始终在正半轴可得k<3.其中正确的是()A.①② B.②③ C.③④ D.①③二、填空题(共24分,每小题4分)11.(4分)若函数y=2x+b(b为常数)的图象经过点A (-1,-2),则b=-4.12.(4分)若不等式组的解集是-1<x<2,则a=-1.13.(4分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为72°。
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版2016-2017学年苏教版八年级数学上册期末试卷一、细心填一填本大题共有13小题,20空,每空2分,共40分。
1.4的平方根是2;124的算术平方根是11;9的立方根为-2.2.计算:(1)a÷a=1;(2)(m+2n)(m-2n)=m^2-4n^2;(3)0.3.在数轴上与表示3的点距离最近的整数点所表示的数是3.4.如图,△ABC中,∠ABC=38°,BC=6cm,E为BC 的中点,平移△ABC得到△DEF,则∠DEF=38°,平移距离为6cm。
5.正九边形绕它的旋转中心至少旋转40°后才能与原图形重合。
6.如图,若□ABCD与□EBCF关于BC所在直线对称,且∠ABE=90°,则∠F=90°。
7.如图,在正方形ABCD中,以BC为边在正方形外部作等边三角形BCE,连结DE,则∠CDE的度数为60°。
8.如图,在□ABCD中,∠ABC的平分线交AD于点E,且AE=DE=1,则□ABCD的周长等于4+2√2.9.AD∥BC,∠A=2∠B=40°。
10.在梯形ABCD中,∠C=90°,则∠D的度数为90°。
11.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是6.12.直角三角形三边长分别为2,3,m,则m=√5.13.矩形ABCD的周长为24,面积为32,则其四条边的平方和为100;对角线AC、BD相交于点O,其中AC+BD=28,CD=10.(1)若四边形ABCD是平行四边形,则△OCD的周长为22;(2)若四边形ABCD是菱形,则菱形的面积为48;(3)若四边形ABCD是矩形,则AD的长为8.二、精心选一选本大题共有7小题,每小题2分,共14分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内。
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
浙教版八年级(上)期末数学试卷及答案一、选择题(本题有10小题,每小题4分,共40分)1.下列四个图形中,是轴对称图形的是()A.B.C.D.2.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.43.下列说法中正确的是()A.使式子有意义的是x>﹣3B.使是正整数的最小整数n是3C.若正方形的边长为3cm,则面积为30cm2D.计算3÷×的结果是34.若点P在一次函数y=﹣x+4的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,BE=CF,AB=DE,添加下列哪一个条件可以推证△ABC≌△DEF()A.BC=EF B.∠A=∠D C.AC∥DF D.∠B=∠DEF6.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.40°B.45°C.47.5°D.50°7.关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为()A.﹣5<a<﹣3B.﹣5≤a<﹣3C.﹣5<a≤﹣3D.﹣5≤a≤﹣38.已知一次函数y1=ax+b和y2=bx+a(ab≠0且a≠b),这两个函数的图象可能是()A.B.C.D.9.如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A5A6,…,其面积分别记为S1,S2,S3,…,则S100为()A.()100B.(3)100C.3×4199D.3×239510.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.二、填空题(本题有6小题,每小题5分,共30分)11.命题“对顶角相等”的逆命题是.12.一次函数y=(2m﹣6)x+5中,y随x的增大而减小,则m的取值范围是.13.将点P(﹣2,﹣3)向左平移3个长度单位,再向上平移2个长度单位得到点Q,则点Q的坐标是.14.已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为.15.如图在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕C点按逆时针方向旋转α角(0°<α<90°),得到△A′B′C,设A′C交AB边于D,连结AA′,若△AA'D是等腰三角形,则旋转角α的度数为.16.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB交于点A′,连接AC′,若AD=AC′=4,BD=6,则点D到BC的距离为.三、解答题(本题有8小题,共80分)17.解下面一元一次不等式组,并写出它的所有非负整数解..18.计算:(1)×;(2)已知|﹣a|+=0,求a2﹣2+2+b2的值.19.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.20.如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(﹣4,4),(﹣1,3),并写出点B的坐标为;(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△P AB的周长最小,并直接写出点P的坐标.21.镇海制米厂接到加工大米的任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务.乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图1所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=;(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式;(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好第二节车厢和第三节车厢都装满?22.某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:土特产品种甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.23.我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.●特例感知①等腰直角三角形勾股高三角形(请填写“是”或者“不是”);②如图1,已知△ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若BD=2AD=2,试求线段CD的长度.●深入探究如图2,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明;●推广应用如图3,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC 边交于点E.若CE=a,试求线段DE的长度.24.如图(1),在平面直角坐标系中,直线y=﹣x+4交坐标轴于A、B两点,过点C(﹣4,0)作CD交AB于D,交y轴于点E.且△COE≌△BOA.(1)求B点坐标为;线段OA的长为;(2)确定直线CD解析式,求出点D坐标;(3)如图2,点M是线段CE上一动点(不与点C、E重合),ON⊥OM交AB于点N,连接MN.①点M移动过程中,线段OM与ON数量关系是否不变,并证明;②当△OMN面积最小时,求点M的坐标和△OMN面积.参考答案与试题解析一.选择题(共10小题)1.下列四个图形中,是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形的定义对各选项进行判断.【解答】解:A选项和D选项中的图形既不是中心对称也不是轴对称图形,B选项中的图形为中心对称图形,C 选项中的图形既是中心对称也是轴对称图.故选:C.2.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.4【分析】先根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出x的取值范围,然后根据若x 为正整数,即可选择答案.【解答】解:∵10﹣2=8,10+2=12,∴8<x<12,∵若x为正整数,∴x的可能取值是9,10,11,故这样的三角形共有3个.故选:C.3.下列说法中正确的是()A.使式子有意义的是x>﹣3B.使是正整数的最小整数n是3C.若正方形的边长为3cm,则面积为30cm2D.计算3÷×的结果是3【分析】直接利用二次根式有意义的条件以及二次根式的乘除运算法则分别计算得出答案.【解答】解:A、使式子有意义的是x≥﹣3,故此选项错误;B、使是正整数的最小整数n是3,故此选项正确;C、若正方形的边长为3cm,则面积为90cm2,故此选项错误;D、3÷×的结果是1,故此选项错误;故选:B.4.若点P在一次函数y=﹣x+4的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】结合一次函数图象与系数的关系即可得出一次函数y=﹣x+4的图象经过第一、二、四象限,此题得解.【解答】解:∵﹣1<0,4>0,∴一次函数y=﹣x+4的图象经过第一、二、四象限,即不经过第三象限.∵点P在一次函数y=﹣x+4的图象上,∴点P一定不在第三象限.故选:C.5.如图,BE=CF,AB=DE,添加下列哪一个条件可以推证△ABC≌△DEF()A.BC=EF B.∠A=∠D C.AC∥DF D.∠B=∠DEF【分析】根据题目中的条件,可以得到BC=EF,AB=DE,然后即可判断各个选项中添加的条件是否能使得△ABC≌△DEF,从而可以解答本题.【解答】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,又∵AB=DE,∴添加条件BC=EF,不能判断△ABC≌△DEF,故选项A不符合题意;添加条件∠A=∠D,不能判断△ABC≌△DEF,故选项B不符合题意;添加条件AC∥DF,可以得到∠ACB=∠F,不能判断△ABC≌△DEF,故选项C不符合题意;添加条件∠B=∠DEF,可以得到△ABC≌△DEF(SAS),故选项D符合题意;故选:D.6.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.40°B.45°C.47.5°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°=72.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=180°﹣35°﹣50°=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:B.7.关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为()A.﹣5<a<﹣3B.﹣5≤a<﹣3C.﹣5<a≤﹣3D.﹣5≤a≤﹣3【分析】首先解不等式求得不等式的解集,然后根据不等式只有两个正整数解即可得到一个关于a的不等式,求得a的值.【解答】解:解不等式2x+a≤1得:x≤,不等式有两个正整数解,一定是1和2,根据题意得:2≤<3,解得:﹣5<a≤﹣3.故选:C.8.已知一次函数y1=ax+b和y2=bx+a(ab≠0且a≠b),这两个函数的图象可能是()A.B.C.D.【分析】根据题意和一次函数的性质,可以判断各个选项中的图象是否正确,本题得以解决.【解答】解:当a>0,b>0时,一次函数y1=ax+b的图象经过第一、二、三象限,y2=bx+a的图象经过第一、二、三象限,故选项A错误,选项B错误,选项D正确;当a<0,b>0时,一次函数y1=ax+b的图象经过第一、二、四象限,y2=bx+a的图象经过第一、三、四象限,故选项C错误;故选:D.9.如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A5A6,…,其面积分别记为S1,S2,S3,…,则S100为()A.()100B.(3)100C.3×4199D.3×2395【分析】本题需先求出OA1和OA2的长,再根据题意得出OA n=2n,把纵坐标代入解析式求得横坐标,然后根据三角形相似的性质即可求得S100.【解答】解:∵点A0的坐标是(0,1),∴OA0=1,∵点A1在直线y=x上,∴OA1=2,A0A1=,∴OA2=4,∴OA3=8,∴OA4=16,得出OA n=2n,∴A n A n+1=2n•,∴OA198=2198,A198A199=2198•,∵S1=(4﹣1)•=,∵A2A1∥A200A199,∴△A0A1A2∽△A198A199A200,∴=()2,∴S=2396•=3×2395故选:D.10.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.【分析】根据余角的性质得到∠F AC=∠ABC,根据全等三角形的性质得到S△F AM=S△ABN,推出S△ABC=S四边形FNCM,根据勾股定理得到AC2+BC2=AB2,解方程组得到3AB2=57,于是得到结论.【解答】解:∵四边形ABGF是正方形,∴∠F AB=∠AFG=∠ACB=90°,∴∠F AC+∠BAC=∠F AC+∠ABC=90°,∴∠F AC=∠ABC,在△F AM与△ABN中,,∴△F AM≌△ABN(AAS),∴S△F AM=S△ABN,∴S△ABC=S四边形FNCM,∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,∵AB2﹣2S△ABC=10.5,∴AB2﹣AC•BC=10.5,∴3AB2=57,解得AB=或﹣(负值舍去).故选:B.二.填空题(共6小题)11.命题“对顶角相等”的逆命题是相等的角为对顶角.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为:相等的角为对顶角.12.一次函数y=(2m﹣6)x+5中,y随x的增大而减小,则m的取值范围是m<3.【分析】利用一次函数图象与系数的关系列出关于m的不等式2m﹣6<0,然后解不等式即可.【解答】解:∵一次函数y=(2m﹣6)x+5中,y随x的增大而减小,∴2m﹣6<0,解得,m<3;故答案是:m<3.13.将点P(﹣2,﹣3)向左平移3个长度单位,再向上平移2个长度单位得到点Q,则点Q的坐标是(﹣5,﹣1).【分析】让P的横坐标减3,纵坐标加2即可得到点Q的坐标.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故答案为:(﹣5,﹣1).14.已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为x<2.【分析】直接利用图象把(﹣6,0)代入,进而得出k,b之间的关系,再利用一元一次不等式解法得出答案.【解答】解:∵图象过(﹣6,0),则0=﹣6k+b,则b=6k,故3kx﹣b=3kx﹣6k>0,∵k<0,∴x﹣2<0,解得:x<2.故答案为:x<2.15.如图在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕C点按逆时针方向旋转α角(0°<α<90°),得到△A′B′C,设A′C交AB边于D,连结AA′,若△AA'D是等腰三角形,则旋转角α的度数为20°或40°.【分析】根据旋转的性质可得AC=CA',根据等腰三角形的两底角相等求出∠AA'C=∠CAA',再表示出∠DAA',根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ADA',然后分①∠AA'C=∠DAA',②∠AA'C=∠ADA',③∠DAA'=∠ADA'三种情况讨论求解.【解答】解:∵△ABC绕C点逆时针方向旋转得到△A'B'C,∴AC=CA',∴∠AA'C=∠CAA'=(180°﹣α),∴∠DAA'=∠CAA'﹣∠BAC=(180°﹣α)﹣30°,根据三角形的外角性质,∠ADA'=∠BAC+∠ACA'=30°+α,△ADA'是等腰三角形,分三种情况讨论,①∠AA'C=∠DAA'时,(180°﹣α)=(180°﹣α)﹣30°,无解,②∠AA'C=∠ADA'时,(180°﹣α)=30°+α,解得α=40°,③∠DAA'=∠ADA'时,(180°﹣α)﹣30°=30°+α,解得α=20°,综上所述,旋转角α度数为20°或40°.故答案为:20°或40°.16.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB交于点A′,连接AC′,若AD=AC′=4,BD=6,则点D到BC的距离为.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=2,C'M=DM=2,BM=4,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长,则可得出答案.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=4,D是AC边上的中点,∴DC=AD=4,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=4,BC=BC',CM=C'M,∴AD=AC′=DC'=4,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=4,∴DM=2,C'M=DM=2,∴BM=BD﹣DM=6﹣2=4,在Rt△BMC'中,BC'===2,∵S△BDC'=BC'•DH=BD•C'M,∴2×DH=6×2,∴DH=,∵∠DCB=∠DBC',∴点D到BC的距离为.故答案为:.三.解答题17.解下面一元一次不等式组,并写出它的所有非负整数解..【分析】求出不等式组的解集,根据不等式组的解集求出即可.【解答】解:,解不等式①得x>﹣1;解不等式②得x≤2;∴原不等式组的解集为﹣1<x≤2,∴原不等式组的所有非负整数解为0,1,2.18.计算:(1)×;(2)已知|﹣a|+=0,求a2﹣2+2+b2的值.【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据|﹣a|+=0,可以得到a、b的值,然后将所求式子变形,再将a、b的值代入即可解答本题.【解答】解:(1)×=4÷﹣+2=4﹣+2=4+;(2)∵|﹣a|+=0,∴﹣a=0,b﹣2=0,∴a=,b=2,∴a2﹣2+2+b2=(a﹣)2+b2=(﹣)2+22=02+4=0+4=4.19.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°∴△BEC≌△CDB∴∠DBC=∠ECB,BE=CD在△BOE和△COD中∵∠BOE=∠COD,BE=CD,∠BEC=∠BDE=90°∴△BOE≌△COD,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠DOE+∠A=180°∴∠BOC=∠DOE=180°﹣80°=100°.20.如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(﹣4,4),(﹣1,3),并写出点B的坐标为(﹣2,1);(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△P AB的周长最小,并直接写出点P的坐标.【分析】(1)根据平面直角坐标系的特点作出坐标系,写出点B的坐标;(2)分别作出点A、B、C关于y轴的对称的点,然后顺次连接,写出B1点的坐标;(3)作点B关于y轴的对称点,连接AB1,与y轴的交点即为点P.【解答】解:(1)所作图形如图所示:B(﹣2,1);(2)所作图形如图所示:B1(2,1);(3)所作的点如图所示,P(0,2).故答案为:(﹣2,1).21.镇海制米厂接到加工大米的任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务.乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图1所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天加工大米20吨,a=15;(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式;(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好第二节车厢和第三节车厢都装满?【分析】(1)根据题意,由图2得出两个车间同时加工和甲单独加工的速度;(2)用待定系数法解决问题;(3)求出两个车间每天加工速度分别计算两个55吨完成的时间.【解答】解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15,故答案为:20,15;(2)设y=kx+b,把(2,15),(5,120)代入,,解得,∴y=35x﹣55;(3)由图2可知,当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55(吨),∴再加工2天装满第二节车厢和第三节车厢.22.某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:土特产品种甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.【分析】(1)因为公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售,设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,则装运丙特产的车辆数为(20﹣x﹣y),且8x+6y+5(20﹣x﹣y)=120,整理即得y与x之间的函数关系式.(2)因为装运每种土特产的车辆都不少于3辆,所以x≥3,y≥3,20﹣x﹣y≥3,结合(1)的答案,就可得到关于x的不等式组,又因x是正整数,从而可求x的取值,进而确定方案.(3)可设此次销售利润为W百元,由表格可得W=8x•12+6(20﹣3x)•16+5[20﹣x﹣(20﹣3x)]•10=﹣92x+1920,根据y随x的变化规律,结合(2)中所求,就可确定使利润最大的方案.【解答】解:(1)∵8x+6y+5(20﹣x﹣y)=120,∴y=20﹣3x.∴y与x之间的函数关系式为y=20﹣3x.(3分)(2)由x≥3,y=20﹣3x≥3,即20﹣3x≥3可得3≤x≤5,又∵x为正整数,∴x=3,4,5.(5分)故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.(7分)(3)设此次销售利润为W百元,W=8x•12+6(20﹣3x)•16+5[20﹣x﹣(20﹣3x)]•10=﹣92x+1920.∵W随x的增大而减小,又x=3,4,5∴当x=3时,W最大=1644(百元)=16.44万元.答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.(10分)23.我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.●特例感知①等腰直角三角形是勾股高三角形(请填写“是”或者“不是”);②如图1,已知△ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若BD=2AD=2,试求线段CD的长度.●深入探究如图2,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明;●推广应用如图3,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC 边交于点E.若CE=a,试求线段DE的长度.【分析】●特例感知:①根据勾股高三角形的定义即可判断;②如图1,根据勾股定理可得:CB2=CD2+4,CA2=CD2+1,于是CD2=(CD2+4)﹣(CD2+1)=3,即可解决问题;●深入探究:由CA2﹣CB2=CD2可得:CA2﹣CD2=CB2,而CA2﹣CD2=AD2,即可推出AD2=CB2;●推广应用:过点A向ED引垂线,垂足为G,只要证明△AGD≌△CDB(AAS),即可解决问题;【解答】解:●特例感知:①等腰直角三角形是勾股高三角形.故答案为是.②如图1中,根据勾股定理可得:CB2=CD2+4,CA2=CD2+1,于是CD2=(CD2+4)﹣(CD2+1)=3,∴CD=.●深入探究:如图2中,由CA2﹣CB2=CD2可得:CA2﹣CD2=CB2,而CA2﹣CD2=AD2,∴AD2=CB2,即AD=CB;●推广应用:过点A向ED引垂线,垂足为G,∵“勾股高三角形”△ABC为等腰三角形,且AB=AC>BC,∴只能是AC2﹣BC2=CD2,由上问可知AD=BC……①.又ED∥BC,∴∠1=∠B……②.而∠AGD=∠CDB=90°……③,∴△AGD≌△CDB(AAS),∴DG=BD.易知△ADE与△ABC均为等腰三角形,根据三线合一原理可知ED=2DG=2BD.又AB=AC,AD=AE,∴BD=EC=a,∴ED=2a.24.如图(1),在平面直角坐标系中,直线y=﹣x+4交坐标轴于A、B两点,过点C(﹣4,0)作CD交AB于D,交y轴于点E.且△COE≌△BOA.(1)求B点坐标为(0,4);线段OA的长为3;(2)确定直线CD解析式,求出点D坐标;(3)如图2,点M是线段CE上一动点(不与点C、E重合),ON⊥OM交AB于点N,连接MN.①点M移动过程中,线段OM与ON数量关系是否不变,并证明;②当△OMN面积最小时,求点M的坐标和△OMN面积.【分析】(1)根据直线y=﹣x+4交坐标轴于A、B两点,点A在x轴上,点B在y轴上,可以求得点B的坐标和OA的长;(2)根据△COE≌△BOA,可以得到OE=OA,再根据点A的坐标可以的大点E的坐标即可求得直线CE的解析式,然后与直线y=﹣x+4联立方程组,即可求得点D的坐标;(3)①根据题目中的条件,可以证明△OME≌△ONA,即可得到OM和ON的数量关系;②要求△OMN面积最小值,由OM=ON,OM⊥ON,可知当OM取得最小值时即可,当OM⊥CE时,OM取得最小值,然后根据勾股定理和等积法可以求得OM的长,即可求得点M的坐标,本题得以解决.【解答】解:(1)∵直线y=﹣x+4交坐标轴于A、B两点,∴当y=0时,x=3,当x=0时,y=4,∴点A的坐标为(3,0),点B的坐标为(0,4),∴OA=3;故答案为:(0,4),3;(2)∵过点C(﹣4,0)作CD交AB于D,交y轴于点E.且△COE≌△BOA,∴OC=4,OC=OB,OE=OA,∵点A(3,0),∴OA=3,∴OE=3,∴点E的坐标为(0,3),设过点C(﹣4,0),点E(0,3)的直线解析式为y=kx+b,,得,∴直线CE的解析式为y=x+3,即直线CD的解析式为y=x+3,由,得,即点D的坐标为(,);(3)①线段OM与ON数量关系是OM=ON保持不变,证明:∵△COE≌△BOA,∴OE=OA,∠OEM=∠OAN,∵∠BOA=90°,ON⊥OM,∴∠MON=∠BOA=90°,∴∠MOE+∠EON=∠EON+∠NOA,∴∠MOE=∠NOA,在△MOE和△NOA中,,∴△MOE≌△NOA(ASA),∴OM=ON,即线段OM与ON数量关系是OM=ON保持不变;②由①知OM=ON,∵OM⊥ON,∴△OMN面积是:=,∴当OM取得最小值时,△OMN面积取得最小值,∵OC=4,OE=3,∠COE=90°,∴CE=5,∵当OM⊥CE时,OM取得最小值,∴,∴,解得,OM=,∴△OMN面积取得最小值是:=,当△OMN取得最小值时,设此时点M的坐标为(a,a+3),∴=,解得,a=﹣,∴a+3=,∴点M的坐标为(,),由上可得,当△OMN面积最小时,点M的坐标是(,)和△OMN面积是。
浙教版数学八年级上册期末考试试卷一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12 2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0 7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣39.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:.12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为.13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=cm.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为.(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.参考答案一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:A、1+2.5=3.5,不能够组成三角形;B、4+6=10,不能组成三角形;C、11+8<20,不能组成三角形;D、5+8>12,能组成三角形.故选:D.2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A选项错误;B(2,90°),故B选项错误;D(4,240°),故C选项正确;E(3,300°),故D选项错误.故选:C.4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上【分析】根据线段垂直平分线的判定定理解答.解:∵PA=PB,∴P点在在边AB的垂直平分线上,故选:B.5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 【分析】根据不等式的性质逐一进行判断即可.不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.解:A.因为a>b,所以3a>3b,故本选项不合题意;B.不妨设c=0,则ac2=bc2,故本选项不合题意;C.因为a>b,所以a﹣c>b﹣c,故本选项符合题意;D.不妨设c=0,则﹣ac=﹣bc,故本选项不合题意;故选:C.6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0【分析】根据有理数的大小比较法则、有理数的乘方法则计算,判断即可.解:当a=﹣1,b=﹣2时,a>b,而a2<b2,∴“若a>b,则a2>b2”是假命题,故选:A.7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.【分析】根据函数自变量的取值得到x<1的取值的选项即可.解:A、自变量的取值为x≠1,不符合题意;B、自变量的取值为x≠0,不符合题意;C、自变量的取值为x≤1,不符合题意;D、自变量的取值为x<1,符合题意.故选:D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣3【分析】结合函数图象,写出直线y2=k2x在直线y1=k1x+b上方所对应的自变量的范围即可.解:∵直线y1=k1x+b与直线y2=k2x的交点的横坐标为﹣3,∴当x≤﹣3时,y2≥y1,∴关于x的不等式k1x+b≤k2x的解集为x≤﹣3.故选:C.9.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明【分析】由图象可得a的值;根据小明的路程和时间可得速度;设爸爸从家到商店的速度是x米/分钟,列一元一次方程可求解;根据追及问题中相距路程÷速度差=时间可得答案.解:线段BC是爸爸买水果的时间5分钟,a=10+5=15,故A不符合题意;由图象可得小明的速度是3300÷(20+2)=150(米/分钟),故B不符合题意;设爸爸从家到商店的速度是x米/分钟,则从商店到学校的速度是(x+60)米/分钟,依题意得,10x+(20﹣15)(x+60)=3300,解得x=200,所以爸爸从家到商店的速度是200米/分钟,故C不符合题意;爸爸追上小明得时间是150×2÷(200﹣150)=6(分钟),故D符合题意.故选:D.10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.【分析】根据题意求出点B1,B2,B3的坐标,然后找出B点坐标的变化规律,把B n的坐标用含n的式子表示出来,取n=9,即可求出B9的横坐标.解:∵△OA1B1是等边三角形,OA1=1,∴B1的横坐标为,OA1=OB1,设B1(,y),则,解答y=或y=(舍),∴B1(,),∴OB1所在的直线的解析式为y=x,∵OA1=1,∠OA1C=30°,△OA1B1是等边三角形,∴∠B1A1C=90°,∵∠O1BA1=∠B1B2A2=60°,∴B1A1∥B2A2,∴∠B1A1C=∠B2A2A1=90°,∴∠B1A2A1=30°,∴B1A2=2A1B1=2,∴B2的横坐标为,∴y=x=,∴B2(,),同理:B3(,),B4(,),总结规律:B1的横坐标为,B2的横坐标为+1=,B3的横坐标为+1+2=,B4的横坐标为+1+2+4=,...,∴点B9的横坐标是1+2+4+8+16+32+64=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7).【分析】根据平移时,点的坐标变化规律“左减右加”进行计算即可.解:现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7),故答案为:(5,y)(﹣2≤y≤7).13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=5cm.【分析】根据CF∥AB就可以得出∠A=∠DCF,∠AED=∠F,证明△ADE≌△CDF (AAS),由全等三角形的性质得出AE=CF,则可得出答案.解:∵CF∥AB,∴∠AED=∠F,∠FCD=∠A.∵点D为AC的中点,∴AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(AAS).∴AE=CF,∵AB=15cm,CF=10cm,∴BE=AB﹣AE=AB﹣CF=15﹣10=5(cm).故答案为5.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为30≤a≤60.【分析】一次服用剂量a=,故可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式即可.解:由题意,当每日用量90mg,分3次服用时,一次服用的剂量最小为=30mg;当每日用量120mg,分2次服用时,一次服用的剂量最大为=60mg;故一次服用这种药品的剂量范围是30mg~60mg.故答案为:30≤a≤60.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =42°或24°.【分析】由折叠的性质得出AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,由直角三角形斜边上的中线性质得出CD=AB=AD=BD,由等腰三角形的性质得出∠ACD=∠A,∠DCB=∠B,中分三种情况讨论即可.解:由折叠可得,AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,∴D是AB的中点∴CD=AB=AD=BD,∴∠ACD=∠A,∠DCB=∠B,当∠CPD=48°时,∠B=48°,∴∠A=90°﹣∠B=42°;当∠PCD=48°时,∠DCB=∠B=48°,∴∠A=42°;当∠PDC=48°时,∵∠PCD=DCB=48°,∠BDC=∠A+∠ACD,∴∠A=∠BDC=24°;故答案为:42°或24°.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是(﹣,);(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=6时,|OA'﹣OB'|取最大值.【分析】(1)因为点A在点B左边,联立方程y=x+2与y=﹣x﹣1求解.(2)O,A',B'共线时满足题意,用含m代数式分别表示A',B'坐标,然后代入正比例函数解析式求出m即可.解:(1)联立方程,解得,∴A(﹣,),故答案为:(﹣,).(2)联立方程,解得,∴点B坐标为(,),将A,B向右平移m个单位得A'(﹣+m,),B'(+m,),∴OA'=,OB'=,∵三角形中两边之差小于第三边,∴O,A,B三点共线时,|OA'﹣OB'|取最大值,最大值为AB长度,设O,A,B所在直线正比例函数为y=kx,将A',B'坐标代入可得:,解得m=6.故答案为:6.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x﹣2≤x,得:x≤1,解不等式<,得:x>﹣7,∴不等式组的解集为﹣7<x≤1.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.【分析】(1)直接利用轴对称图形的性质得出对应点位置得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案.解:(1)如图1所示:△CBO即为所求;(2)如图2所示:△A′B′O′即为所求.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.【分析】(1)将两点代入,运用待定系数法求解;(2)两点法即可确定函数的图象.(3)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.解:(1)∵一次函数y=kx+b的图象经过两点A(﹣4,0)、B(2,6),∴,∴函数解析式为:y=x+4;(2)函数图象如图;(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=7.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?【分析】(1)由“当金额是600元时,实际只需支付了570”可得方程300+(600﹣300)×=570,再解即可;与奖品金额x元之间的函数表达式;(2)根据甲商店优惠方案即可求出y甲与奖品金额x元之间的函数表达式,再结合(2)的结论列方程和(3)根据题意求出y乙不等式解答即可.解:(1)由题意,得500+(600﹣500)×=570,解得x=7,故答案为:7;(2)由题意,得y=;甲=0.7x+150(x>500),(3)由题意,得y乙0.8x+60=0.7x+150,解得x=900,0.8x+60>0.7x+150,解得x>900,0.8x+60<0.7x+150,解得x<900,当800<x<900时,到甲商店更合算;当x=900时,两家商店任选一个;当x>900时,到乙商店更合算.22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.【分析】(1)利用勾股定理求出AB,再利用面积法求出CD即可.(2)如图2中,过点A作AH⊥BC于H.利用勾股定理求出AH,再利用面积法求出PM+PN即可.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.利用角平分线的性质定理证明PM =PN,再利用面积法求出PM,可得结论.解:(1)如图1中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵CD⊥AB,=•AC•BC=•AB•CD,∴S△ABC∴CD==.(2)如图2中,过点A作AH⊥BC于H.∵AB=AC=13,BC=10,∴BH=CH=5,∴AH===12,=•BC•AH=•AB•PM+•AC•PN,∵S△ABC∴×13×PM+×13×PN=×10×12,∴PM+PN=.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.∵∠ACD=∠ECD,DM⊥AC,DN⊥CE,∴DM=DN,+s△BCD=S△ACB,∵S△ACD∴×4×DM+×6×DN=×4×6,∴DM=DN=,=•CA′•DN=×4×=.∴S△A′CD23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为(﹣3,1).(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.【分析】(1)x=﹣3时,y的值与k无关,都为1,即得定点A(﹣3,1),(2)由A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),得AB=3,BC=4,BD=3,CD=5,直线l将△BCD的周长分成7:17两部分,则两部分的长分别为:12×=,12×=,①若AB+BN=,得N(0,),将N(0,)代入y=kx+3k+1,即解得k=﹣,②若AC+CM=,可得M(﹣2,),把M(﹣2,)代入y=kx+3k+1,解得:k=;(3)由求得E(﹣3,1),故E与A重合,而点F是EQ的中点,得x F=﹣,根据y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),故PQ=3,可知点P从(0,5)沿y轴正方向运动到(0,10),则Q从(0,2)运动到(0,7),F从(﹣,)运动到(﹣,4),即可得F运动的路程为.解:(1)∵x=﹣3时,y的值与k无关,都为1,∴定点A(﹣3,1),故答案为:(﹣3,1);(2)∵A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),∴AB=3,BC=4,BD=3,∵∠CDB=90°,∴CD===5,∴△BCD的周长为BD+CD+BC=12,∵直线l将△BCD的周长分成7:17两部分,∴两部分的长分别为:12×=,12×=,①若AB+BN=,如图:∴3+BN=,∴BN=,∴N(0,),将N(0,)代入y=kx+3k+1得:=3k+1,解得k=﹣,②若AC+CM=,如图:∴1+CM=,∴CM=,∴CM=CD,∴M为CD中点,∴M(﹣2,),把M(﹣2,)代入y=kx+3k+1得:=﹣2k+3k+1,解得:k=,综上所述,k的值为﹣或;(3)由得,∴E(﹣3,1),∴E与A重合,∵点F是EQ的中点,∴x F=﹣,而由y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),∴PQ=3,∵点P从(0,5)沿y轴正方向运动到(0,10),∴Q从(0,2)运动到(0,7),∴F从(﹣,)运动到(﹣,4),∴F运动的路程为:4﹣=.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.【分析】(1)作CN⊥轴于N,BM⊥轴于M,易证Rt△NCA Rt△MAB,可求得点C的坐标为(,5),再利用待定系数法即可求解;(2)过B作直线EF⊥轴于F,过D作DE⊥EF交直线EF于E,易证Rt△FAB≌Rt△EBD,可求得点D的坐标为(m﹣,m﹣)或(m+,﹣m),再利用三角形面积公式即可求解;(3)题中只给定了AB为直角边,所以分∠ABP=90°或∠BAP=90°两种情况讨论,即可求解.解:(1)作CN⊥轴于N,BM⊥轴于M,∵∠BAC=90°,∴∠NAC+∠NCA=∠NAC+∠MAB=90°,∴∠NCA=∠MAB,∵CA=AB,∴Rt△NCA Rt△MAB,∴NC=MA,NA=MB,∵点B的横坐标为,∴点B的坐标为(9,),∴NC=MA=MO﹣OA=9﹣4=5,NA=MB=,ON=OA﹣NA=,∴点C的坐标为(,5),设直线BC的解析式为y=kx+b,将(9,),(,5)代入,得:,解得:,∴直线BC的解析式为y=﹣x+;(2)过B作直线EF⊥轴于F,过D1作D1E⊥EF交直线EF于E,过D2作D2E⊥EF交直线EF于M,同理可证Rt△FAB≌Rt△EBD1≌Rt△MBD2,∴AF=BE=MB,FB=D1E=D2M,∵点B的横坐标为m,∴AF=BE=MB=m﹣4,FB=D1E=D2M=,点D1的坐标为(m﹣,m﹣4+),即D1的坐标为(m﹣,m﹣),点D2的坐标为(m+,﹣m+4),即D2的坐标为(m+,﹣m),=,∵S△OAD1D点位于直线AB左侧时,当0<m<1.5时,S=×4×(﹣m)=3﹣2m;当m≥1.5时,S=×4×(m﹣)=2m﹣3;D点位于直线AB右侧时,当0<m<6.5时,S=×4×(﹣m)=13﹣2m;当m≥6.5时,S=×4×(m﹣)=2m﹣13;(3)①当∠ABP=90°时,由(2)可知D与P重合,∴点P的坐标为(m﹣,m﹣),当点P落在直线y=上时,m﹣=,解得:m=,②当∠BAP=90°时,同理可证明Rt△HAP≌Rt△GBA,∵点B的坐标为(m,),∴PH=AG=m﹣4,AH=BG=,∴点P的坐标为(4﹣,m﹣4),即(,m﹣4),当点P落在直线y=上时,m﹣4=,解得:m=,综上,m的值为或.。
数学测试卷一、选择题(本题包括10小题,每小题3分,共30分)1、在实数722、-3、0.101001、π、39、 3.14中,无理数有 ( )A .6个B .5个C .4个D .3个2、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSSB.SASC. ASA D .AAS 3、函数xx y 1+=的自变量的取值范围是 ( ) A x ≥-1 B x ≥-1且x ≠0 C. x >0 D x >-1且x ≠ 04.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB = BC = CD = DE = EF ,若∠A =18°,则∠GEF的度数是( )A .108°B .100°C .90°D .80第2题 第4题5、如果2592++kx x 是一个完全平方式,那么k 的值是( ) A 、30 B 、±30 C 、15 D ±156、如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )O yx-2- 4A DC B O42y O2- 4yxO 4- 2 y x取相反数×2-4第6题输入x 输出yEDCABHFG7.已知点A和点B都在直线上,且则与的大小关系为()A. B. C. D.不能确定8、将一张长方形纸片按如图所示的方式折叠,BC BD,为折痕,则CBD∠的度数为()A.60°B.75°C.90°D.95°9、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A、6cmB、4cmC、10cmD、以上都不对10、(4)班同学在探究弹簧的长度跟外力的变化关系时,实验记录得到的相应数据如下表:砝码的质量x(克) 0 50 100 150 200 250 300 400 500指针位置y(厘米) 2 3 4 5 6 7 7.5 7.5 7.5则y关于x的函数图象是( ).二、填空题(本题包括5小题,每小题3分,满分15分)11、16的算术平方根是.在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际12、时间应该是______.第12题第13题13、如图,ABC∆中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD= 。
2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列选项中可以用来说明命题“若x2>1,则x>1”是假命题的反例是()A.x=1B.x=﹣1C.x=2D.x=﹣23.(3分)若a>b,则下列不等式成立的是()A.a+1<b+1B.a﹣5<b﹣5C.﹣3a>﹣3b D.>4.(3分)一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°5.(3分)已知点(﹣1,y1),(﹣0.5,y2),(1.5,y3)是直线y=﹣2x+1上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2 6.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=36°,则∠DCB的度数为()A.54°B.64°C.72°D.75°7.(3分)对于一次函数y=mx﹣m(m>0),下列说法正确的是()A.函数图象经过第一、二、三象限B.函数图象y随x的增大而减小C.函数图象一定交于y轴的负半轴D.函数图象一定经过点(﹣1,0)8.(3分)如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径面弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD 于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形9.(3分)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27D.3×5+3×0.8(x﹣5)≥2710.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC为腰向外作等腰直角三角形△ABD和△ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.B.C.BC D.AB二、填空题(共10小题,每小题3分,满分30分)11.(3分)平面直角坐标系中,点A(1,﹣2)到x轴的距离是.12.(3分)如图是不等式组的解在数轴上的表示,则此不等式组的整数解是.13.(3分)命题“对顶角相等”的逆命题是.14.(3分)如图,已知点A、D、C、F在同一条直线上,AB∥DE,AD=CF,要使△ABC ≌△DEF,还需要添加一个条件是.(只需添加一个即可)15.(3分)小明从A 处出发沿北偏东40°的方向走了30米到达B 处:小军也从A 处出发,沿南偏东α°(0<α<90)的方向走了40米到达C 处,若B 、C 两处的距离为50米,则α= .16.(3分)已知等腰三角形的周长为20,腰长为x ,x 的取值范围是 . 17.(3分)小明爸爸开车带小明去杭州游玩,一路上匀速前行,小明记下了如下数据从9点开始,记汽车行驶的时间为t (min ),汽车离抗州的距离为s (km ),则s 关于t 的函数表达式为 .18.(3分)如图,在Rt △ABC 中,∠C =90°,DE 垂直平分AB ,连结AD ,若AC =6,BC =8,则CD 的长为.19.(3分)如图,一次函数y =kx +b 的图象经过点(﹣2,0),则关于x 的不等式k (x ﹣3)+b >0的解集为 .20.(3分)如图,在一张直角三角形纸片ABC 中,∠ACB =90°,BC =1,AC =,P 是边AB 上的一动点,将△ACP 沿着CP 折叠至△A 1CP ,当△A 1CP 与△ABC 的重叠部分为等腰三角形时,则∠ACP 的度数为 .三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分21.(6分)解不等式:5x﹣2≤3x,并在数轴上表示解集.22.(6分)如图,已知AB∥CF,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=7,CF=4,求BD长.23.(6分)已知直线y=x+b分别交x轴于点A、交y轴于点B(0,2)(1)求该直线的函数表达式;(2)求线段AB的长.24.(6分)如图,△ABC的三个顶点分别是A(﹣4,1),B(﹣2,1),C(﹣1,3),以x轴为对称轴,将△ABC作轴对称变换得到△A1B1C1,然后将△A1B1C1向右平移6个单位后得到△A2B2C2.(1)请在图中作出△A1B1C1;(2)直接写出经过上述两次变换后,对应点A2的坐标.25.(8分)如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M.(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H.①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.26.(8分)甲、乙两位同学从学校出发沿同一条绿道到相距学校1500m的图书馆去看书,甲步行,乙骑自行车.图1中OD,AC分别表示甲、乙离开学校的路程y(m)与甲行走的时间x(min)之间的函数图象(1)求线段AC所在直线的函数表达式;(2)设d(m)表示甲、乙两人之间的路程,在图2中补全d关于x的函数图象;(标注必要的数据)(3)当x在什么范围时,甲、乙两人之间的路程至少为180m.2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点P(2,1)的横坐标是正数,纵坐标也是正数,所以点在平面直角坐标系的第一象限.故选:A.【点评】解决本题的关键是牢记平面直角坐标系中四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2.(3分)下列选项中可以用来说明命题“若x2>1,则x>1”是假命题的反例是()A.x=1B.x=﹣1C.x=2D.x=﹣2【分析】根据有理数的乘方法则、假命题的概念解答.【解答】解:(﹣2)2=4>1,﹣2<1,∴当x=﹣2时,说明命题“若x2>1,则x>1”是假命题,故选:D.【点评】本题考查的是命题的真假判断,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.(3分)若a>b,则下列不等式成立的是()A.a+1<b+1B.a﹣5<b﹣5C.﹣3a>﹣3b D.>【分析】直接利用不等式的基本性质分别判断得出答案.【解答】解:A、∵a>b,∴a+1>b+1,故此选项错误;B、∵a>b,∴a﹣5>b﹣5,故此选项错误;C、∵a>b,∴﹣3a<﹣3b,故此选项错误;D、∵a>b,∴>,故此选项正确;故选:D.【点评】此题主要考查了不等式的性质,正确应用不等式基本性质是解题关键.4.(3分)一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°【分析】根据图形求出∠1,根据三角形的外角性质计算,得到答案.【解答】解:如图,∠1=90°﹣45°=45°,则∠α=60°+45°=105°,故选:B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5.(3分)已知点(﹣1,y1),(﹣0.5,y2),(1.5,y3)是直线y=﹣2x+1上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2【分析】根据一次函数图象的增减性,结合横坐标的大小,可判断纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+1的图象y随着x的增大而较小,又∵﹣1<﹣0.5<1.5,∴y1>y2>y3,故选:B.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.6.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=36°,则∠DCB的度数为()A.54°B.64°C.72°D.75°【分析】根据直角三角形斜边上中线定理得出CD=AD,求出∠DCA=∠A,根据两角互余求出∠DCB的度数即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠A=∠DCA=36°,∴∠DCB=90°﹣∠DCA=54°.故选:A.【点评】本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD和∠DCA的度数是解此题的关键.7.(3分)对于一次函数y=mx﹣m(m>0),下列说法正确的是()A.函数图象经过第一、二、三象限B.函数图象y随x的增大而减小C.函数图象一定交于y轴的负半轴D.函数图象一定经过点(﹣1,0)【分析】根据一次函数图象的性质进行逐一分析解答即可.【解答】解:A、∵m>0,∴﹣m<0,∴一次函数y=mx﹣m(m>0)的图象在一、三、四象限,故本选项错误;B、∵m>0,∴一次函数y=mx﹣m(m>0)的图象y随x的增大而增大,故本选项错误;C、∵x=0时,y=﹣m<0,∴函数图象一定交于y轴的负半轴,故本选项正确;D、∵x=﹣1时,y=﹣m﹣m=﹣2m<0,∴函数图象不经过点(﹣1,0),故本选项错误.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象与性质,一次函数图象与系数的关系,都是基础知识,需熟练掌握.8.(3分)如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径面弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD 于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形【分析】依据作图可得CA=CD,BA=BD,即可得到CB是AD的垂直平分线,依据线段垂直平分线的性质以及三角形内角和定理,即可得到结论.【解答】解:由题可得,CA=CD,BA=BD,∴CB是AD的垂直平分线,即CE垂直平分AD,故A选项正确;∴∠CAD=∠CDA,∠CEA=∠CED,∴∠ACE=∠DCE,即CE平分∠ACD,故B选项正确;∵DB=AB,∴△ABD是等腰三角形,故C选项正确;∵AD与AC不一定相等,∴△ACD不一定是等边三角形,故D选项错误;故选:D.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的判定,解题时注意:垂直平分线上任意一点,到线段两端点的距离相等.9.(3分)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27D.3×5+3×0.8(x﹣5)≥27【分析】设小聪可以购买该种商品x件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x的一元一次不等式,此题得解.【解答】解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x﹣5)≤27.故选:C.【点评】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC为腰向外作等腰直角三角形△ABD和△ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.B.C.BC D.AB【分析】如图,作DH⊥CF交CF的延长线于H,连接EH.想办法证明△BCA≌△AHD (AAS),四边形ADHE是平行四边形,即可解决问题.【解答】解:如图,作DH⊥CF交CF的延长线于H,连接EH.∵∠ACB=∠BAD=∠DHA=90°,∴∠BAC+∠DAH=90°,∠DAH+∠ADH=90°,∴∠BAC=∠ADH,∵AB=AD,∴△BCA≌△AHD(AAS),∴AC=DH,BC=AH,∵∠DHA=∠EAH=90°,AC=AE,∴DH∥AE,DH=AE,∴四边形ADHE是平行四边形,∴AF=FH,∴AF=AH=BC,故选:C.【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.二、填空题(共10小题,每小题3分,满分30分)11.(3分)平面直角坐标系中,点A(1,﹣2)到x轴的距离是2.【分析】根据点到x轴的距离等于纵坐标的长度解答.【解答】解:点A(1,﹣2)到x轴的距离是|﹣2|=2,故答案为:2.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.12.(3分)如图是不等式组的解在数轴上的表示,则此不等式组的整数解是﹣1,0,1.【分析】首先确定不等式组的解集,找出不等式组解集内的整数就可以.【解答】解:因为是整数,且在﹣1处和2处分别是实心和空心,所以整数有﹣1,0,1,故答案为:﹣1,0,1.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.(3分)命题“对顶角相等”的逆命题是相等的角为对顶角.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为相等的角为对顶角.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.14.(3分)如图,已知点A、D、C、F在同一条直线上,AB∥DE,AD=CF,要使△ABC ≌△DEF,还需要添加一个条件是AB=DE或∠B=∠E或∠ACB=∠F.(只需添加一个即可)【分析】利用全等三角形的判定定理,AAS定理,ASA定理,SAS定理可得结果.【解答】解:①添加AB=DE,∵AB∥DE,∴∠A=∠EDF,∵AD=CF,∴AD+DC=CF+DC,∴AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS);②添加∠B=∠E,,∴△ABC≌△DEF(AAS);③添加∠ACF=∠F,,△ABC≌△DEF(ASA),故答案为:AB=DE或∠B=∠E或∠ACB=∠F.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,注意AAA、SSA不能判定两个三角形全等是解答此题的关键.15.(3分)小明从A处出发沿北偏东40°的方向走了30米到达B处:小军也从A处出发,沿南偏东α°(0<α<90)的方向走了40米到达C处,若B、C两处的距离为50米,则α=50.【分析】根据勾股定理的逆定理得到∠BAC=90°,根据角的和差即可得到结论.【解答】解:∵AB=30,AC=40,BC=50,∴AB2+AC2=BC2,∴∠BAC=90°,∴α°=90°﹣40°=50°,∴α=50,故答案为:50.【点评】本题考查了勾股定理的逆定理的应用,熟练掌握勾股定理的逆定理是解题的关键.16.(3分)已知等腰三角形的周长为20,腰长为x,x的取值范围是5<x<10.【分析】利用三角形的三边关系解决问题即可.【解答】解:根据三角形的三边关系,x+x>20﹣2x,解得x>5,又∵x+x<20,∴x<10,所以,5<x<10.故答案为:5<x<10.【点评】本题考查了等腰三角形的性质,利用三角形的三边关系得到关于x的不等式是解题的关键.17.(3分)小明爸爸开车带小明去杭州游玩,一路上匀速前行,小明记下了如下数据从9点开始,记汽车行驶的时间为t(min),汽车离抗州的距离为s(km),则s关于t的函数表达式为=﹣t.【分析】由汽车每6min行驶10km知汽车的速度为=(km/min),根据距离=90﹣行驶的路程可得函数解析式.【解答】解:由表知,汽车每6min行驶10km,∴汽车的速度为=(km/min),则s=90﹣t,故答案为:s=90﹣t.【点评】本题主要考查函数关系式,解题的关键是根据表格得出汽车的速度及关于距离的相等关系.18.(3分)如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,连结AD,若AC=6,BC=8,则CD的长为.【分析】先根据线段的垂直平分线的性质得DA=DB,设AD=x,则DB=x,CD=BC ﹣BD=8﹣x,则在Rt△ACD中利用勾股定理得到62+(8﹣x)2=x2,解得x的值即可得到CD的长.【解答】解:∵DE是AB的中垂线,∴DA=DB,设AD=x,则DB=x,CD=BC﹣BD=8﹣x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8﹣x)2=x2,解得x=,∴CD=8﹣x=,故答案为:.【点评】本题考查了勾股定理以及线段垂直平分线的性质,依据勾股定理列方程是解决问题的关键.19.(3分)如图,一次函数y=kx+b的图象经过点(﹣2,0),则关于x的不等式k(x﹣3)+b>0的解集为x>1.【分析】观察函数图象得到即可.【解答】解:由图象可得:当x>﹣2时,kx+b>0,所以关于x的不等式kx+b>0的解集是x>﹣2,所以关于x的不等式k(x﹣3)+b>0的解集为x﹣3>﹣2,即:x>1,故答案为:x>1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20.(3分)如图,在一张直角三角形纸片ABC中,∠ACB=90°,BC=1,AC=,P 是边AB上的一动点,将△ACP沿着CP折叠至△A1CP,当△A1CP与△ABC的重叠部分为等腰三角形时,则∠ACP的度数为40°或70°.【分析】分两种情形画出图形分别求解即可.【解答】解:如图1中,当PC=CE时,设∠ACP=x.∵CP=CE,∴∠CPE=∠CEP,∵∠CPE=∠ACP+∠A=x+30,∴x+x+30+x+30=180°,∴x=40°.如图2中,当CP=CE时,设∠ACP=x.则∠CPE=∠CEP=2x﹣90°+30°=2x﹣60°,在△CPE中,90°﹣x+2(2x﹣60°)=180°,解得x=70°,PE=PC不成立(因为∠CPE=x+30°>x,此时求得x=50°,点E应该在AB延长线上).综上所述,∠ACP的度数为40°或70°,故答案为40°或70°.【点评】本题考查翻折变换,等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分21.(6分)解不等式:5x﹣2≤3x,并在数轴上表示解集.【分析】移项,合并同类项,系数化成1即可.【解答】解:5x﹣2≤3x,移项,得5x﹣3x≤2,合并同类项,得2x≤2,系数化成1,x≤1,在数轴上表示为:.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.22.(6分)如图,已知AB∥CF,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=7,CF=4,求BD长.【分析】(1)根据AAS证明△ADE≌△CFE即可;(2)利用全等三角形的性质即可解决问题;【解答】(1)证明:∵AB∥CF,∴∠A=∠FCE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)解:∵△ADE≌△CFE,∴AD=CF=4,∴BD=AB﹣AD=7﹣4=3.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(6分)已知直线y=x+b分别交x轴于点A、交y轴于点B(0,2)(1)求该直线的函数表达式;(2)求线段AB的长.【分析】(1)把B点坐标代入y=x+b中求出b即可;(2)先利用一次函数解析式确定A点坐标,然后利用勾股定理计算出AB的长.【解答】解:(1)把B(0,2)代入y=x+b得b=2,所以该直线的函数表达式为y=x+2;(2)当x=0时,x+2=0,解得x=﹣2,则A(﹣2,0),所以AB的长==2.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.24.(6分)如图,△ABC的三个顶点分别是A(﹣4,1),B(﹣2,1),C(﹣1,3),以x轴为对称轴,将△ABC作轴对称变换得到△A1B1C1,然后将△A1B1C1向右平移6个单位后得到△A2B2C2.(1)请在图中作出△A1B1C1;(2)直接写出经过上述两次变换后,对应点A2的坐标.【分析】(1)根据轴对称的性质分别作出点A,B,C关于x轴的对称点,再顺次连接可得.(2)根据平移变换的定义和性质分别作出三顶点向右平移6个单位后所得对应点,据此可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图知,对应点A2的坐标为(2,﹣1).【点评】本题主要考查作图﹣轴对称变换和平移变换,解题的关键是掌握轴对称变换和平移变换的定义与性质,并据此得出变换后的对应点.25.(8分)如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M.(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H.①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.【分析】(1)证明△ABD≌△CAE,可得∠ABD=∠CAE,再利用三角形外角的性质可以得出∠BME的度数;(2)①由(1)可得∠MBH=30°,BD=AE,根据BD=BM+DM即可获证;②作AF⊥BC于F,在△ABE中,利用面积法即可得出BH的长.【解答】解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,在△ABD和△CAE中,∴△ABD≌△CAE(SAS),∴∠ABD=∠CAE,∴∠BME=∠ABM+∠MAB=∠CAE+∠MAB=∠BAC=60°,(2)①∵BH⊥AE,∠BMH=60°,∴∠MBH=30°,∴BM=2MH,∵△ABD≌△CAE,∴BD=AE,∴2MH+DM=BM+DM=BD,∴2MH+DM=AE;②如图,作AF⊥BC于F,∵△ABC是等边三角形,BE=2EC=2,∴AB=3,BF=1.5,EF=0.5,∴AF=,AE=,∴△ABE面积=,解得BH=【点评】本题考查了等边三角形性质,全等三角形的性质和判定,三角形外角性质,含30度角的直角三角形性质的应用.涉及高的问题可以考虑面积法.26.(8分)甲、乙两位同学从学校出发沿同一条绿道到相距学校1500m的图书馆去看书,甲步行,乙骑自行车.图1中OD,AC分别表示甲、乙离开学校的路程y(m)与甲行走的时间x(min)之间的函数图象(1)求线段AC所在直线的函数表达式;(2)设d(m)表示甲、乙两人之间的路程,在图2中补全d关于x的函数图象;(标注必要的数据)(3)当x在什么范围时,甲、乙两人之间的路程至少为180m.【分析】(1)根据待定系数法求解;(2)设甲出发x分钟后相遇,列方程,计算相遇时的时间,可补全图象;(3)分相遇前后两种可能列不等式求解.【解答】解:(1)设AC表达式为y=kx+b,把(6,0)、(21,25)代入得解得k=100,b=﹣600,所以AC所在直线的函数表达式y=100x﹣600;(2)设甲出发x分钟后两人相遇,则解得x=15,即甲出发15分钟后两人相遇,此时d=0,21分钟后乙到图书馆,甲距图书馆1500﹣60×21=240米,因此图象如下:(3)设甲出发x分钟甲、乙两人之间的路程至少为180m.①当乙没出发时,60x≥180,解得x≥3;当甲乙相遇前,即x≤15时60x﹣(100x﹣600)≥180解得x≤10.5,即3≤x≤10.5时甲、乙两人之间的路程至少为180m;③当甲乙相遇后,即x>15时100x﹣600﹣60x≥180,解得x≥19.5,即19.5≤x≤21时甲、乙两人之间的路程至少为180m;④乙到达终点后,1500﹣60x≥180,解得≤22;综上当3<x≤10.5或19.5≤x≤22分钟时甲、乙两人之间的路程至少为180m.【点评】本题考查一次函数,方程和不等式应用,确定数量关系或不等量关系是解答关键.。
2016-2017学年浙江省嘉兴市八年级(上)期末数学试卷一、选择题(每小题有4个选项,其中有且只有一个正确,请把正确选项的代码填入答题卷的相应空格,每小题3分,共30分)1.下列长度的三条线段能组成三角形的是()A.2cm,2cm,3cm B.1cm,2cm,3cm C.2cm,3cm,6cm D.5cm,15cm,8cm2.下列图案属于轴对称图形的是()A.B. C. D.3.若点A(﹣2,m)在函数y=﹣x的图象上,则m的值是()A.1 B.﹣1 C.D.﹣4.在△ABC中,AB=AC,∠BAC=50°,则∠C的度数为()A.75°B.65°C.55°D.50°5.若a<b,则下列各式中一定成立的是()A.a+1>b+1 B.a﹣1>b﹣1 C.﹣3a>﹣3b D.>6.小明向班级同学介绍自己家的位置,最恰当的表述是()A.在学校的东边B.在东南方向800米处C.距学校800米处 D.在学校东南方向800米处7.用一副三角板拼出如图所示的图形,则图中∠α的度数为()A.120°B.105°C.100° D.95°8.已知点P(a,2),Q(﹣1,b)关于x轴对称,则点(a,b)位于()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在△ABC中,∠ACB=90°,分别以点A,B为圆心,大于AB长为半径作弧,两弧交于点M,N,作直线MN分别交AB,AC于点D,E,连结CD,BE,下列结论错误的是()A.AD=CD B.BE>CD C.∠BEC=∠BDC D.BE平分∠CBD10.如图,直线y=x与直线y=2x﹣1相交于点B,过B作BA⊥y轴于点A,点A 关于点B的对称点为A1,过A1作A2A3∥y轴交直线l2于点A2,过A2作A2A3∥x 轴交直线l1于点A3,…,按这个方式操作,则线段A15A16的长为()A.20 B.128 C.192 D.256二、填空题(本题有10小题,每小题3分,共30分)11.如图,点P的坐标为.12.请写出“三个角都相等的三角形是等边三角形”的逆命题:.13.一元一次不等式2x+4>0的解为.14.若等腰三角形的边长分别为4和6,则它的周长为.15.如图,P是∠AOB的平分线上一点,PD⊥OA于点D,PE⊥OB于点E,若OD=8,OP=10,则PE=.16.一次函数y=﹣2x+3的图象不经过第象限.17.在△ABC中,AB=AC,AD⊥BC于点D,DE∥AB交AC于点E,若∠ADE=25°,则∠BAC的度数为.18.甲骑自行车,乙乘公交车,从同一地点出发沿相同路线前往某校参加绘画比赛,图中l甲、l乙分别表示甲、乙两人前往目的地所行使的路程s(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.19.当三角形中有一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中β称为“特征角”,若一个“特征三角形”是锐角三角形,则其“特征角”β的大小范围是.20.如图,在长方形ABCD中,AB=6,BC=8,E为AB上一点,将△CBE沿CE翻折至△CFE,EF,CF分别与AD交于点G、H,若EG=GH,则AE的长为.三、解答题(第21-24题,每题6分,第25、26题,每题8分,共40分)21.已知函数y=﹣2x+b,当x=1时,y=2.求(1)求b的值;(2)当y=7时,自变量x的值.22.解一元一次不等式组.23.已知:如图,AP=DP,∠A=∠D.(1)求证:△ABP≌△DCP.(2)求证:∠1=∠2.24.小聪计划购买铅笔和钢笔共30支,且费用不超过100元,已知每支铅笔2元,每支钢笔5元,设购买铅笔x支.(1)用含x的表达式表示上述问题中的数量关系(写出一个即可).(2)求小聪最多能买几支钢笔?25.如图,直线y=﹣x+3与坐标轴分别交于点A、B.(1)点C在x轴上,并使得△ABC是等腰三角形,请用直尺和圆规作出所有满足条件的点C.(保留作图痕迹)(2)求(1)中作出的点C的坐标.26.如图,已知线段AB=2,点P是线段AB外的一个动点,且PA=1,以PA,PB 为腰向外作等腰直角三角形PAD和等腰直角三角形PBC,连结AC,BD.(1)求AD的长.(2)求证:AC=BD;(3)直接写出线段AC长的最大值.2016-2017学年浙江省嘉兴市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题有4个选项,其中有且只有一个正确,请把正确选项的代码填入答题卷的相应空格,每小题3分,共30分)1.下列长度的三条线段能组成三角形的是()A.2cm,2cm,3cm B.1cm,2cm,3cm C.2cm,3cm,6cm D.5cm,15cm,8cm【考点】三角形三边关系.【分析】根据三角形三边关系定理判断即可.【解答】解:2+2>3,则2cm,2cm,3cm能组成三角形,A符合题意;1+2=3,则1cm,2cm,3cm不能组成三角形,B不合题意;2+3<6,则2cm,3cm,6cm不能组成三角形,C不合题意;5+8<15,则5cm,15cm,8cm不能组成三角形,D不合题意;故选:A.2.下列图案属于轴对称图形的是()A.B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的定义,可得答案.【解答】解:是轴对称图形,故选:C.3.若点A(﹣2,m)在函数y=﹣x的图象上,则m的值是()A.1 B.﹣1 C.D.﹣【考点】一次函数图象上点的坐标特征.【分析】将x=﹣2代入一次函数解析式中求出y值,此题得解.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1.故选A.4.在△ABC中,AB=AC,∠BAC=50°,则∠C的度数为()A.75°B.65°C.55°D.50°【考点】等腰三角形的性质.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵AB=AC,∠BAC=50°,∴∠B=∠C==65°,故选B.5.若a<b,则下列各式中一定成立的是()A.a+1>b+1 B.a﹣1>b﹣1 C.﹣3a>﹣3b D.>【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都加1,不等号的方向不变,故A不符合题意;B、两边都减1,不等号的方向不变,故B不符合题意;C、两边都乘以﹣3,不等号的方向改变,故C符合题意;D、两边都除以2,不等号的方向不变,故D不符合题意;故选:C.6.小明向班级同学介绍自己家的位置,最恰当的表述是()A.在学校的东边B.在东南方向800米处C.距学校800米处 D.在学校东南方向800米处【考点】坐标确定位置;方向角.【分析】根据方位的定义依次判断即可.【解答】解:A、错误.缺少距离.B、错误.缺少参照物.C、错误.缺少方向角.D、正确.有参照物、方向角、距离.故选D.7.用一副三角板拼出如图所示的图形,则图中∠α的度数为()A.120°B.105°C.100° D.95°【考点】角的计算.【分析】先根据直角三角形的性质得出∠BAE及∠E的度数,再由三角形内角和定理及对顶角的性质即可得出结论.【解答】解:∵图中是一副直角三角板,∴∠BAE=45°,∠E=30°,∴∠AFE=180°﹣∠BAE﹣∠E=105°,∴∠α=105°.故选B.8.已知点P(a,2),Q(﹣1,b)关于x轴对称,则点(a,b)位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:由题意,得a=﹣1,b=﹣2.点(a,b)位于第三象限,故选:C.9.如图,在△ABC中,∠ACB=90°,分别以点A,B为圆心,大于AB长为半径作弧,两弧交于点M,N,作直线MN分别交AB,AC于点D,E,连结CD,BE,下列结论错误的是()A.AD=CD B.BE>CD C.∠BEC=∠BDC D.BE平分∠CBD【考点】线段垂直平分线的性质;直角三角形斜边上的中线.【分析】根据题意可知DE是AB的垂直平分线,由此即可得出△AEB是等腰三角形,由Rt△ABC中点D是AB的中点,可得△ACD和△BCD均为等腰三角形,据此作出判断.【解答】解:由题可得,DE是AB的垂直平分线,∴AE=BE,AD=BD,故A选项正确;∵Rt△ABC中,点D是AB的中点,∴CD=AD,∵DE⊥AB,∴Rt△ADE中,AE>AD,∴BE>CD,故B选项正确;∵∠BEC是等腰△ABE的外角,∴∠BEC=2∠A,∵∠BDC是等腰△ACD的外角,∴∠BDC=2∠A,∴∠BEC=∠BDC,故C选项正确;∵当∠A=30°时,∠ABE=30°=∠CBE,∴当∠A=30°时,BE平分∠ABC,而∠A不一定为30°,∴BE不一定平分∠CBD,故D选项错误.故选:D.10.如图,直线y=x与直线y=2x﹣1相交于点B,过B作BA⊥y轴于点A,点A 关于点B的对称点为A1,过A1作A2A3∥y轴交直线l2于点A2,过A2作A2A3∥x 轴交直线l1于点A3,…,按这个方式操作,则线段A15A16的长为()A.20 B.128 C.192 D.256【考点】一次函数图象上点的坐标特征;规律型:数字的变化类.【分析】联立两直线解析式成方程组,解方程组求出点B的坐标,再利用一次函数图象上点的坐标特征求出部分点A n的坐标,利用两点间的距离公式求出部分线段A2n﹣1A2n的长度,根据线段长度的变化找出变化规律“A2n﹣1A2n=2n﹣1(n≥2且n为正整数)”,依此规律即可求出线段A15A16的长.【解答】解:联立两直线解析式成方程组,,解得:,∴直线y=x与直线y=2x﹣1交点B(1,1),∴点A(0,1),点A1(2,1).∵过A1作A2A3∥y轴交直线l2于点A2,过A2作A2A3∥x轴交直线l1于点A3,…,∴点A2(2,3),点A3(3,3),点A4(3,5),点A5(5,5),点A6(5,9),点A7(9,9),点A8(9,17),∴A3A4=2,A5A6=4,A7A8=8,A2n=2n﹣1(n≥2且n为正整数),∴A2n﹣1∴A15A16=27=128.故选B.二、填空题(本题有10小题,每小题3分,共30分)11.如图,点P的坐标为(1,2).【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点的坐标为(1,2),故答案为:(1,2).12.请写出“三个角都相等的三角形是等边三角形”的逆命题:等边三角形的三个角都相等.【考点】命题与定理.【分析】把原命题“三个角都相等的三角形是等边三角形”的题设与结论进行交换即可.【解答】解:“三个角都相等的三角形是等边三角形”的逆命题为“等边三角形的三个角都相等”.故答案为等边三角形的三个角都相等.13.一元一次不等式2x+4>0的解为x>﹣2.【考点】解一元一次不等式.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:∵2x>﹣4,∴x>﹣2,故答案为:x>﹣2.14.若等腰三角形的边长分别为4和6,则它的周长为16或14.【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为:16或14.15.如图,P是∠AOB的平分线上一点,PD⊥OA于点D,PE⊥OB于点E,若OD=8,OP=10,则PE=6.【考点】角平分线的性质.【分析】根据角平分线的性质和勾股定理即可得到结论.【解答】解:∵P是∠AOB的平分线上一点,PD⊥OA于点D,PE⊥OB于点E,∴PD=PE,∵OD=8,OP=10,∴PD=PE=6,故答案为:6.16.一次函数y=﹣2x+3的图象不经过第三象限.【考点】一次函数图象与系数的关系.【分析】由于k=﹣2<0,b=3>0,根据一次函数图象与系数的关系得到一次函数y=﹣2x+3的图象经过第二、四象限,与y轴的交点在x轴上方,即还要过第一象限.【解答】解:∵k=﹣2<0,∴一次函数y=﹣2x+3的图象经过第二、四象限,∵b=3>0,∴一次函数y=﹣2x+3的图象与y轴的交点在x轴上方,∴一次函数y=﹣2x+3的图象经过第一、二、四象限,即一次函数y=﹣2x+3的图象不经过第三象限.故答案为三.17.在△ABC中,AB=AC,AD⊥BC于点D,DE∥AB交AC于点E,若∠ADE=25°,则∠BAC的度数为50°.【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质得到∠ADE=∠BAD=25°,根据等腰三角形的性质即可得到结论.【解答】解:∵DE∥AB,∴∠ADE=∠BAD=25°,∵AB=AC,AD⊥BC,∴∠BAD=∠DAC,∴∠BAC=50°,故答案为:50°.18.甲骑自行车,乙乘公交车,从同一地点出发沿相同路线前往某校参加绘画比赛,图中l甲、l乙分别表示甲、乙两人前往目的地所行使的路程s(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶0.3千米.【考点】函数的图象.【分析】分别根据甲、乙的图象计算出各自的速度即可求出每分钟乙比甲多行驶的路程.【解答】解:由甲的图象可知甲的速度为:10÷50=0.2千米/分,由乙的图象可知乙的速度为:10÷(30﹣10)=0.5千米/分,所以每分钟乙比甲多行驶的路程是0.3千米.故答案为:0.3.19.当三角形中有一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中β称为“特征角”,若一个“特征三角形”是锐角三角形,则其“特征角”β的大小范围是30°<β<45°.【考点】三角形内角和定理.【分析】根据已知条件得到不等式60°<2β<90°,于是得到结论.【解答】解:∵若一个“特征三角形”是锐角三角形,α=2β,∴60°<α<90°,即60°<2β<90°,∴30°<β<45°,故答案为:30°<β<45°.20.如图,在长方形ABCD中,AB=6,BC=8,E为AB上一点,将△CBE沿CE翻折至△CFE,EF,CF分别与AD交于点G、H,若EG=GH,则AE的长为 1.2.【考点】翻折变换(折叠问题);矩形的性质.【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF,根据全等三角形的性质得到FH=AE,GF=AG,得到AH=BE=EF,设AE=x,则AH=BE=EF=6﹣x,根据勾股定理即可得到结论.【解答】解:∵将△CBE沿CE翻折至△CFE,∴∠F=∠B=∠A=90°,BE=EF,在△AGE与△FGH中,,∴△AGE≌△FGH,∴FH=AE,GF=AG,∴AH=BE=EF,设AE=x,则AH=BE=EF=6﹣x,∴DH=x+2,CH=8﹣x,∵CD2+DH2=CH2,∴62+(2+x)2=(8﹣x)2,∴x=,∴AE=1.2,故答案为:1.2.三、解答题(第21-24题,每题6分,第25、26题,每题8分,共40分)21.已知函数y=﹣2x+b,当x=1时,y=2.求(1)求b的值;(2)当y=7时,自变量x的值.【考点】待定系数法求一次函数解析式.【分析】(1)把当x=1时,y=2代入即可算出b的值;(2)把y=﹣4代入解析式即可算出x的值.【解答】解:(1)把x=1时,y=2代入y=﹣2x+b,得2=﹣2×1+b,解得b=4;(2)把y=7代入y=﹣2x+4得,7=﹣2x+4,解得x=﹣.22.解一元一次不等式组.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.【解答】解:,解①得x≥﹣3,解②得x<2.则不等式组的解集是﹣3≤x<2.23.已知:如图,AP=DP,∠A=∠D.(1)求证:△ABP≌△DCP.(2)求证:∠1=∠2.【考点】全等三角形的判定与性质.【分析】(1)根据AAS即可判断.(2)利用全等三角形的性质以及等边对等角即可证明.【解答】证明:(1)在△ABP和△DCP中,,∴△ABP≌△DCP(AAS).(2)∵△ABP≌△DCP,∴BP=PC,∴∠1=∠224.小聪计划购买铅笔和钢笔共30支,且费用不超过100元,已知每支铅笔2元,每支钢笔5元,设购买铅笔x支.(1)用含x的表达式表示上述问题中的数量关系(写出一个即可).(2)求小聪最多能买几支钢笔?【考点】一元一次不等式的应用.【分析】(1)先表示出钢笔的支数,然后依据总费用不超过100元可列出不等式;(2)接下来,解不等式可求得铅笔的取值范围,然后依据钢笔支数=30﹣x可得到答案.【解答】解:(1)购买铅笔x支,钢笔为(30﹣x)支.根据题意得:2x+5(30﹣x)≤100.(2)由2x+5(30﹣x)≤100,解得x≥16.所以小聪至少要购买17铅笔,即小聪最多能买13支钢笔.25.如图,直线y=﹣x+3与坐标轴分别交于点A、B.(1)点C在x轴上,并使得△ABC是等腰三角形,请用直尺和圆规作出所有满足条件的点C.(保留作图痕迹)(2)求(1)中作出的点C的坐标.【考点】一次函数图象上点的坐标特征;等腰三角形的判定.【分析】(1)根据等腰三角形两边相等画出点C;(2)运用分类讨论的数学思想,以AB为腰或底两种情况来分类解析,逐一判断,即可解决问题.【解答】解:(1)①以A为圆心,以AB为半径画弧,交x轴于C1、C4;②以B为圆心,以AB为半径画弧,交x轴于C2;③作AB的中垂线,交x轴于C3,连接BC3,此时AC3=BC3;所以符合条件的点C一共有4个;(2)当x=0时,y=3,∴OB=3,当y=0时,x=4,∴OA=4,由勾股定理得:AB==5,①当AB=AC1=AC4=5时,此时C1(﹣1,0)、C4(9,0),②当AC3=BC3时,则AD=2.5,cos∠BAO=,∴,∴AC3=,∴OC3=4﹣=,∴C3(,0),③当AB=AC2=5时,此时C2与A关于y轴对称,∴C2(﹣4,0),综上所述,点C的坐标是:(﹣1,0)或(﹣4,0)或(,0)或(9,0).26.如图,已知线段AB=2,点P是线段AB外的一个动点,且PA=1,以PA,PB 为腰向外作等腰直角三角形PAD和等腰直角三角形PBC,连结AC,BD.(1)求AD的长.(2)求证:AC=BD;(3)直接写出线段AC长的最大值.【考点】三角形综合题.【分析】(1)根据等腰直角三角形的性质、勾股定理计算即可;(2)证明∠DPB=∠APC,得到△DPB≌△APC,根据全等三角形的性质证明;(3)根据题意、结合图形求出BD的最大值,得到AC的最大值.【解答】解:(1)∵△PAD为等腰直角三角形,PA=1,∴AD==;(2)∵∠DPA=∠CPB=90°,∴∠DPB=∠APC,在△DPB和△APC中,,∴△DPB≌△APC,∴AC=BD,(3)由题意得,当点P在线段BA的延长线上时,BD有最大值为AD+AB=+2,∵AC=BD,∴AC的最大值为+2.2017年5月6日。