三角形培优训练100题集锦
- 格式:doc
- 大小:3.79 MB
- 文档页数:17
八年级下册第一章《直角三角形》培优习题一、知识要点填空:1、直角三角形的性质:(1)直角三角形的两个锐角_________(2)直角三角形斜边上的中线等于斜边的_________;(3)直角三角形30°角所对的直角边是______的一半;(4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°.2、直角三角形的判定方法:(1)有一个角是直角的三角形是直角三角形;(2)有两个角______的三角形是直角三角形;(3)如果一条边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、等腰直角三角形是特殊的直角三角形,它的两个底角都是_____,且两条直角边相等。
等腰直角三角形具有等腰三角形和直角三角形的所有性质,是很常见的特殊三角形。
二、练习题1、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则则∠1+∠2等于__________.2、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是()A. B.C. D.3、如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE4、如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能的是()A.3.5 B.4.2 C.5.8 D.75、如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是() A.3 B.2 C.3 D.16、已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为___________________.7、四边形ABCD 由一个∠ACB=30°的Rt △ABC 与等腰Rt △ACD 拼成,E 为斜边AC 的中点,则∠BDE=__________.8、已知:在△ABC 中,∠BAC=90°,AD ⊥BC 于点D ,∠ABC 的平分线BE 交AD 于点F ,试说明AE=AF.9、在△ABC 中,∠A=90°,AB=AC ,∠ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点E .求证:CE =21BD10、一根长2a 的木棍(AB ),斜靠在与地面(OM )垂直的墙(ON )上,设木棍的中点为P .若木棍A 端沿墙下滑,且B 端沿地面向右滑行.木棍滑动的过程中,点P 到点0的距离不变化,在木棍滑动的过程中,△AOB 的面积最大为______________.11、如图在Rt △ABC 中,∠ACB=90°,CD 、CE 分别是斜边AB 边上的高与中线,CF 是∠ACB 的平分线,则∠1与∠2的大小关系是( )A .∠1>∠2 B. ∠1=∠2 C. ∠1<∠2 D.不能确定12、如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个13、如图,在直角三角形ABC 中,CM 是斜边AB 上的中线,MN ⊥AB ,∠ACB 的平分线CN 交MN 于N ,求证:CM=MN .14、如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1D 1C 1;在等腰直角三角形OA 1B 1中作内接正方形A 2B 2D 2C 2;在等腰直角三角形OA 2B 2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A nB n D nC n的边长是_______________.15、下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有________个,图3中以格点为顶点的等腰直角三角形共有_________个,图4中以格点为顶点的等腰直角三角形共有_________个.16、如图,在△ABC中,∠B=90°,∠BAC=78°,过C作CF∥AB,连接AF于BC相交于G,若GF=2AC,则∠BAG=17、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①③ C.①③④D.②③④18、如图,已知OA=a,P是射线ON上一动点(即P可以在射线ON上运动),∠AON=60°,填空:(1)当OP=_________时,△AOP为等边三角形;(2)当OP=__________时,△AOP为直角三角形;(3)当OP满足___________时,△AOP为钝角三角形.GF CB A。
全等三角形培优竞赛训练题全等三角形是初中几何中的重要内容,它不仅是证明线段和角相等的重要工具,也是解决许多几何问题的基础。
在培优竞赛中,全等三角形的题目往往具有较高的难度和综合性,需要我们熟练掌握全等三角形的判定定理和性质,并具备灵活运用知识的能力。
下面我们就来一起探讨一些全等三角形培优竞赛训练题。
一、基础巩固1、已知:如图 1,AB = AC,AD = AE,求证:∠B =∠C。
证明:在△ABD 和△ACE 中,AB = AC,∠A =∠A,AD = AE,所以△ABD≌△ACE(SAS)所以∠B =∠C2、如图 2,点 D 在 AB 上,点 E 在 AC 上,AB = AC,AD = AE。
求证:BE = CD。
证明:在△ABE 和△ACD 中,AB = AC,∠A =∠A,AE = AD,所以△ABE≌△ACD(SAS)所以 BE = CD二、能力提升1、已知:如图 3,在△ABC 中,∠ACB = 90°,AC = BC,AE 是 BC 边上的中线,过 C 作 CF⊥AE 于 F,过 B 作 BD⊥BC 交 CF 的延长线于 D。
求证:(1)AE = CD;(2)若 BD = 5cm,求 AC 的长。
证明:(1)因为 CF⊥AE,所以∠DCB +∠DBC = 90°,又因为∠ACB = 90°,所以∠EAC +∠AEC = 90°,而∠AEC =∠DCB(对顶角相等),所以∠EAC =∠DBC。
在△CBD 和△CAE 中,∠DBC =∠EAC,BC = AC,∠DCB =∠ECA = 90°,所以△CBD≌△CAE(ASA)所以 AE = CD(2)因为△CBD≌△CAE,所以 BD = CE。
因为 AE 是 BC 边上的中线,所以 CE = 1/2BC。
又因为 AC = BC,BD = 5cm,所以 AC = 10cm2、如图 4,在△ABC 中,∠B = 60°,△ABC 的角平分线 AD、CE 相交于点 O。
周六培优训练1——三角形1、已知a、b、c是ΔABC的三边长,化简|a+b-c|-|a-b-c|2、如图、已知直线a和直线外同侧两点M、N。
请在直线a上找一点P,使|PM-PN|的值最大,并简要说明理由。
3、如图,∠A=50°∠ABC与∠ACB的角平分线交于点O,求∠O的度数。
\4、如图,∠A=50°∠ABC与∠ACB的外角平分线交于点P,求∠P的度数。
^5、如图,ΔABC的中线AD与CE交于点F,ΔABC的面积为100cm2,求ΔAEF的面积。
)6、不等边ΔABC的两条高分别为4和12,若第三条高的长度也是整数,试求它的长。
aMNBB C~10、“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化为简单的问题,把抽象的问题转化为具体的问题。
(1) 根据已经学过的知识求知道星形(图1)中∠A+∠B+∠C+∠D+∠E= ,若对图1中星形截去一个角,如图2,请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数。
(需要写出解题过程)(2)若再对图2中的角进一步截去,你能由题1中所得的方法或规律,猜想出图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N 的度数吗(只要写出结论,不需要写出解题过程。
)|1、①求下图各角度数之和。
②如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=__________.]3、如图△ABC 中, ∠BAD=∠CBE=∠ACF, ∠ABC=50°,∠ACB=62°,求∠DFE 的大小。
EDCBA FMK N7、三角形的最大角与最小角之比是4:1,则最小内角的取值范围是多少)9.如图,在△ABC 中,∠ABC = ∠ACB ,∠A = 40°,P 是△ABC 内一点,且∠1 = ∠2.则∠BPC =________。
第七章 三角形7.已知a,b,c 是△ABC 的三边 (1)化简|a+b-c |+|b-a-c |-|c+b-a | (2)|a-b+c |+|b-c+a |-|a-b-c |8.如图,P 是△ABC 内一点,试证明PA+PB+PC>1/2(AB+BC=AC)9.在△ABC 中,∠A=50°,点D,E 分别在AB,AC 上,EF 平分∠CED,DF 平分∠BDE,则∠F='11.在△ABC 中,AB=AC,AC 边上的中线BD 把△ABC 的周长分为12CM 和15CM 两部求三角形的各边长12.五种基本图形(必会):写出∠BOC 与∠A 之间的数量关系。
等边三角形培优专项练习题双基训练1. 如图14-45,在等边ΔABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是。
2.如图14-46,ΔABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EFAB,AE=1,则AD= ,ΔEFC的周长= 。
3.如图14-47,在等边ΔABC中,AE=CD,BG⊥AD,求证:BP=2PG。
纵向应用1.如图14-48,已知等边ΔABC的ABC、ACB的平分线交于O点,若BC上的点E、F分别在OB、OC垂直平分线上,试说明EF与AB的关系,并加以证明。
2. 如图14-49,C是线段AB上的一点,ΔACD和ΔBCE是两个等边三角形,点D、E在AB同旁,AE 交CD于点G,BD交CE于点H,求证:GH∥AB。
3.如图14-50,已知ABC是等边三角形,E是AC延长线上一点,选择一点D使得ΔCDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:ΔCMN是等边三角形。
4.如图14-51,C是线段AB上一点,分别以BC、AC为边作等边ΔACD和ΔCBE,M为AE的中点,N为DB的中点,求证:ΔCMN为等边三角形。
5. 如图14-52,在四边形ABCD中,∠A+∠B=1200,AD=BC,以CD为边向形外作等边ΔCDE,连结AE,求证:ΔABE为等边三角形。
6. 如图14-53,已知ΔABC是等边三角形,D为AC上一点,∠1=∠2,BD=CE,求证:ΔADE是等边三角形。
7. 如图14-54,设在四边形ABCD中,∠A+∠B=1200,AD=BC,M、N、P分别是AC、BD、CD的中点。
求证:ΔMNP是等边三角形。
8. 如图14-55,在等腰梯形ABCD中,AB∥CD,AB>CD,AD=BC,对角线AC、BD交于点O,∠AOB=600,且E、F分别是OD、OA的中点,M是BC的中点,求证:ΔEFM是等边三角形。
9. 如图14-56,在ABCD中,ΔABE和ΔBCF都是等边三角形,求证:ΔDEF是等边三角形。
相似三角形专题练习(培优)附答案一、基础知识(不局限于此)(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
4.相似三角形的性质● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义:连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。
6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。
如求河的宽度、求建筑物的高度等。
第一章:解直角三角形培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.如图,某地修建的一座建筑物的截面图的高BC =5m ,坡面AB 的坡度为1:3,则AB 的长度为( ) A .10mB .103mC .5mD .53m2.如图,某数学兴趣小组测量一棵树的高度,在点A 处测得树顶C 的仰角为045,在点B 处测得树顶C 的仰角为060,且A ,B ,D 三点在同一直线上,若m AB 16=,则这棵树CD 的高度是( ) A .()m 338-B .()m 338+C .()m 336-D .()m 336+3.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则cos ∠ADC 的值为( )A .13132 B .13133 C .32 D .35 4.如图,已知△ABC 内接于半径为1的⊙O ,∠BAC=θ(θ是锐角),则△ABC 的面积的最大值为( ) A .cos θ(1+cos θ) B .cos θ(1+sin θ) C .sin θ(1+sin θ) D .sin θ(1+cos θ)5.在中,、均为锐角,且,则是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 6.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为( )(精确到1m .参考数据:,,,)A .28mB .34mC .37mD .46m7.如图,AB 是半圆的直径,ABC ∠的平分线分别交弦AC 和半圆于E 和D ,若2BE DE =,4AB =,则AE 长为( ) A .2B .21+C .6D .4338.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为( )米A .5250600-B .2503600-C .3350350+D .35009.如图,等腰△ABC 的面积为2,AB=AC ,BC=2.作AE ∥BC 且AE=BC.点P 是线段AB 上一动点,连接PE ,过点E 作PE 的垂线交BC 的延长线于点F ,M 是线段EF 的中点.那么,当点P 从A 点运动到B 点时,点M 的运动路径长为( ) A .3B .3C .32D .410.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论:①∠BAE =∠EAF ;②射线FE 是∠AFC 的角平分线;③CF =14CD ;④AF =AB +CF .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.如图,在矩形ABCD 中,22==BC AB ,将线段AB 绕点A 按逆时针方向旋转,使得点B 落在边CD 上的点B '处,线段AB 扫过的面积为12.某校数学兴趣小组开展无人机测旗杆的活动:已知无人机的飞行高度为30m ,当无人机飞行至A 处时,观测旗杆顶部的俯角为30°,继续飞行20m 到达B 处,测得旗杆顶部的俯角为60°,则旗杆的高度约为 m .(参考数据:732.13≈,结果按四舍五八保留一位小数)13.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行m 30到达斜坡的底部点C 处,然后沿斜坡前行m 20到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为030,已知斜坡的斜面坡度3:1=i ,且点A ,B ,C ,D ,在同一平面内,小明同学测得古塔的高度是 .14.如图,在△ABC 中,AC =6,BC =8,点D 、E 分别在AC 、BC 上,点F 在△ABC 内.若四边形CDFE 是边长为2的正方形,则cos ∠ABF =15.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在Rt △ABC 中,∠C=90°,若Rt △ABC 是“好玩三角形”,则tanA=16.如图.点E 在正方形ABCD 的边BC 上,2BE=3CE ,过点D 作AE 的垂线交AB 于F ,点G 为垂足,若FG=3,则EG 的长为三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)计算下列各式:(1)000030cos 45cos 60tan 30cos ⋅- (2)0002030sin 30tan 2345sin 260cos -+-18.(本题8分)如图,在△ABC 中,∠C=90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF .(1)求证:∠1=∠F .(2)若55sin =B ,52=EF ,求CD 的长.19(本题8分)如图,在Rt △ABC 中,∠ACB=90°,AC=BC=3,点D 在边AC 上,且AD=2CD ,DE ⊥AB ,垂足为点E ,联结CE ,求:(1)线段BE 的长;(2)求ECB ∠tan20.(本题10分)如图,某大楼的顶部竖有一块广告牌CD ,小明与同学们在山坡的坡脚A 处测得广告牌底部D 的仰角为53°,沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i =1:3,AB =10米,AE =21米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:2≈1.41,3≈1.73,sin53°≈54,cos53°≈53,tan53°≈34) (1)求点B 距水平地面AE 的高度;(2)求广告牌CD 的高度.(结果精确到0.1米)21.(本题10分)如图,“中国海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B 、C 两地相距120海里.(1)求出此时点A 到岛礁C 的距离; (2)若“中海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A ′时,测得点B 在A ′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)22.(本题12分)如图,抛物线y=﹣x 2+6x 与x 轴交于点O ,A ,顶点为B ,动点E 在抛物线对称轴上,点F 在对称轴右侧抛物线上,点C 在x 轴正半轴上,且OC EF //,连接OE ,CF 得四边形OCFE . (1)求B 点坐标;(2)当tan ∠EOC=34时,显然满足条件的四边形有两个,求出相应的点F 的坐标;(3)当0<tan ∠EOC <3时,对于每一个确定的tan ∠EOC 值,满足条件的四边形OCFE 有两个,当这两个四边形的面积之比为1:2时,求tan ∠EOC .23(本题12分).在△ABC 中,∠ABC=90°.(1)如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN ;(2)如图2,P 是边BC 上一点,∠BAP=∠C ,tan ∠PAC =552 ,求C tan 的值; (3)如图3,D 是边CA 延长线上一点,AE=AB ,∠DEB=90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值.。
相似三角形分类提高训练一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。
三角形培优练习题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
已知:AB=CD ,∠A=∠D ,求证:∠B=∠C78.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-ABCDBA BC DEF 2 1ADBCA B CD ABACDF2 1 E9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12如图:AE 、BC 交于点M ,F点在AM 上,BE∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
13已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F 。
求证:BE =CD .14在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
三角形培优训练100题集锦(一)【引言概述】三角形是数学中的一个重要几何概念,对于学生的数学培优训练具有重要意义。
本文整理了一份包含一百道三角形相关题目的训练集锦,旨在帮助学生系统地掌握三角形的性质、定理和计算方法,提高解题能力。
以下将从五个大点来阐述这份题集的内容。
【大点1:三角形基础知识】1. 三角形的定义及分类2. 三角形内角和的性质3. 三角形边长关系:三角不等式定理4. 三角形的周长和面积计算公式5. 三角形的特殊点:重心、垂心、外心、内心、费马点等【大点2:三角形的相似与全等】1. 相似三角形的性质2. 判定三角形相似的方法3. 三角形的全等的条件4. 利用相似三角形或全等三角形解题的方法5. 实际问题中的应用:测量、定位、相似比例等【大点3:三角形的角与线段关系】1. 角的平分线与垂直平分线的特点2. 三角形的角平分线定理3. 三垂线定理与垂心定理4. 外角与内角的关系5. 角与弧的关系及其应用:圆周角、弦切角、弧度制等【大点4:三角形的特殊性质与定理】1. 等腰三角形的性质与判定2. 直角三角形的性质与判定3. 正三角形的性质及计算4. 等边三角形的性质及计算5. 锐角三角形和钝角三角形的性质及判定【大点5:三角形的应用问题】1. 三角形的角度测量与边长测量2. 三角形在建筑工程中的应用:测量高度、角度与距离3. 三角形在地理学中的应用:测量地底深度、地图测量等4. 三角形在航空航天领域的应用:导航、角度计算等5. 三角形在日常生活中的应用:地理问题、旅行导航、地震角度计算等【总结】通过对本文中所整理的三角形培优训练100题集锦的学习,同学们将能够掌握三角形的基础知识,灵活运用三角形的相似与全等等性质和定理,熟练解决三角形的角与线段关系问题,理解各种特殊三角形的性质,并能够应用三角形的知识解决实际问题。
这将为学生的数学学习和思维能力的提高提供坚实的基础。
ED F CB A三角形培优训练专题【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
【常见辅助线的作法有以下几种】1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。
2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。
3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。
4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。
5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。
1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围.2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.ED CBA4、以ABC∆的两边AB、AC为腰分别向外作等腰Rt ABD∆和等腰Rt ACE∆,90,BAD CAE∠=∠=︒连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当ABC∆为直角三角形时,探究:AM与DE的位置关系和数量关系;EDCBADCBAP21CBAPQCBA(2)将图①中的等腰R tABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.5、如图,ABC ∆中,A B=2AC,AD 平分BAC ∠,且AD=BD,求证:CD ⊥AC.6、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA,CD 过点E ,求证;A B=AD+BC 。
7、如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
求证:B Q+AQ =AB+BP8、如图,在四边形A BCD 中,BC >B A,AD=CD ,BD 平分ABC ∠,求证:0180=∠+∠C A9、如图在△ABC 中,AB>A C,∠1=∠2,P 为AD 上任意一点,求证;AB-AC>PB-PC 10、11、 AD 为△A BC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△E BC 周长记为B P .求证B P >A P .12、已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM.CDBADCB(1)如图1,如果点D 、E 分别在边AC 、A B上,那么BM 、DM 的数量关系与位置关系是; (2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.13、如图,已知在△ABC 中,∠B =60°,△ABC 的角平分线AD,CE相交于点O,求证:OE=OD14、如图,△ABC 中,AD 平分∠BA C,DG ⊥BC 且平分BC,DE ⊥AB 于E,DF ⊥AC 于F.(1)说明BE=CF的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长. 15、如图①,OP 是∠M ON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB是直角,∠B =60°,A D、CE 分别是∠BA C、∠BC A的平分线,AD 、CE 相交于点F 。
请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△A BC中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
16、 正方形AB CD中,E 为BC 上的一点,F 为CD 上的一点,17、D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,D N分别交(1) 当MDN ∠绕点D 转动时,求证DE=D F。
(2) 若AB =2,求四边形DEC F的面积。
18、 如图,ABC ∆是边长为3的等边三角形,BDC ∆0120BDC ∠=,以D 为顶点做一个060角,使其两边分别交A AC 于点N,连接MN,求AMN ∆的周长。
19、已知四边形ABCD 中,AB AD ⊥,BC ⊥AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 它的两边分别交AD DC ,(或它们的延长线)于E F ,.当MBN ∠绕B 点旋转到AE CF =时(如图1),易证AE CF +当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3上述结论是否成立?若成立,请给予证明;若不成立,线段AE ,又有怎样的数量关系?请写出你的猜想,不需证明.E DGFC BAO P AM N E B C D F 图① 图②_ ADCB AEMMEABC20、已知:PA=2,P B=4,以AB 为一边作正方形A BC D,使P 、D 两点落在直线A B的两侧. (1)如图,当∠APB =45°时,求AB 及PD 的长;(2)当∠AP B变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.21、在等边ABC ∆的两边A B、AC 所在直线上分别有两点M 、N,D为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L的关系.图1 图2 图3(I)如图1,当点M 、N边AB 、AC 上,且D M=DN 时,BM 、NC 、MN 之间的数量关系是; 此时=LQ; (I I)如图2,点M、N 边AB 、AC 上,且当D M≠DN 时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;(III) 如图3,当M 、N分别在边AB 、CA 的延长线上时,若AN=x ,则Q=(用x 、L 表示).22、如图2-7-1,△ABC 和△DCE 均是等边三角形,B 、C 、E 三点共线,AE 交C D于G ,BD 交A C于F 。
求证:① AE =BD;② CF=CG . 23、如图2-7-2,在正方形ABC D中,M是AB 的中点,MN ⊥MD,B N平分∠CBE 。
求证:MD =MN 。
24、如图2-7-3,△ABC 中,∠ABC=2∠C,∠B AC的平分线交BC 于D 。
求证:AB +BD =AC25、如图2-7-4,△ABC 中,AC>AB,A D平分∠BAC ,P 为AD 上任一点,连结PB 、P C。
求证:PC-PB <AC-AB 。
26、如图2-7-5,从等腰Rt △ABC 的直角顶点C 向中线BD 作垂线,交BD 于F,交AB 于E,连结DE 。
求证:∠CDF =∠ADE 。
27、在△ABC 中,∠A CB=90°,AC=B C,直线MN 经过点C,且AD ⊥M N于D ,B E⊥MN 于E.(1)当直线MN 绕点C旋转到图1的位置时,求证: ①△ADC ≌△CEB ;②DE =A D+BE; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-B E;(3)当直线M N绕点C 旋转到图3的位置时,试问DE 、AD 、B E具有怎样的等量关系?请写出这个等量关系,并加以证明。
28、已知:△A BC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E在BC 上滑动,(点E不与B 、C 重合),斜边和∠ACM 的平分线CF 交于点F (1)如图(1)当点E 在BC 边中点位置时 1) 猜想AE 与E F满足的数量关系是。
2) 连结点E 与A B边得中点N,猜想B E和CF满足的数量关系是3) 请证明你的上述猜想(2)如图(2)当点E在BC 边得任意位置时:此时AE和EF有怎样的数量关系,并说明你的理由?29、已知AC平分∠MAN,∠MAN =120º,(1)在图(1)中,若∠AB C=∠A DC =90º,求证:AB+AD=AC 。
(2)在图(2)中,若∠MAN=120º,∠AB C+∠ADC =180º,则(1)中的结论还成立吗?若成立请你给出证明,若不成立请说明理由?30、如图1,在P 为ABC △中,点BC 边中点,直线a 绕顶点A 旋转,若点B P 、在直线a 的异侧,BM ⊥直线a 于点E图(1)NF A E图(2)FA图(1)CDBNMA图(2)CD BNMABAODCEM,CN⊥直线a于点N,连接.PM PN、(1)延长MP交CN于点E(如图2),①求证:BPM CPE△≌△;②求证:PM PN=;(2)若直线a绕点A旋转到图3的位置时,点B P、在直线a的同侧,其它条件不变.此时PM PN=还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断PM PN=还成立吗?不必说明理由.31、如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE GC,.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论.(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.32、已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h。
“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证33、在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于G,求证:AE=BG.34、如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.(1)求∠AEB的大小;(2)若ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.35、如图,图1等腰ABC∆与等腰DEC∆共点于C,且ECDBCA∠=∠,连结BE、AD,若ACBC=、DCEC=.⑴求证:ADBE=;⑵若将等腰DEC∆绕点C旋转至图2、3、4情况时,其余条件不变,BE与AD还相等吗?为什么? (请你用图2加以证明)36、如图1,ABCRt∆中,ACAB=,点D、E是线段AC上两动点,且ECAD=,BDAP⊥于P,交BC于点Q,直线BD交直线QE于F.⑴判断DEF∆的形状,并说明理由.⑵如图2,若点D、E是直线AC上两动点,其他条件不变,判断DEF∆的形状,并说明理由.37、如图1,在等腰直角ABC∆中,︒=∠90ACB,O为题图1 题图2 题图3AB CDEFGAEDCAPBMAFEDPCBPDM CBF EC BOD AEFHG EDCBAABCDEAB 的中点,P 为AB 上一动点,D 在BC 上,且满足PD PC =,AB DE ⊥于E . ⑴ 求证:DE PO =⑵ 如图2,点D 在BC 的延长线上,其他条件不变,⑴中的结论是否成立? ⑶ 在图3中画出当点P 在BA 延长线上的情况,并给出相应的证明; ⑷ 还有什么样的情况?在图4中画出图形,给出证明.38、已知,如下图,∠B AC =∠BCA,BD=CD,CE =A B,求证:AE =2AD 。