201509-标准差与方差
- 格式:pptx
- 大小:572.28 KB
- 文档页数:14
方差和标准差——知识讲解责编:杜少波【学习目标】1. 了解方差和标准差的概念,会计算简单数据的方差,体会它们刻画数据离散程度的意义;2. 知道可以通过样本的方差来推断总体的方差.能解释统计结果,根据结果作出简单的判断和预测;3. 能综合运用统计知识解决一些简单的实际问题. 【要点梳理】要点一、方差和标准差 1.方差在一组数据12,,n x x x …,中,设它们的平均数是x ,各数据与平均数的差的平方的平均数()[]222212)(...)(1x x x x x x nS n -++-+-=叫做这组数据的方差. 方差越大,说明数据的波动越大,越不稳定. 要点诠释:(1)方差反映的是一组数据偏离平均值的情况. 方差越大,稳定性越差;反之,则稳定性越好.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变. (3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k 倍.2.标准差一般地,一组数据的方差的算术平方根称为这组数据的标准差. 要点诠释:(1)标准差的数量单位与原数据一致.(2)一组数据的方差或标准差越小,这组数据的离散程度越小,这组数据就越稳定. 要点二、方差和标准差的联系与区别联系:方差和标准差都是用来衡量一组数据偏离平均数的大小(即波动大小)的指标,常用来比较两组数据的波动情况.区别:方差是用“先平均,再求差,然后平方,最后再平均”的方法得到的结果,主要反映整组数据的波动情况,是反映一组数据与其平均值离散程度的一个重要指标,每个数据的变化都将影响方差的结果,是一个对整组数据波动情况更敏感的指标.在实际使用时,往往计算一组数据的方差,来衡量一组数据的波动大小. 方差的单位是原数据单位的平方,而标准差的单位与原数据单位相同.【典型例题】类型一、方差和标准差1. 一组数据-2,-1,0,1,2的方差是( )A .1B .2C .3D .4【思路点拨】按照“先平均,再求差,然后平方,最后再平均”的方法,利用求方差的公式:()[]222212)(...)(1x x x x x x nS n -++-+-=计算. 【答案】B【解析】该组数据的平均数是0,所以215s =2222(2)(1)12⎡⎤-+-++⎣⎦=2. 【总结升华】此类题关键是掌握求方差的步骤,记准求方差的公式.举一反三:【变式】学校篮球队五名队员的年龄分别为1715171615,,,,,其方差为0.8,则3年后这五名队员年龄的方差为______. 【答案】0.8.2.已知某样本的标准差是2,则这个样本的方差是( ) A.1 B.2 C.2 D.4【思路点拨】根据标准差的概念计算.标准差是方差的算术平方根. 【答案】D ;【解析】解:由于方差的算术平方根就是标准差,所以样本的方差=22=4.故选D .【总结升华】正确理解标准差的概念,是解决本题的关键.标准差是方差的算术平方根. 举一反三:【变式】下列说法:其中正确的个数有( ) (1)方差越小,波动性越小,说明稳定性越好; (2)一组数据的众数只有一个;(3)数据2,2,3,2,2,5的众数为4; (4)一组数据的标准差一定是正数.A .0个B .1个C .2个D .4个 【答案】B.提示:(1)正确.类型二、方差和标准差的实际应用3.甲、乙两班举行汉字输入比赛,•参赛学生每分钟输入汉字的个数经统计计算后,填入下表:班级 参加人数 中位数 方差 平均字数 甲 55 149 191 135 乙55151110135分析此表得出如下结论:( )(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀) (3)甲班学生成绩的波动情况比乙班成绩波动大. A .(1)(2) B .(1)(2)(3) C .(2)(3) D .(1)(3) 【思路点拨】理清表格中所列数据代表的含义,以及数据差异而导致的不同. 【答案】B【解析】甲、乙两班学生的平均字数都是135个/分钟,所以平均水平相同;从中位数上看,乙班的151大于甲班的149,表明乙班优秀的人数多于甲班优秀的人数;从方差上看,甲班的方差大于乙班的方差,所以甲班学生成绩的波动情况比乙班成绩波动大.因此,(1)(2)(3)都正确,选B. 【总结升华】此类题关键是要能从表格中筛选出所需要的信息,理解每个数据所代表的含义. 举一反三: 【变式】(2015•崇左)甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是x 甲=85,x 乙=85,x 丙=85,x 丁=85,方差是2S 甲=3.8,2S 乙=2.3,2S 丙=6.2,2S 丁=5.2,则成绩最稳定的是( )A .甲B .乙C .丙D .丁 【答案】B.解:∵2S 甲=3.8,2S 乙=2.3,2S 丙=6.2,2S 丁=5.2,∴2S 乙<2S 甲<2S 丁<2S 丙, ∴成绩最稳定的是乙. 故选B .4.(2016春•商水县期末)甲、乙两种水稻试验田连续5年的平均单位面积产量如下:(单位:吨/公顷)品种 第1年 第2年 第3年 第4年 第5 年 甲 9.8 9.9 10.1 10 10.2 乙9.410.310.89.79.8(1)哪种水稻的平均单位面积产量比较高? (2)哪种水稻的产量比较稳定.【思路点拨】首先求得平均产量,然后求得方差,比较方差,越小越稳定. 【答案与解析】 解:(1)()19.89.910.11010.2105=++++=x 甲, ()19.410.310.89.7105=++++9.8=x 乙, 所以甲、乙两种水稻的平均产量一样高; (2)甲中水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02, 乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244. ∴0.02<0.244,∴产量比较稳定的水稻品种是甲.【总结升华】此题考查了方差,用到的知识点是方差和平均数的计算公式,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.举一反三:【变式】为了比较甲、乙两种水稻的长势,农技人员从两块试验田中,分别随机抽取5棵植株,将测得的苗高数据绘制成下图:请你根据统计图所提供的数据,计算平均数和方差,并比较两种水稻的长势.【答案】5.85.2x x==乙甲∵,,∴甲种水稻比乙种水稻长得更高一些.222.160.56S S==乙甲∵,,∴乙种水稻比甲种水稻长得更整齐一些.5.(2015春•安达市期末)甲、乙两台机床同时加工直径为10mm的同种规格零件,为了检查两台机床加工零件的稳定性,质检员从两台机床的产品中各抽取5件进行检测,结果如下(单位:mm):甲10 9.8 10 10.2 10乙9.9 10 10 10.1 10(1)分别求出这两台机床所加工零件直径的平均数和方差;(2)根据所学的统计知识,你认为哪一台机床生产零件的稳定性更好一些,说明理由.【思路点拨】(1)根据所给的两组数据,分布求出两组数据的平均数,再利用方差公式求两组数据的方差即可.(2)根据甲的方差大于乙的方差,即可得出乙机床生产的零件稳定性更好一些.【答案与解析】解:(1)∵甲机床所加工零件直径的平均数是:(10+9.8+10+10.2+10)÷5=10,乙机床所加工零件直径的平均数是:(9.9+10+10+10.1+10)÷5=10,植株编号 1 2 3 4 5甲种苗高7 5 4 5 8乙种苗高 6 4 5 6 5∴甲机床所加工零件直径的方差=[(10﹣10)2+(9.8﹣10)2+(10﹣10)2+(10.2﹣10)2+(10﹣10)2]=0.013,乙机床所加工零件直径的方差=[(9.9﹣10)2+(10﹣10)2+(10﹣10)2+(10.1﹣10)2+(10﹣10)2]=0.004,(2)∵S 2甲>S 2乙,∴乙机床生产零件的稳定性更好一些.【总结升华】本题考查了平均数和方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大. 举一反三:【变式】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分)甲 95 82 88 81 93 79 84 78 乙8375808090859295(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. 【答案】解:1(9582888193798478)858x =+++++++=甲(分), 1(8375808090859295)858x =+++++++=乙(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知85x x ==甲乙分,所以22221[(9585)(8285)(7885)]35.58s =-+-++-=甲, 22221[(8385)(7585)(9585)]418s =-+-++-=乙.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x x =甲乙,22s s <乙甲,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得好成绩.。
标准差公式标准差也被称为标准偏差,或者实验标准差,公式如图。
简单来说,标准差是一组数据平均值分散程度的一种度量。
一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0, 5, 9, 14} 和{5, 6, 8, 9} 其平均值都是7 ,但第二个集合具有较小的标准差。
标准差可以当作不确定性的一种测量。
例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。
当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。
这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
标准差应用于投资上,可作为量度回报稳定性的指标。
标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。
相反,标准差数值越细,代表回报较为稳定,风险亦较小。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、7 5、65、55、45,B组的分数为73、72、71、69、68、67。
这两组的平均数都是70,但A组的标准差为17.07分,B组的标准差为2.37分(此数据时在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。
如是总体,标准差公式根号内除以n如是样本,标准差公式根号内除以(n-1)因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)公式意义所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一),再把所得值开根号,所得之数就是这组数据的标准差。
[编辑本段]标准差的意义标准差越高,表示实验数据越离散,也就是说越不精确反之,标准差越低,代表实验的数据越精确[编辑本段]离散度标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标。
说起标准差首先得搞清楚它出现的目的。
方差标准差的区别方差和标准差是统计学中常见的两个概念,它们都是用来衡量数据的离散程度和波动程度的。
虽然它们都可以用来描述数据的分散程度,但是它们的计算方法和应用场景却有所不同。
本文将详细介绍方差和标准差的区别,帮助读者更好地理解和运用这两个概念。
首先,让我们来了解一下方差的概念。
方差是用来衡量一组数据离散程度的统计量,它是各个数据与其均值之差的平方的平均值。
方差的计算公式如下:\[ \sigma^2 = \frac{\sum_{i=1}^{n}(x_i \mu)^2}{n} \]其中,\( \sigma^2 \)表示方差,\( x_i \)表示第i个数据点,\( \mu \)表示数据的均值,\( n \)表示数据的个数。
从公式可以看出,方差是各个数据偏离均值的平方的平均值,它的单位是原数据的单位的平方。
而标准差则是方差的平方根,它也是用来衡量数据的离散程度的统计量。
标准差的计算公式如下:\[ \sigma = \sqrt{\frac{\sum_{i=1}^{n}(x_i \mu)^2}{n}} \]标准差的计算方法和方差类似,只是在计算完方差之后再开平方。
标准差的单位和原数据的单位相同,它可以更直观地反映数据的离散程度。
可以看出,方差和标准差的计算方法有所不同,但它们都可以用来衡量数据的离散程度。
那么,它们之间到底有什么区别呢?首先,方差的计算过程中涉及到对数据与均值之差的平方求和,这样可以消除数据偏离均值的正负影响,但同时也会放大离均值较远的数据对方差的影响。
而标准差则是方差的平方根,它可以更直观地反映数据的离散程度,同时避免了方差放大数据影响的问题。
其次,方差和标准差在应用场景上也有所不同。
在实际应用中,由于方差的单位是原数据的单位的平方,因此它并不太直观,不利于对数据的解释和比较。
而标准差的单位和原数据的单位相同,更容易理解和比较。
因此,在实际应用中,标准差更常用于衡量数据的离散程度。
综上所述,方差和标准差都是用来衡量数据的离散程度的统计量,它们的计算方法和应用场景有所不同。
方差(variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。
标准差(Standard Deviation),中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。
平均数相同的,标准差未必相同。
杠杆比率(Leverage Ratio)偿还财务能力比率,量度公司举债与平常运作收入,以反映公司履行债务能力。
认股证的吸引之处,在于能以小博大。
投资者只须投入少量资金,便有机会争取到与投资正股相若,甚或更高的回报率。
但挑选认股证之时,投资者往往把认股证的杠杆比率及实际杠杆比率混淆。
杠杆比率(Gearing Ratio)是正股市价与购入一股正股所需权证的市价之比,即:杠杆比率=正股股价/(权证价格÷认购比率)杠杆比率可用来衡量“以小博大”的放大倍数,杠杆比率越高,投资者盈利率也越高,当然,其可能承担的亏损风险也越大。
"要预计认股证(权证)的升跌幅,我们应该看实际杠杆,它是由杠杆比率及对冲值相乘而来:实际杠杆比率= 对冲值×杠杆比率透过实际杠杆,投资者可知道当正股升跌1%时,认股证的理论价格会变动多少个百分点。
如投资者欲争取较高的回报率,实际杠杆将提供较实用的资料。
不过,投资者须注意实际杠杆的数据是假设其它因素不变(引伸变化及市场因素),而数据亦只反映正股价在短时间内变动时,认股证的理论变幅,所以投资者不要以为一只提供10倍实际杠杆的认股证,其理论升跌在任何时间也是正股的10倍。